Big-Bang Nucleosynthesis New Developments and a Bright Future

Brian Fields ChETEC-INFRA General Assembly Padova & Online: May 31, 2022

ILLINOIS

Nuclear Physics in the Early Universe

Nuclear Physics in the Early Universe

Cosmic Baryons and the Microwave Background

Nuclear Physics in the Early Universe

The Lithium Problem and Possible Resolution

Cosmic Baryons and the Microwave Background

Nuclear Physics in the Early Universe

Cosmic Baryons and the Microwave Background

The Lithium Problem and Possible Resolution

The Future: Nuclear Reactions Take Center Stage

Nuclear Physics in the Early Universe

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae

Radiation dominates! $\gamma, \ e^{\pm}, \ 3\nu\bar{\nu}$ Matter p, ntiny baryon-to-photon ratio (the only free parameter!) $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae Radiation dominates! $\gamma, \ e^{\pm}, \ 3\nu\bar{\nu}$

Matter p,n tiny baryon-to-photon ratio (the only free parameter!) $\eta\equiv n_{\rm B}/n_{\gamma}\sim 10^{-9}$

Initial Conditions: T >> 1 MeV, t<< 1 sec n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$

> $ne^+ \leftrightarrow p\bar{\nu}_e$ neutron-to-proton ratio: $n/p = e^{-(m_n - m_p)c^2/kT}$

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae Radiation dominates! $\gamma, \ e^{\pm}, \ 3\nu\bar{\nu}$ Matter p, ntiny baryon-to-photon ratio (the only free parameter!) $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$

Initial Conditions: T >> 1 MeV, t<< 1 sec n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$ $ne^+ \leftrightarrow p\overline{\nu}_e$ neutron-to-proton ratio: $n/p = e^{-(m_n - m_p)c^2/kT}$ Weak Freezeout: T ~ 1 MeV, t~1 sec $\tau_{\text{weak}}(n \leftrightarrow p) > t_{\text{universe}}$ $fix\left(\frac{n}{p}\right)_{\text{freeze}} \approx e^{-\Delta m/T_{\text{freeze}}} \sim \frac{1}{7}$

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae Radiation dominates! γ , e^{\pm} , $3\nu\bar{\nu}$ Matter p, ntiny baryon-to-photon ratio (the only free parameter!) $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$ Initial Conditions: T >> 1 MeV, t<1 sec n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$ $ne^+ \leftrightarrow p\bar{\nu}_e$ neutron-to-proton ratio: $n/p = e^{-(m_n - m_p)c^2/kT}$ Weak Freezeout: T ~ 1 MeV, t~1 sec $\tau_{\rm weak}(n \leftrightarrow p) > t_{\rm universe}$

$$\operatorname{fix}\left(\frac{n}{p}\right)_{\mathrm{freeze}} \approx e^{-\Delta m/T_{\mathrm{freeze}}} \sim \frac{1}{7}$$

Light Elements Born: T~0.07 MeV, t~3 min

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae Radiation dominates! γ , e^{\pm} , $3\nu\bar{\nu}$ Matter p, ntiny baryon-to-photon ratio (the only free parameter!) $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$ Initial Conditions: T >> 1 MeV, t<1 sec n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$ $ne^+ \leftrightarrow p\bar{\nu}_e$ neutron-to-proton ratio: $n/p = e^{-(m_n - m_p)c^2/kT}$ Weak Freezeout: T ~ 1 MeV, t~1 sec $\tau_{\rm weak}(n \leftrightarrow p) > t_{\rm universe}$

$$\operatorname{fix}\left(\frac{n}{p}\right)_{\mathrm{freeze}} \approx e^{-\Delta m/T_{\mathrm{freeze}}} \sim \frac{1}{7}$$

Light Elements Born: T~0.07 MeV, t~3 min

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae Radiation dominates! γ , e^{\pm} , $3\nu\bar{\nu}$ Matter p, ntiny baryon-to-photon ratio (the only free parameter!) $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$ Initial Conditions: T >> 1 MeV, t<< 1 sec n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$ $ne^+ \leftrightarrow p\bar{\nu}_e$ neutron-to-proton ratio: $n/p = e^{-(m_n - m_p)c^2/kT}$ Weak Freezeout: T ~ 1 MeV, t~1 sec $\tau_{\rm weak}(n \leftrightarrow p) > t_{\rm universe}$

$$\operatorname{fix}\left(\frac{n}{p}\right)_{\mathrm{freeze}} \approx e^{-\Delta m/T_{\mathrm{freeze}}} \sim \frac{1}{7}$$

