

WP 3 HIGHLIGHTS "Solid Targets"

Rosanna Depalo

Università degli Studi di Milano and INFN Milano

Solid
Targets for
Astrophysics
Research

Task 3.1

PI: Roberta Spartà (INFN)

Participants:

- University of Cologne (GER)
- Centre national de la recherche scientifique (FRA)
- o **ATOMKI** (HUN)
- Horia Hulubei Institute of Physics and Nuclear Engineering (ROM)
- Istituto Nazionale di Fisica Nucleare (ITA)
- Università degli Studi di Enna Kore (ITA)
- Università degli Studi di Padova (ITA)
- Università degli Studi di Milano (ITA)

Collect the *know-how* of European labs to **develop & test** special solid targets required for the experimental study of nuclear reactions of astrophysical interest

ultra-pure material targets for low reaction
yields to be studied to avoid parasitic
reactions on impurities

noble gases targets

He and Ne (cannot create solid compounds)

→ implanted into a host material

key reactions for s-process nucleosynthesis
in evolved stars

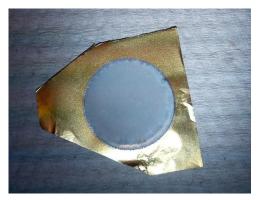
+ a service for the community: standardized testing of the produced targets (including contaminant checks and stability tests)

Institute for Nuclear Physics of University of Cologne

Target laboratory

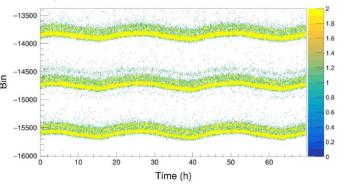
In-house target production via:

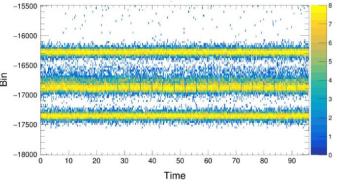
- Electrolysis
- Evaporation
- Rolling of self-supporting foils



F. Heim & A. Zilges

Centre National de la Recherche Scientifique - Strasbourg


cnrs


Target Thickness Measurements

- Large surface, self supporting targets
- Transmission measurements with alphas (~5 MeV)
- 5-10% uncertainty for 40 μg/cm² carbon foils
- Automated scan on and off beam spot
- Standard fixed target and large diameter target holders
- Support with characterization of targets at IPHC/CNRS Strasbourg

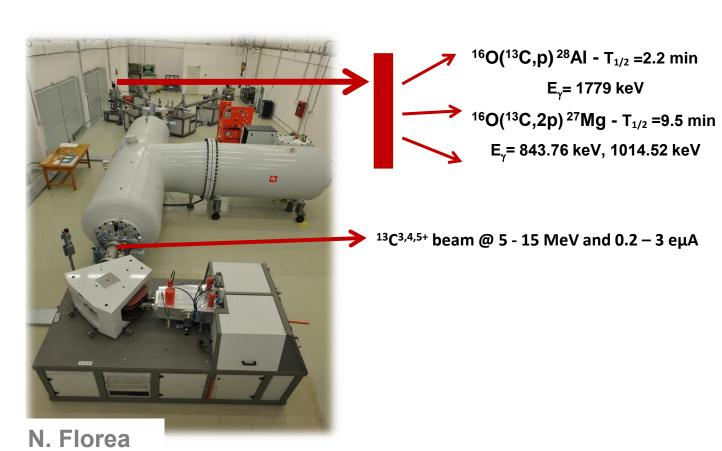
temperature drift correction

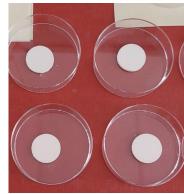
M. Heine

Atomki - Debrecen

• **PRODUCTION:** vacuum evaporator with two material heating option (resistive and electron beam bombardment): thin layer of targets, also isotopically enriched

ANALYSIS:


- Non-destructive: Nuclear Resonance Analysis; Rutherford Backscattering Spectroscopy, PIXE
- Destructive: secondary neutral-particle/ion mass spectrometry (SNMS/SIMS)


Horia Hulubei Institute of Physics and Nuclear Engineering

Self-supported CeO₂ solid thick targets (0.8 - 1 g/cm² thickness and 2 cm diameter), prepared by tablet pressing method using the Atlas[™] Automatic 25Ton (25T) Hydraulic Presses.

