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Fig. 1 The Stochastic energetics as completion of the “missing link”

nanobiology, nanoscopic chemical engineering, etc. In other words, those who are
interested in the following questions will find the answer, or at least some clues, in
this book:

• What is the heat associated to the thermal random (Brownian) motion of a meso-
scopic particle?

• What work do we need for the operation and observation of small system?
• How much is the work to operate an ideal Carnot engine? Is it reversible?
• Can we cool a drop of water by agitating a nanoparticle immersed therein?
• How does the heat flow if a particle undergoing Brownian motion pulls a polymer

chain?
• Is the energy conserved during an individual realization of Brownian motion?
• Is the projection methods, which eliminates rapid microscopic motions, compat-

ible with reversible or quasiequilibrium process?
• Can we measure the free energy of the system by a single realization of stochastic

process?
• Are there quantum mechanics-like uncertainty or irreversibility upon the mea-

surement of thermal random process?
• Is the definition of the heat unique? Is the thermodynamics unique for any partic-

ular system ?
• Does a particle carry the chemical potential when it enters into an open system

from the environment?
• Why does the chemical potential of a molecule depend on its density even if the

molecule does not interact with other molecules?
• Do we need an irreversible work to make a copy of the information in a bit

memory?
• Can we detect reversibly the arrival of a Brownian particle with 100% of sureness

at finite temperature?
• Do molecular motors need to stock a large energy in order to do a large work?

Stochastic thermodynamics

First Law: 
Second Law: 

K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998) U. Seifert, Phys. Rev. Lett. 95(4) 040602 (2005)
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Examples
Isothermal non-equilibrium steady states

Noneq. free energy

Non-isothermal steady states  
(e.g. autonomous heat engines)
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FIG. 1: (A) Electron micrograph of a hair-cell bundle
extracted from the bullfrog’s inner ear. The distance from
top to bottom is ⇠ 7µm. (B) Experimental recording of
the position of the tip of an active mechanosensory hair
bundle. (C,D) Trajectories of the reduced variables X1

(C) and X2 (D) as a function of time obtained from a
simulation of the stochastic model given by Eqs. (3-4). (E)
Representation of a 2-s trace of the simulations in (C,D)
in the {X1(t), X2(t)} plane. The black arrows illustrate
the value of the instantaneous velocity and the base of
the arrow the position. Parameters of the simulations:
�1 = 0.9 pNms/nm, �2 = 5pNms/nm, kgs = 0.55 pN/nm,
ksp = 0.3 pN/nm, D = 72 nm, S = 0.73, Fmax = 45.76 pN,
N = 50, �G = 10kBT , kBT = 4.143 pNnm and Te↵/T = 1.5.

where �(k)
[0,t] ⌘ {(x1(s), . . . , xk(s))}ts=0 and e�(k)

[0,t] ⌘
{(✓1x1(t�s), . . . , ✓kxk(t�s))}ts=0 denote paths described
by k variables. The average k�variable rate of entropy
production increases with the number of tracked degrees
of freedom 0  �1  · · ·  �k  �k+1  · · ·  �tot. It
can also be shown that the estimator �k equals the phys-
ical entropy production �tot if the missing variables, X`

with ` > k, are at thermal equilibrium [20–22]. When the
missing variables are not at thermal equilibrium, which is
often the case in active systems, the estimator �k  �tot

yields only a lower bound for the entropy production rate.
We now discuss irreversibility and entropy production

in active mechanosensory hair cells from the bullfrog’s
ear. Hair cells work as cellular microphones that trans-
duce mechanical vibrations evoked by sound into electri-
cal signals [23]. They are endowed with a tuft of cylindri-
cal protrusions �the hair bundle (Fig. 1A)� that serves
both as sensory antenna and as active oscillator that am-
plifies sound [3]. In experimental recordings of sponta-
neous hair-bundle oscillations, only the position of the
bundle’s tip X1 sis measured (Fig. 1B). Measuring X1,
we can only estimate �1, which provides a lower bound
to the total steady-state entropy production rate �tot.