Light Elements Born: T~0.07 MeV, t~3 min reaction flow most stable light nucleus essentially all n 4He, ~25% by mass also: traces of D, 3He, 7Li

Stanard BBN Predictions

Curve Widths: Theoretical uncertainty nuclear cross sections

BDF, Olive, Yeh, Young 2020

Pitrou+ 2018 Cyburt, BDF, Olive, Yeh 2015 **Descouvement poster** Cyburt, BDF, Olive 2008 **Cyburt 2004** Coq et al 2004 Serpico et al 2005 Cyburt, BDF, Olive 2001 Krauss & Romanelli 1988 Smith, Kawano, Malaney 1993 Hata et al 1995 Copi, Schramm, Turner 1995 Nollett & Burles 2000

Stanard BBN Predictions

Curve Widths: Theoretical uncertainty nuclear cross sections

BDF, Olive, Yeh, Young 2020

Pitrou+ 2018 Cyburt, BDF, Olive, Yeh 2015 **Descouvement poster** Cyburt, BDF, Olive 2008 **Cyburt 2004** Coq et al 2004 Serpico et al 2005 Cyburt, BDF, Olive 2001 Krauss & Romanelli 1988 Smith, Kawano, Malaney 1993

Note strong D sensitivity to density

Nollett & Burles 2000

Deuterium

- in z~3 galaxies backlit by quasars
- New! leap in precision: Pettini, Cooke+ 2013-2019

Deuterium

- in z~3 galaxies backlit by quasars
- New! leap in precision: Pettini, Cooke+ 2013-2019

⁴He

- ionized gas (HII regions) in metal-poor galaxies Aver, Olive, Skillman+

- New! CMB damping tail: SPT 2011,2012; Planck 2013-2018

- in z~3 galaxies backlit by quasars
- New! leap in precision: Pettini, Cooke+ 2013-2019

⁴He

7**L**i

- metal-poor halo stars in Milky Way

- ionized gas (HII regions) in metal-poor galaxies Aver, Olive, Skillman+

- New! CMB damping tail: SPT 2011,2012; Planck 2013-2018

Newish! now also extragalactic observations

- in z~3 galaxies backlit by quasars
- New! leap in precision: Pettini, Cooke+ 2013-2019

⁴He

7**Li**

- metal-poor halo stars in Milky Way

³He

- ionized gas (HII regions) in metal-poor galaxies Aver, Olive, Skillman+

- New! CMB damping tail: SPT 2011,2012; Planck 2013-2018

Newish! now also extragalactic observations

- hyperfine in Milky Way HII regions Rood, Wilson, Bania+ – no low-metal data; not used for cosmology

Testing BBN:

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, 4He, 7Li

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, 4He, 7Li

Comparison:

★each nuclide selects baryon density

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, ⁴He, ⁷Li

Comparison:

★each nuclide selects baryon density

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, 4He, 7Li

Comparison:

★each nuclide selects baryon density ★overconstrained--nontrivial test!

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, 4He, 7Li

Comparison:

★each nuclide selects baryon density
★overconstrained--nontrivial test!

Result: trough concordance!

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, 4He, 7Li

Comparison:

★each nuclide selects baryon density ★overconstrained--nontrivial test!

Result: ★rough concordance! ★but not in detail! D and ⁷Li disagree

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, 4He, 7Li

Comparison:

★each nuclide selects baryon density ★overconstrained--nontrivial test!

Result: ★rough concordance! ★but not in detail! D and ⁷Li disagree need a tiebreaker

COSMIC BARYONS and the **MICROWAVE BACKGROUND**

Battle of the Baryons: II CMB New World Order

Cyburt, BDF, Olive 2003, ..., Yeh, Olive, BDF 2021

Planck baryon density very precise

- $\Omega_{\rm B} h^2 = 0.022298 \pm 0.000020$
 - $\eta = (6.104 \pm 0.058) \times 10^{-10}$

i.e., a sub-1% measurement!

Battle of the Baryons: II CMB New World Order

Cyburt, BDF, Olive 2003, ..., Yeh, Olive, BDF 2021

Planck baryon density very precise

- $\Omega_{\rm B} h^2 = 0.022298 \pm 0.000020$
 - $\eta = (6.104 \pm 0.058) \times 10^{-10}$

i.e., a sub-1% measurement!

