2 inch Molecular Organic Glass Scintillator for Neutron-Gamma Discrimination

M. Grodzicka- Kobylka¹⁾, T. Szczesniak¹⁾, M. Moszyński¹⁾, L. Swiderski¹⁾, K. Brylew¹⁾, P. L. Feng²⁾, L. Nguyen²⁾, J.S. Carlson , J.J. Valiente-Dobón³⁾,

¹⁾ National Centre for Nuclear Research, PL 05-400 Otwock - Swierk, Poland
²⁾ Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, USA
³⁾ INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

The goal of this work

Table I

Characterisation of scintillation properties and pulse shape discrimination (PSD) performance of new organic glass scintillator (OGS)

Properties of the scintillators used								
Crystal	Size (inch)	Shape	Peak emission [nm]	Type of scintillator	Manufacturer			
OGS	2x2	Cylinder	428	glass	Sandia National Laboratories			
OGS	2x4							
EJ-276	2x2		425	plastic				
EJ-309	2x2		424	liquid				
Stilbene	3x1		430	single crystal	Inred entire			
Stilbene	3x3							

Photodetector: spectrometry photomultiplier (PMT) **Hamamatsu R6233-100** characterized by a high photocathode blue sensitivity of 15.4 µA/ImF, high quantum efficiency of 41% and 76 mm diameter of the photocathode.

- emission spectra,
- photoelectron yield and light output,
- neutron/gamma discrimination,
- analysis of the light pulse shapes originating from events related to gamma-rays and fast neutrons.

Emission spectra

PHE number and Light Output

Table III : Photoelectron yield (with Hamamatsu R6233-100) and Light Output of all measured detectors

				Integral QE (R6233-	
Scintillators	Size (mm)	Phe number (phe/MeV)	LO (Ph/MeV)	100+emission spectrum of	
				scintillator)	
OGS		6720 + 200	20 200 + 2 000		
(sample 1	2"x2"	6730 ± 200 20 200 ± 2000 6960 ± 200 20 900 ± 2 000 4450 ± 140 13 400 ± 2 000		33 ± 3%	
sample 2)					
OGS	2"x4"				
EJ-276	0.110.11	2450 ± 70	8 200 ± 1 000	30 ± 3%	
(sample from 2017)	2"X2"	(in 2017- 3140 ± 150)	(in 2017- 10 500±1000)		
EJ-309	2"x2"	4100 ± 130	13 200± 1 100	31 ± 3%	
Stilhene	3"x1"	6400 ± 190	16 500± 1 600	39 ± 3%	
	3"x3"	4420 ± 140	11 400± 1 200		
CENTRUM BADAN JADROWYCH ŚWIERK	minim	unumun -	Martyna Grod	zicka-Kobyłka 5	
	///////////////////////////////////////	///////////////////////////////////////			

Experimental setup for PSD measurements

Fig. 2. The experimental setup for PSD measurements.

Figure of merit (FoM)

In order to quantify the performance of the tested detectors, the PSD figure of merit (FOM) was calculated, as follows:

$$FOM = \frac{(peak \, separation)}{(FWHM_{\gamma}) + (FWHM_{n})} \tag{1}$$

Due to the slight dependence of the PSD on energy (neutrons and γ -rays) in the used PSD method, FOMs were measured for narrow energy cuts, which ensured that the ZC time projection were Gaussian–shaped. Energy gates were set at 100, 300, 500 and 1000 keVee and energy window between 100 and 1000 keVee, of recoil electron energies in the 2D spectrum.

Table IV : FOM for energy cut 100, 300, 500 and 1000 keVee and energy window between 100-1000keVee measured with used scintillators

Scintillator	068	2x 065	E I_309	E I_276	Stilbene	Stilbene
Scintillator	000	27.000	LJ-303	-303 E3-278 3x1inch 3x3i		3x3inch
Short gate	70	70	60	74	70	70
Long gate	400	400	800	700	800	800
100 keVee	1.41±0.04	1.22±0.03	1.48±0.04	1.27±0.03	2.07±0.06	1.82±0.05
300 keVee	2.59±0.07	2.18±0.06	2.88±0.08	2.06±0.06	3.8±0.1	3.4±0.1
500 keVee	3.0±0.1	2.57±0.07	3.31±0.1	2.16±0.06	4.5±0.1	3.8±0.1
1000 keVee	3.4±0.1	2.81±0.08	3.71±0.1	2.33±0.07	5.1±0.1	4.4±0.1
100-1000keVee	2.17±0.06	1.93±0.05	2.34±0.07	1.32±0.04	2.81±0.06	2.68±0.08
NARODOWE		>515 PMZ				

Experimental setup for the light pulse shapes measurments

ENTRUM

BADAŃ IADROWYCI

Fig. 6. An example of data acquisition system graphical interface together with the three measured parameters: channel 1 - energy spectrum (blue), channel 2 - zero-crossing time (green). A 2D plot of ZC time versus energy is also presented. Channel 3- light pulse shape (red).

Fig. 5. The experimental setup for the light shape measurements using Bollinger-Thomas single photon method with PSD.

Analysis of the light pulse shapes

scintillator	radiation	Fast component		medium component		Long component			
		Decay const. [ns]	Intensity %						
005	Gamma	3.0 ±0.3	84	28 ±3	12	163 ±20	4	-	-
003	Fast N	3.4 ±0.3	70	27 ±3	18	114 ±10	11	-	-
EJ-309 ^{a)}	Gamma	3.7 ±0.4	80	31 ±3	10	140 ±10	7	790 ±80	3
	Fast N	4.8 ±0.5	46	32 ±3	24	140 ±10	20	620 ±60	11
EJ-276 ^{b)}	Gamma	4.0 ±0.4	70	16 ±2	12	98 ±10	8	690 ±70	8
	Fast N	3.9 ±0.4	47	18 ±2	13	106 ±10	13	800 ±80	27
Stilbene	Gamma	5.5 ±0.5	86	49 ±5	9	330 ±30	6	-	-
	Fast N	6.6 ±0.5	52	47 ±5	21	260 ±30	26	-	-

Conslusions

Advantages of OGS:

- A very good PSD discrimination. Better than for EJ-276 plastic scintillator and almost as good as for the EJ-309 liquid scintillator.
- An excellent light output about 20 000ph/MeV,
- Emission spectrum with maximum at about 430nm, matched to most of the available photodetectors
- Fast decay of the pulse, which allows the measurement of larger neutron fluxes
- The highest speed and the intensity of the fast component of the OGS light pulse comparing to other tested detectors. Parameter is very important in fast timing in time-of-flight experiments.
- Safe to use: nontoxic, nonflammable

Disadvantage:

slightly hygroscopic (the tested samples were not pack in any aluminium house)

Thank you for your attention

www.ncbj.gov.pl