Spontaneous hair-bundle oscillations are thought to re-
sult from an interplay between opening and closing of

mechanosensitive ion channels, activity of molecular mo-
tors that pull on the channels, and fast calcium feedback.
This interplay can be described by two coupled stochas-
tic differential equations for the position of the bundle
X1 and of the motors X2 [2, 15, 24]:

�1Ẋ1 = � @V

@X1
+

p
2kBT�1 ⇠1 (3)

�2Ẋ2 = � @V

@X2
� Fact +

p
2kBTe↵�2 ⇠2 , (4)

where �1 and �2 are friction coefficients and ⇠1 and
⇠2 in (3-4) are two independent Gaussian white noises
with zero mean h⇠i(t)i = 0 (i = 1, 2) and correlation
h⇠i(t)⇠j(t0)i = �ij�(t�t0), with i, j = 1, 2 and �ij the Kro-
necker’s delta. T is the temperature of the environment,
whereas the parameter Te↵ > T is an effective tempera-
ture that characterizes fluctuations of the motors. The
conservative forces derive from the potential associated
with elastic elements and mechano-sensitive ion channels

V (X1, X2) =
kgs�X2

+ kspX2
1

2
(5)

+ NkBT ln


exp

✓
kgsD�X

NkBT

◆
+A

�
,

where �X = X1 � X2; kgs and ksp are stiffness
coefficients; D is the gating swing of a transduction
channel; and A = exp[(�G + (kgsD2

)/2N)/(kBT )],
�G being the energy difference between open
and closed states of the channels and N the
number of transduction elements. The force
Fact(X1, X2) = Fmax(1 � SPo(X1, X2)) is an active
nonconservative force exerted by the molecular motors
with a maximum value Fmax. The parameter S quantifies
calcium-mediated feedback on the motor force [25] and
Po(X1, X2) = 1/[1 + A exp(�kgsD�X/NkBT )] is the
open probability of the transduction channels. With this
model, we can capture key features of noisy spontaneous
oscillations of hair-bundle position X1 that have been
observed experimentally (Fig. 1C and D). The oscillation
of the motors’ position (Fig. 1D) is known in the model
but hidden in experiments. Trajectories of only X1(t) or
X2(t) do not reveal obvious signs of a net current, which
here would correspond to a drift. However, trajectories
in the (X1, X2) plane show a net current which is a signa-
ture of entropy production (Fig. 1E). In the following, we
will use this stochastic model to compare the irreversibil-
ity measure �1 to the total entropy production �tot.

In the stochastic model of hair-bundle oscillations
given by Eqs. (3-4) we deal with only two variables,
therefore �tot = �2. From the analytical expression of
�2, we find that the steady-state entropy production
rate can be written as [26, 27]

�tot = �hQ̇1i
✓
1

T
� 1

Te↵

◆
+

hẆacti
Te↵

, (6)

Active matter  
systems with hidden nonequilibrium degrees of freedom



Basic knowledge on stochastic entropy

Nonequilibria: 

3 Stochastic entropy production and the arrow of time

It may come as a surprise that (stochastic) entropy production can transiently decrease in time. Using the
framework described in Sec. 2, we can define the entropy production in the time interval [0, t] as the
stochastic process given by the cumulative sum

Stot(t) =

Z t

0
Ṡtot(s)ds, (51)

with Ṡtot(t) given by (44) for the case of nonequilibrium Markovian processes. An interesting question is
to understand the statistics of stochastic entropy production in nonequilibrium processes, i.e. what is the
probability P (Stot(t) = s) that the entropy production up to time t can take a certain value s, and in particular,
the probability of negative entropy events for which s < 0. Two key properties of stochastic entropy production
are

1. In equilibrium, Stot(t) = 0 at all times t � 0.

2. Out of equilibrium, the average value hStot(t)i = 0 at all times t � 0.

However, Stot(t) can in principle take any value, as illustrated in Fig. 1.