New strategy to test BBN:

Battle of the Baryons: II CMB New World Order

Cyburt, BDF, Olive 2003, ..., Yeh, Olive, BDF 2021

Planck baryon density very precise

- $\Omega_{\rm B} h^2 = 0.022298 \pm 0.000020$
 - $\eta = (6.104 \pm 0.058) \times 10^{-10}$

i.e., a sub-1% measurement!

New strategy to test BBN: $\sqrt{\text{use Planck }\eta_{\text{cmb}}\text{as BBN }\underline{\text{input}}}$

Battle of the Baryons: II CMB New World Order baryon density $\Omega_{\rm b}h^2$ 10⁻²

Cyburt, BDF, Olive 2003, ..., Yeh, Olive, BDF 2021

Planck baryon density very precise

 $\Omega_{\rm B} h^2 = 0.022298 \pm 0.000020$ $\eta = (6.104 \pm 0.058) \times 10^{-10}$

i.e., a sub-1% measurement!

New strategy to test BBN: $\sqrt{\text{use Planck}\eta_{\text{cmb}}\text{as BBN input}}$ predict all lite elements with appropriate error propagation

Battle of the Baryons: II CMB New World Order baryon density $\Omega_{\rm b}h^2$ 10⁻²

Cyburt, BDF, Olive 2003, ..., Yeh, Olive, BDF 2021

Planck baryon density very precise

 $\Omega_{\rm B} h^2 = 0.022298 \pm 0.000020$ $\eta = (6.104 \pm 0.058) \times 10^{-10}$

i.e., a sub-1% measurement!

New strategy to test BBN: $\sqrt{\text{use Planck }\eta_{\text{cmb}}\text{as BBN }\underline{\text{input}}}$ predict all lite elements with appropriate error propagation compare with observations

Battle of the Baryons: II A Closer Look

Cyburt, BDF, Olive 2003, 2008, 2015; BDF, Olive, Yeh, Young 2020

Battle of the Baryons: II A Closer Look Cyburt, BDF, Olive 2003, 2008, 2015; BDF, Olive, Yeh, Young 2020

Likelihoods purple: **BBN+CMB** predictions yellow: observations

Results: D excellent!

Results: D excellent! ➢ ⁴He great!

Results:

- **D** excellent!
- ➢ ⁴He great!
- ➢ ⁷Li poor!
 - observation ~ theory/4
 - 4-5 sigma discrepancy
 - **Lithium Problem** -

Results:

- **D** excellent!
- ➢ ⁴He great!
- ➢ ⁷Li poor!
 - observation ~ theory/4
 - 4-5 sigma discrepancy
 - **Lithium Problem** -

The Lithium Problem

ithiun h Problem

standard particle physics

standard particle physics

standard nuclear physics

Ji

standard particle physics

standard nuclear physics

standard cosmology

standard particle physics

standard nuclear physics

standard particle physics

standard nuclear physics

standard particle physics

nuclear physics

Solutions: one of these is wrong

Primordial Lithium Observed: Halo Stars & the Spite Plateau

Monique & François Spite

Primordial Lithium Observed: Halo Stars & the Spite Plateau

Fe

Monique & François Spite

Primordial Lithium Observed: Halo Stars & the Spite Plateau

Fe

Monique & François Spite

Fe

Monique & François Spite

The Worry:

Convection can lead to Li destruction

The Worry:

Convection can lead to Li destruction

The Worry:

Convection can lead to Li destruction

The Fix:

★select stars with thin convection zone

The Worry:

Convection can lead to Li destruction

The Fix:

*select stars with thin convection zone

★empirically show small depletion

The Worry:

Convection can lead to Li destruction

The Fix:

★select stars with thin convection zone
★empirically show small depletion
★consistent with thin Spite plateau

Context: 7Li versus 6Li, Be, and B

[Fe/H]=log₁₀(Fe/Fe_{solar})

BDF & Olive 99

Context: 7Li versus 6Li, Be, and B

[Fe/H]=log₁₀(Fe/Fe_{solar})

BDF & Olive 99

Context: 7Li versus 6Li, Be, and B

⁶Li found in two stars... then claimed in more

More fragile than ⁷Li

⁶Li survival means ⁷Li depletion small

BDF & Olive 99

[Fe/H]=log₁₀(Fe/Fe_{solar})

