Multidimensional simulations of thermonuclear supernovae

ChETEC-INFRA 2nd General Assembly, Padova, June 1, 2022

Friedrich Röpke

Heidelberg

with Sabrina Gronow, Florian Lach, Christine Collins, Fionntan Callan, Stuart Sim, Benoit Cote, Mattia Bulla, Luke Shingles, Markus Kromer, Rüdiger Pakmor, Ivo Seitenzahl, Ashley Ruiter, Wolfgang Hillebrandt, Michael Fink, Franco Ciaraldi-Schoolmann, Kai Marquardt, Zhengwei Liu, Gilles Ferrand, Hiro Nagataki, Sebastian Ohlmann

Consistent multi-D modeling pipeline

t = 0.0025 s

t = 0.200 s

t = 0.600 s

t = 1.000 s

t = 1.600 s

 outcome sensitive to ignition geometry (Fink+ 2014)

Seitenzahl+, 2012; Fink+, 2014

A model for SNe lax?-20

- Do models cover the entire brightness range? \rightarrow faint end??
- previous studies covered bright end (SN 2002cx-likes Phillips+ 2007, Jordan+ 2012, Kromer+ 2013, Kromer+ 2015, Leung+ 2020)
- Do models reproduce spectra and light curves?

A model for SNe lax?

 Lach+ (2022): systematic study of single-spark ignition scenarios to explore faint end of models

roff

200 km

- 30 models with different
 - ignition radii
 - central densities
 - metallicities
 - rates of (rigid) rotation
 - carbon mass fractions

 $t = 0.6 \, \mathrm{s}$

 $t = 1.55 \,\mathrm{s}$

 $t = 1.55 \,\mathrm{s}$

A model for SN lax?

- ► Lach+ 2022a
- ▶ lowest ⁵⁶Ni mass in ejecta: 0.006 M_☉
- kick velocities of bound remnants 0 to ~350 km/s

 $t = 0.6 \, \mathrm{s}$

A model for SN lax?

- ▶ peak bolometric brightness: -14.91 mag to -17.35 mag
- brighter models agree reasonably well with observations
- ▶ strong correlation between $M(^{56}Ni)$ and $M_{ej} \rightarrow light$ curves of faint models evolve too fast

A model for SNe lax?

- overall still reasonable agreement
- but: problems with reproducing faint events
 - difficult to break strong M(⁵⁶Ni) to M_{ej} correlation, but seems to be necessary to capture faint objects
 - shortcomings in explosion modeling? \rightarrow ignition configuration
 - ▶ shortcomings in RT modeling? \rightarrow non-LTE effects (Shingles+ 2020)
 - contributions of bound remnant to emission? (Kromer+ 2013, 2015, Foley+ 2014, 2016, Shen & Schwab 2017)
 - ▶ shortcomings of the explosion scenario? → stratified ejecta composition in outer layers (Stritzinger+ 2015, Barna+ 2017, 2018, 2020)
- Can SNe lax be explained in single explosion scenario? → core collapse SN scenario for faintest objects (Valenti+ 2009)

Pulsationally-assisted GCD models

- wide range of brightnesses: 0.257 to 1.057 M_{\odot} of ⁵⁶Ni
- spectra and lightcurves: some similarities with SN 1991T-like objects, but not with normal SNe Ia

Detonations in sub-M_{Ch} WDs

promising scenario (Sim+ 2010)

- primary parameter driving trends: mass of exploding WD (Pinto & Eastman 2000)
- How to trigger detonation?

Double detonation model

A model for normal SNe la?

- Do models cover the entire brightness range? → YES
- ▶ Do models follow correlations? → PROBABLY (Sim+ 2010, Shen+ 2021)
- Do models reproduce spectra and light curves? (Townsley+ 2019, Shen+ 2021)
- How robust is the ignition mechanism?
- ▶ He shell detonation critical → improve modeling approach: use AREPO code (Gronow+ 2020, 2021, sub.)

Gronow+ 2020

A model for normal SNe Ia?

- ► 13 model parameter study of different core (0.8 – 1.1 M_☉) and He shell masses (0.02 – 0.1 M_☉); Gronow+ (2021) → 3 different C-detonation ignition mechanisms
- too red because of He shell detonation
 products (Gronow+ 2020)
- ▶ shortcomings in RT modeling? → non-LTE effects (Shingles+ 2020, Shen+ 2021)
- too strong variation with viewing angle (Gronow+ 2021)

- production of ⁵⁵Mn \rightarrow Lach+ (2020)
- production ⁵⁵Mn → normal freeze-out from NSE needed to reach solar [Mn/Fe] Seitenzahl+ (2014)

- production of ${}^{55}Mn$ \rightarrow Lach+ (2020)
- He shell detonation contributes significantly (Lach+ 2020, Gronow+ 2021)

Are M_{Ch} explosions required?

 GCE calculation Gronow+ (2021); with B. Côté in a ChETEC-funded visit to Heidelberg

- models with He-shell detonations can produce supersolar Zn/Fe and Cu/Fe ratios (Lach+ 2020)
- GCE studies should include a variety of SN la models!

Conclusions

- ► explosion modeling pipeline → valuable tool to test progenitor scenarios
- predictive power due to consistent multi-D modeling
- allows for comparison of observables with data (nucleosynthesis yields, optical observables, SNR structures...)

Seitenzahl+ 2013, Lach+, 2020

- ► sub-M_{Ch} model looks promising for normal SNe Ia
- Type lax supernovae from M_{Ch} explosions?
- use a variety of models for GCE calculations!