Figure 1: Top: Sample traces of stochastic entropy production Stot(t) for different experiments (thin blue lines)
as a function of time t. Out of equilibrium, its average increases with time hStot(t)i � 0 (thick blue line). The
results are obtained from numerical simulations of a nonequilibrium Markovian system. Bottom: Experimental
measurement of stochastic entropy production Stot(t) (thin lines) for 50 different experimental realizations of
a double quantum dot driven by a constant DC bias voltage: near equilibrium (left, Vb = 25µV) and far
from equilibrium (right, Vb = 90µV). The thick lines are averages hStot(t)i calculated over 250 trajectories.
Experimental data from Pekola Lab (Aalto University, Finland), see [8].
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Andrieux, Gaspard, Ciliberto, 
Garnier, Joubaud, Petrosyan, PRL 2007

for the recurrences ofM such reference paths or patterns in
the time series. Next, we also introduce the probability
P!"ZRm; !; "; n# for a reversed path of the reversed process
to remain within a distance ! of the reference path Zm
(of the forward process) during n successive positions.
According to a numerical procedure proposed by
Grassberger, Procaccia, and others [1,2] the entropy per
unit time can be estimated by the linear growth of the mean
‘‘pattern entropy’’ defined as

 H"!; "; n# $ ! 1

M

XM

m$1

lnP%"Zm; !; "; n#: (7)

By similarity, we introduce

 HR"!; "; n# $ ! 1

M

XM

m$1

lnP!"ZRm; !; "; n# (8)

for the reversed process. The "!; "# entropies per unit time,
h"!; "# and hR"!; "#, are defined by the linear growth of
these mean pattern entropies as a function of the time n"
[1,2,4]. In the nonequilibrium steady state, the thermody-
namic entropy production should thus be given by the
difference between these two quantities:

 

1

kB

diS
dt
$ lim

!!0
lim
"!0
&hR"!; "# ! h"!; "#': (9)

It is important to note that the probabilities of the reversed
paths are averaged over the paths of the forward process in
order for Eq. (9) to hold. The entropy production is thus
expressed as the difference of two usually very large
quantities which increase with the scaling law !!2 for !,
" going to zero [4,20]. Nevertheless, their difference re-
mains finite and gives the entropy production in terms of
the time asymmetry of the dynamical randomness charac-
terized by the "!; "# entropies per unit time.

In order to test experimentally that entropy production is
related to this time asymmetry according to Eq. (9), we
have analyzed for specific values of juj or jIj a pair of time
series up to 2( 107 points each, one corresponding to the
forward process and the other corresponding to the re-
versed process, having first discarded the transient evolu-
tion. Figure 1 depicts examples of paths z"t# for the
Brownian particle in a moving optical trap.

For different values of ! between 5.6–11.2 nm [21], the
mean pattern entropy (7) is calculated with the distance
defined by taking the maximum among the deviations
jZ"t# ! Zm"t#j with respect to some reference path Zm for
the times t $ 0; "; . . . ; "n! 1#". The forward entropy per
unit time h"!; "# is evaluated from the linear growth of the
mean pattern entropy (7) with the time n". The backward
entropy per unit time hR"!; "# is obtained similarly from
the time-reversed pattern entropy (8). The difference of the
two dynamical entropies is depicted as in Fig. 2(a). The
good agreement with the entropy production (5) is the
experimental evidence that this latter is indeed related to

the time asymmetry of dynamical randomness as predicted
by Eq. (9).

On the other hand, we have analyzed by the same
method the time series of the RC electric circuit. We see
in Fig. 2(b) that the entropy production obtained from the
time series analysis of the RC circuit agrees very well with
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FIG. 1 (color online). Time series of typical paths z"t# for the
Brownian particle in the optical trap moving at the velocity u for
the forward process (upper curve) and !u for the reversed
process (lower curve) with u $ 4:24( 10!6 m=s.
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FIG. 2 (color online). (a) Entropy production of the Brownian
particle versus the driving speed u. The solid line is given by
Eq. (5). (b) Entropy production of the RC electric circuit versus
the injected current I. The solid line is the Joule law diS=dt $
RI2=T. The dots are the results of Eq. (9).
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Fixed time properties

Fluctuation theorems



Why martingales?
Most fluctuation theorems concern events that take place at a fixed time