Observe in gamma-ray sky

$p_{\rm cr} + p_{\rm gas} \to pp\pi^0 \ \pi^0 \to \gamma\gamma$

Cosmic-Ray Nucleosynthesis of LiBeB

Observe in gamma-ray sky

$p_{\rm cr} + p_{\rm gas} \to pp\pi^0 \\ \pi^0 \to \gamma\gamma$

Cosmic-Ray Nucleosynthesis of LiBeB

Observe in gamma-ray sky

Stable debris created

Cosmic-Ray Nucleosynthesis of LiBeB

Observe in gamma-ray sky

Stable debris created

Cosmic-Ray Nucleosynthesis of LiBeB

Observe in gamma-ray sky

Stable debris created

Cosmic-Ray Nucleosynthesis of LiBeB

need metals in projectiles or targets

Cosmic-Ray Nucleosynthesis of LiBeB

no metals required--helium is primordial

Cosmic-Ray Nucleosynthesis of LiBeB

LiBeB as Cosmic Ray Dosimeters **Solar LiBeB: cumulative irradiation at Sun birth**

LiBeB as Cosmic Ray Dosimeters Solar LiBeB: cumulative irradiation at Sun birth

Galactic cosmic rays are only conventional ⁶Li,⁹Be,¹⁰B source

BDF & Olive 99

LiBeB as Cosmic Ray Dosimeters Solar LiBeB: cumulative irradiation at Sun birth

Galactic cosmic rays are only conventional ⁶Li,⁹Be,¹⁰B source

neutrino spallation in supernovae (nu process) also makes ⁷Li, ¹¹B

LiBeB as Cosmic Ray Dosimeters Solar LiBeB: cumulative irradiation at Sun birth

Galactic cosmic rays are only conventional ⁶Li,⁹Be,¹⁰B source

neutrino spallation in supernovae (nu process) also makes ⁷Li, ¹¹B

LiBeB in halo stars: cosmic-ray fossils

Cosmic rays present in early Galaxy!

Galactic Cosmic Rays: Archaeology Prantzos, Cassé, Vangioni-Flam 1993; Walker et al 1993; BDF Olive & Schramm 1994; Ramaty, Kozlovsky, & Lingenfelter 1996

LiBeB as Cosmic Ray Dosimeters Solar LiBeB: cumulative irradiation at Sun birth

Galactic cosmic rays are only conventional ⁶Li,⁹Be,¹⁰B source

neutrino spallation in supernovae (nu process) also makes ⁷Li, ¹¹B

LiBeB in halo stars: cosmic-ray fossils

Cosmic rays present in early Galaxy! LiBeB probe cosmic-ray origin & history

2022: A Possible Solution

Keith Olive

2022: A Possible Solution

Keith Olive

BDF & Olive 2022

Same CR model New data added Still good fit, strong evidence for cosmic rays in early Galaxy

Newer Li data: Large dispersion! Still mostly a "lithium desert" **below primordial**

Newer Li data: Large dispersion! Still mostly a "lithium desert" below primordial

Find ⁶Li depletion:

$$D_6 = rac{{}^6\mathrm{Li}_{\mathrm{CR}}}{{}^6\mathrm{Li}_{\mathrm{obs}}} \geq 1$$

If ⁷Li depletion the same:

 $D_7 = D_6$

Find ⁶Li depletion:

$$D_6 = rac{{}^6\mathrm{Li}_{\mathrm{CR}}}{{}^6\mathrm{Li}_{\mathrm{obs}}} \geq 1$$

Find ⁶Li depletion:

$$D_6 = rac{{}^6\mathrm{Li}_{\mathrm{CR}}}{{}^6\mathrm{Li}_{\mathrm{obs}}} \geq 1$$

Good news-without lithium problem...

Good news-without lithium problem... • BBN says hot big bang works back to 1 sec

- **Good news-without lithium problem...**
- BBN says hot big bang works back to 1 sec
- BBN+CMB concordance = cosmo triumph

roblem... s back to 1 sec osmo triumph

- **Good news-without lithium problem...**
- BBN says hot big bang works back to 1 sec
- BBN+CMB concordance = cosmo triumph
- probes dark matter & other new physics

roblem... s back to 1 sec osmo triumph new physics

- **Good news-without lithium problem...**
- BBN says hot big bang works back to 1 sec
- **BBN+CMB concordance = cosmo triumph**
- probes dark matter & other new physics
- **Bad news–Li unreliable for cosmo** ...for now. Clever ideas needed!

Astro obs err < BBN+CMB theory!</p>

> Astro obs err < BBN+CMB theory!