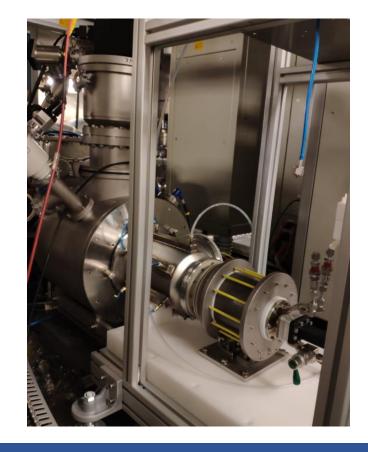
Most recent: measurement of the activation channels produced with the reaction ¹³C+¹⁶O

gamma deactivation spectra measured with BEGe station

INFN – LNS + Università Kore Enna

TEFLON TARGETS

- **INNOVATIVE** rolling technique starting from commercial TEFLON;
- Thickness not lower than 1000 μg/cm²
- Disomogeneity 20%


Noble gas targets

NESTOR ECR ion source

- installed on the 450 kV platform for production of noble gases negative ions for the Tandem Accelerator

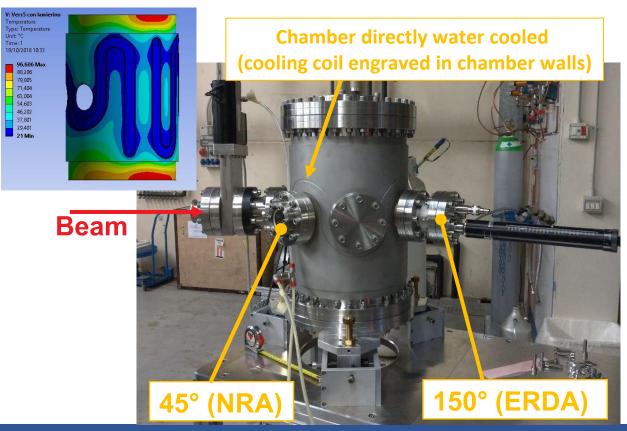
INFN - LNL

SALVIA project (Setup for Analysis with MeV accelerators of Isotopic tArgets and their preparation)

- Production of ¹⁴N thin target for LUNA collaboration via magnetron sputtering:
 - ZrN
 - TiN
 - TaN
- High purity Ta and Mo thick coatings for contaminations reduction (γ background reduced)
- Production of deuterated targets (ZrD₂)
- Ion Beam Analysis with ERDA, EBS, PIGE

M. Campostrini

Università degli Studi di Padova and Milano

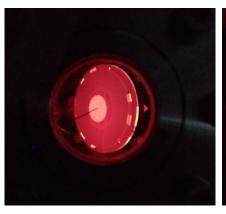


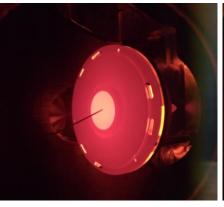
Study of hydrogen desorption from carbon targets (HEAT)

The main source of beam-induced background for ¹²C+¹²C direct cross section measurements is the interaction of ¹²C beam with ¹H, ²H contaminations in target.

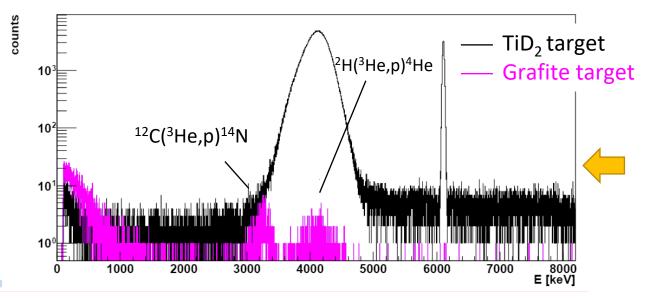
The **HEAT** project is developing a procedure to reduce H contaminations by heating the targets up to 1200°C.

Programmable heating system with target holder



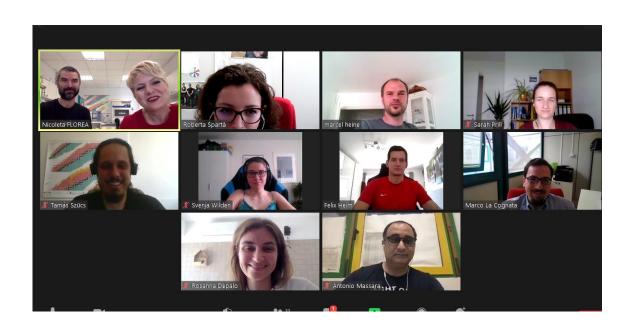

Università degli Studi di Padova and Milano

ERS STANDARD OF THE RESTRANCE OF THE RES



Study of hydrogen desorption from carbon targets (HEAT)

In the first tests, H contamination level was assessed using Nuclear Reaction Analysis, with the ²H(³He,p)⁴He reaction.


So far, we have reached a factor of ~3 reduction in H contamination, more tests will be performed in the future.

Solid
Targets for
Astrophysics
Research

Task 3.1

Started working on the 1st deliverable:

Report on the experimental techniques used for solid target production

as a status of the art of our labs' techniques and possibilities

This report + a map of the facilities will be the base for the target characterization service map to be proposed on the INFRA website

THANK YOU!