However, interesting phenomena take place at stochastic times
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Stochastic thermodynamics without martingales

Jarzynski’s equality (1997)
Integral Fluctuation theorem (Seifert 2005)

Second law of thermodynamics 
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Martingale theory
for entropy production: 

 
nonequilibrium steady states
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Popular meaning of “martingale”:
Double-up strategy in gambling
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The exponentiated negative entropy 
is a martingale

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) 



The exponentiated negative entropy 
is a martingale

• Assumptions:   (1) non-equilibrium steady state
• Valid for: continuous, discrete, Markovian and non-Markovian processes
• Also for other reference measures (“action functionals”):

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) R. Chetrite, S. Gupta,  J. Stat. Phys. 143, 543 (2011) 
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§
Thermodynamic laws 

at stopping times



Can a gambler make fortune in a fair game by 
quitting at an intelligently chosen moment?
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Doob’s optional stopping theorem

if          is a uniformly integrable martingale, and
        is a stopping time

stopping time: random time, functional on the stochastic trajectory
“ to answer               one only needs information in [0,t]  ‘'



Integral fluctuation theorems at stopping times

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) 
I. Neri, ER, S. Pigolotti, F. Jülicher,  arXiv 1903.08115 (2019) 

Doob’s optional stopping theorem

if          is a uniformly integrable martingale, and
        is a stopping time



Integral fluctuation theorems at stopping times

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) 
I. Neri, ER, S. Pigolotti, F. Jülicher,  arXiv 1903.08115 (2019) 

Doob’s optional stopping theorem

if          is a uniformly integrable martingale, and
        is a stopping time



Integral fluctuation theorems at stopping times

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) 
I. Neri, ER, S. Pigolotti, F. Jülicher,  arXiv 1903.08115 (2019) 

Doob’s optional stopping theorem

if          is a uniformly integrable martingale, and
        is a stopping time



Integral fluctuation theorems at stopping times

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) 
I. Neri, ER, S. Pigolotti, F. Jülicher,  arXiv 1903.08115 (2019) 

Doob’s optional stopping theorem

if          is a uniformly integrable martingale, and
        is a stopping time



Integral fluctuation theorems at stopping times

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) 
I. Neri, ER, S. Pigolotti, F. Jülicher,  arXiv 1903.08115 (2019) 

Second law  
at stopping times

Doob’s optional stopping theorem

if          is a uniformly integrable martingale, and
        is a stopping time



Integral fluctuation theorems at stopping times

I. Neri, ER, F. Jülicher,  PRX 7, 011019 (2017) 
I. Neri, ER, S. Pigolotti, F. Jülicher,  arXiv 1903.08115 (2019) 

Second law  
at stopping times Any gambling strategy 

cannot achieve negative entropy 
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Fluctuation theorems for non-equilibrium steady states : fi xed-time 
properties

Jarzynski’s equality (1997)
Integral Fluctuation theorem (Seifert 2005)

Second law of thermodynamics 

Martingale theory: stopping-time statistics
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Numerical and experimental tests

S. Singh et al., Phys. Rev. B 99, 115422 (2019)
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Langevin dynamics: 
 

universal (martingale) properties 
 of entropy production



Langevin processes

conservative

Ito Langevin equation with multiplicative noise

non-conservative
Einstein relation

Gaussian white noise

Smoluchowski’s Equation

Force Diffusion coefficient

Noise

M. v. Smoluchowski,  Ann. d. Phys. 21, 756 (1906) 

S. Pigolotti, I. Neri, É. Roldán, F. Jülicher, Phys. Rev. Lett. 119 (14), 140604 (2017)



Ito Langevin equation for stochastic entropy production

steady states

non-steady state

Martingality in Langevin processes

S. Pigolotti, I. Neri, É. Roldán, F. Jülicher, Phys. Rev. Lett. 119 (14), 140604 (2017)
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Ito Langevin equation for stochastic entropy production

steady states

non-steady state

Entropic drift Entropic noise

is a Geometric Brownian motion with zero drift (Martingale)