Limited by D-destroying cross sections

- Astro obs err < BBN+CMB theory!</p>
- Limited by D-destroying cross sections
- Most Wanted circa 2020:

$$egin{aligned} & d(p,\gamma)^3 \mathrm{He} \ & d(d,n)^3 \mathrm{He} \ & d(d,p)^3 \mathrm{He} \end{aligned}$$

• pre-LUNA

– relatively little data in BBN energy range ~100-200 keV

- pre-LUNA
 - relatively little data in BBN energy range ~100-200 keV
 - data at odds with theory prediction

- pre-LUNA
 - relatively little data in BBN energy range ~100-200 keV
 - data at odds with theory prediction
- LUNA Mossa+ 2020

- pre-LUNA
 - relatively little data in BBN energy range ~100-200 keV
 - data at odds with theory prediction
- LUNA Mossa+ 2020
 BBN range fully covered

- pre-LUNA
 - relatively little data in BBN energy range ~100-200 keV
 - data at odds with theory prediction
- LUNA Mossa+ 2020
 - BBN range fully covered
 - global fit S-factor now more precise…

- pre-LUNA
 - relatively little data in BBN energy range ~100-200 keV
 - data at odds with theory prediction
- LUNA Mossa+ 2020
 - BBN range fully covered
 - global fit S-factor now more precise...
 - but only slightly higher

- pre-LUNA
 - relatively little data in BBN energy range ~100-200 keV
 - data at odds with theory prediction
- LUNA Mossa+ 2020
 - BBN range fully covered
 - global fit S-factor now more precise...
 - but only slightly higher
 - theory needs revision?

Tsung-Han Yeh 葉宗翰

LUNA Impact on BBN Precision

Yeh, BDF, and Olive 2021

Tsung-Han Yeh 葉宗翰

LUNA Impact on BBN Precision

Yeh, BDF, and Olive 2021

LUNA Impact on Concordance

Yeh, BDF, and Olive 2021

Likelihood

LUNA Impact on Concordance

.ikelihood

poc

Yeh, BDF, and Olive 2021

Excellent Agreement Remains! ...but nuke still trails astro

Nachiketa Chakraborty

Charlie Young

Richard Cyburt

Convergence of Nuclear/Particle Physics and Cosmology successes of both point to larger, deeper picture

- theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Keith Olive

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- successes of both point to larger, deeper picture
- **Convergence of Nuclear/Particle Physics and Cosmology** theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

The Future is Bright:

Nachiketa Chakraborty

Richard Cyburt

- successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He
- **Convergence of Nuclear/Particle Physics and Cosmology**

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB** probe dark matter, neutrinos, new physics...

The Future is Bright:

Need precision cross sections for $d(d, n)^3$ He $d(d, p)^3$ H

Keith Olive

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

The Future is Bright:

- Need precision cross sections for $d(d, n)^3$ He $d(d, p)^3$ H
- Even better CMB measurements (S4)

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

The Future is Bright:

- Need precision cross sections for
- Even better CMB measurements (
- Stellar models for Li depletion & interplay with cosmic-ray nuke

$$d(d,n)^{3}$$
He $d(d,p)^{3}$ H
(S4)

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

The Future is Bright:

- Need precision cross sections for $d(d, n)^3$ He $d(d, p)^3$ H **Even better CMB measurements (S4)**
- **Stellar models for Li depletion & interplay with cosmic-ray nuke** New light element measures: stellar, interstellar, extragalactic ^{6,7}Li

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

The Future is Bright:

- Need precision cross sections for $d(d, n)^3$ He $d(d, p)^3$ H **Even better CMB measurements (S4)**
- **Stellar models for Li depletion & interplay with cosmic-ray nuke** New light element measures: stellar, interstellar, extragalactic ^{6,7}Li **Closer interplay with dark matter & accelerator physics**

Nachiketa Chakraborty

Richard Cyburt

Keith Olive

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture theory & experiment tightly linked: e.g., $d(p,\gamma)^3$ He

Lithium Problem Resolved?

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by ⁶Li non-detections

BBN & CMB: Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

The Future is Bright:

- Need precision cross sections for $d(d, n)^3$ He $d(d, p)^3$ H **Even better CMB measurements (S4)**
- **Stellar models for Li depletion & interplay with cosmic-ray nuke** New light element measures: stellar, interstellar, extragalactic ^{6,7}Li **Closer interplay with dark matter & accelerator physics**
- **Stay Tuned!**