Martingality in Langevin processes

S. Pigolotti, I. Neri, É. Roldán, F. Jülicher, Phys. Rev. Lett. 119 (14), 140604 (2017)

Ito



Langevin fluctuations and time
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Generic properties of entropy production
Global infimum

S. Pigolotti, I. Neri, É. Roldán, F. Jülicher, Phys. Rev. Lett. 119 (14), 140604 (2017)



Generic properties of entropy production
Global infimum Supremum before

the global infimum
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Generic properties of entropy production
Global infimum Number of crossingsSupremum before

the global infimum

S. Pigolotti, I. Neri, É. Roldán, F. Jülicher, Phys. Rev. Lett. 119 (14), 140604 (2017)



Non-generic properties: Uncertainty equality
Finite-time uncertainty equality for entropy production 

of nonequilibrium steady-state* Langevin processes

S. Pigolotti, I. Neri, É. Roldán, F. Jülicher, Phys. Rev. Lett. 119 (14), 140604 (2017)

* also for non-steady state
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Martingales out of steady 
states: 

 
Gambling demons



Revisiting Maxwell’s demons

Feedback control depending on measurement outcome  

Stochastic times for opening/closing of the gate 

“Seemingly-violation” of the second law

System Demon

Information

Feedback



Gambling demons

G Manzano, D Subero, O Maillet, R Fazio, J Pekola, ER,  Physical Review Letters 126 (8), 080603 (2021)

Thermodynamics of Gambling Demons

Gonzalo Manzano,1, 2 Diego Subero,3 Olivier Maillet,3 Rosario Fazio,1, 4 Jukka P. Pekola,3 and Édgar Roldán1

1
International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151, Trieste, Italy

2
Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy

3
PICO group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, 00076 Aalto, Finland

4
Dipartimento di Fisica, Università di Napoli “Federico II”, Monte S. Angelo, I-80126 Napoli, Italy

The stochastic nature of games at the casino
allows lucky players to make profit by means of
gambling. Like games of chance and stocks, small
physical systems are subject to fluctuations, thus
their energy and entropy become stochastic, fol-
lowing an unpredictable evolution. In this con-
text, information about the evolution of a ther-
modynamic system can be used by Maxwell’s
demons to extract work using feedback control.
This is not always the case, a challenging task is
then to develop e�cient thermodynamic proto-
cols achieving work extraction in situations where
feedback control cannot be realized, in the same
spirit as it is done on a daily basis in casinos
and financial markets. Here we study fluctua-
tions of the work done on small thermodynamic
systems during a nonequilibrium process that can
be stopped at a random time. To this aim we
introduce a gambling demon. We show that by
stopping the process following a customary gam-
bling strategy it is possible to defy the standard
second law of thermodynamics in such a way that
the average work done on the system can be below
the corresponding free energy change. We derive
this result and fluctuation relations for the work
done in stochastic classical and quantum non-
stationary Markovian processes at stopping times
driven by deterministic nonequilibrium protocols,
and experimentally test our results in a single-
electron box. Our work paves the way towards
the design of e�cient energy extraction protocols
at the nanoscale inspired by investment and gam-
ing strategies.

Maxwell’s demon, as introduced in 1867 [1], is a lit-
tle intelligent being who acquires information about the
microscopic degrees of freedom of two gases held in two
containers at di↵erent temperatures, and separated by
a rigid wall. In this way the demon is able to control
a tiny door, allowing fast particles from the cold con-
tainer pass to the hotter one, hence generating a persis-
tent heat current against a temperature gradient. This
paradoxical behavior challenging the second law of ther-
modynamics, has its roots in the link between informa-
tion and thermodynamics, which has fascinated scientists
from more than a century [2]. Nowadays, it is well under-
stood that Maxwell’s demon is a paradigmatic example
of feedback control, for which modified thermodynamic
laws apply [3–6] which have been tested experimentally
for both classical [7–9] and quantum systems [10, 11].
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FIG. 1. Illustration of a gambling demon. The demon
spends work (W , silver coins) on a physical system (slot ma-
chine) hoping to collect free energy (F , gold coins) by execut-
ing a gambling strategy. In each time step, the demon does
work on the system (introduces a coin in the machine) and
decides whether to continue (”play” sign) or to quit gambling
and collect the prize (”stop” sign) at a stochastic time T fol-
lowing a prescribed strategy. In the illustration, the demon
plays the slot machine until a fixed time T = 3 (top row) un-
less the outcome of the game is beneficial at a previous time,
e.g. T = 2 (bottom row). Under specific gambling schemes,
the demon can extract on average more free energy than the
work spent over many iterations, a scenario that is forbidden
by the standard second law.

Here we propose and realize a gambling demon which
can be seen as a variant of the original Maxwell’s thought
experiment (Fig. 1). This demon invests work by per-
forming a nonequilibrium thermodynamic process and
acquires information about the response of the system
during its evolution. Based on that information, the de-
mon decides whether to stop the process or not following
a given set of stopping rules and, as a result, may re-
cover more work from the system than what was invested.
However, di↵erently to Maxwell’s demon, a gambling de-
mon does not control the system’s dynamics, hence ex-
cluding the possibility of proper feedback control. This
is analogous to a gambler who invests coins in a slot ma-
chine hoping to obtain a positive payo↵. Depending on
the sequence of outputs from the slot machine, the gam-
bler may decide to either continue playing or stop the
game (e.g. to avoid major losses), according to some
prescribed strategy. How much work may the gambling
demon save/extract on average in a given transformation
by implementing any possible strategy?
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A “demon” invests work performing a nonequilibrium process and decides  
whether to stop the process or not a stopping (gambling) strategy

No feedback control  
of system’s dynamics

Stochastic times: the gambler invests 
work (coins) in a slot machine (system) 
hoping to obtain a positive payoff

Goal: Extract heat from a thermal bath by conditionally stopping  
 the system with a clever strategy 



Martingale theory for non-stationary driving
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Entropy production is not exponential martingale for non-stationary processes: 

Stochastic distinguishability

Martingalization of entropy production
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Work and free energy in a time interval of (finite) stochastic duration 

Integral FT at stopping times
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Second law at fixed times

Distinguishability at fixed times

Integral FT [Seifert, PRL 2005]

Second law at fixed times

Jarzynski equality [Jarzynski, PRL 1997]
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Experimental realization: Single-electron box (Pekola lab)
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous

0 1
-

Gambling with a single electron

G Manzano, et al., Phys. Rev. Lett. 126 (8), 080603 (2021)



Experimental realization: Single-electron box (Pekola lab)
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous
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Experimental realization: Single-electron box (Pekola lab)
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous
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FIG. 2. a. Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red)
and the Al superconducting lead (turquoise). The supercon-
ducting leads are tunnel-coupled through thin oxide barriers
(yellow) to the island. The DC SET electrometer is coupled
capacitively to the box through a bottom electrode (blue) de-
tects the excess charge of the box n(t). b. Representative
time traces of the current measured through the electrometer
(red solid line) and its digitized version (black solid line). The
blue dashed line correspond to the driving protocol ng(t) of
duration ⌧ = 0.05s. c. Example traces of the stochastic work
done on the box as a function of time. We execute the follow-
ing gambling strategy: the process is stopped at T < ⌧ (black
line) only when the work reaches a threshold value Wth (red
dashed line) before ⌧ . On the contrary, the process is stopped
at final protocol time T = ⌧ if the work threshold is never
reached during the driving protocol (blue line).

electrometer biased with a low voltage: through capac-
itive coupling to the box, its output current is sensitive
to the box charge state, taking two values correspond-
ing to the system states. The tunnelling of an electron
into the island corresponds to a jump between the states
n = 0 and n = 1 and is associated with an energy cost
✏(ng) = Ec(1� 2ng). Through continuous monitoring of
the box state n(t) (see Fig. 2b), we experimentally eval-
uate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ng(t). The tunnelling (i.e. heat exchange) events occur
at rates of order �d ⇠ 230 Hz. If a jump occurs at time t
within a sampling time �t = 20 µs ⌧ ��1

d at gate voltage
ng ⌘ ng(t), the work increment is �W = 0 and the heat
increment is �Q = ✏(ng) (�Q = �✏(ng)) for an electron
tunneling into (out) of the island. Conversely, if no jump
occurs, �Q = 0 and �W = 2Ec(ng � n)ṅg�t.

The experimental driving protocol ⇤ of duration ⌧ is
depicted in Fig. 2b. The system is initially prepared
at charge degeneracy, i.e., ng(0) = ng(1) = 1/2 at ther-
mal equilibrium where the initial energies of states are
equal, following a uniform distribution. Then the en-
ergy splitting ✏[ng(t)] is tuned according to a linear ramp,
�(t) = 1/2 +�ngt/⌧ , with �ng = 0.1 fixed throughout

the experiment. The protocol is repeated several times
(⇠ 500� 1000) to acquire su�cient statistics. The gam-
bling strategy that we chose consists on stopping the dy-
namics at stochastic times T when the work exceeds a
threshold value Wth (red dashed line) or at ⌧ otherwise.
In Fig. 2c we present two examples of stopped work tra-
jectories where one reaches the threshold value at a time
T < ⌧ (black line), while the other remains below the
threshold until the final time ⌧ (blue line).
Experimental values of hW iT �h�F iT and �kBT h�iT

are shown in Figure 3a and 3d for two di↵erent ramps
of durations ⌧ = 0.05s (a) and ⌧ = 0.2s (d) as a func-
tion of the work threshold Wth. These results are val-
idated and are in good agreement with numerical sim-
ulations over the entire threshold range when including
the experimental uncertainty. For both ramp durations
hW iT � h�F iT is negative at small Wth, defying the
conventional second law but is yet in agreement with
Eq. (1) within experimental errors. We find that the
faster is the protocol, the more negative hW iT � h�F iT
becomes, which can be understood as a consequence of
the irreversibility (and hence h�iT ) associated with the
ramp driving speed. For large values of Wth, almost
all trajectories are stopped at ⌧ and the conventional
second law is recovered, as h�iT becomes small. Fur-
thermore, Figs. 3b and e report the exponential aver-
ages he��(W��F )iT and he��(W��F )��iT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he��(W��F )iT = 1 only holds for large
Wth, while for small Wth, he��(W��F )iT is significantly
greater than one within experimental errors. On the
other hand, we obtain an excellent agreement (with accu-
racy ⇠ 99.5%) of our fluctuation relation (3) for all values
ofWth and both ramp speeds. To gain further insights, in
Figs. 3c and 3f we show histograms of the stopping times
T and the value of the work at the stopping time W (T ).
For small thresholds we observe that the distribution of
T is broad and includes stopping events that take place
at short times T . ��1

d (Fig. 3c, top panel). Its corre-
sponding distribution of W (T ) (Fig. 3f, top panel) has
a peak at Wth arising from trajectories stopped before
⌧ and a tail W (T ) < h�F iT from trajectories ending at
the end of the protocol. By increasing the threshold value
(Fig. 3c and 3f, middle panels) we reduce the number of
trajectories that stop before ⌧ hence the distribution of
T becomes narrower (Fig. 3c, bottom panel). This e↵ect
is accompanied by a broadening of the W (T ) distribu-
tion recovering a Gaussian-like shape with mean above
the free energy change for large enough Wth (i.e. typi-
cally far outside the standard fluctuation interval of W ),
see Fig. 3f bottom panel.

Quantum gambling. The gambling demon can also
be extended to the quantum realm by considering the
framework of quantum jump trajectories [30]. This is
not a mere transposition of the classical result in Eq. (3),
since new features appear. Here the pure state of the
system | (t)i follows stochastic evolution conditioned on
the measurement outcomes generated by the continuous

Gambling strategy: stopping time for the work

Conditionally stop the process before τ if the work 
exceeds a threshold value 

Gambling with a single electron

G Manzano, et al., Phys. Rev. Lett. 126 (8), 080603 (2021)

*No exp. feedback: trajectory post-processing



Theory: valid for any driving and  
any gambling strategy (new level of universality)
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FIG. 3. Dissipated work hW iT � h�F iT (blue) and stochastic indistinguishability at stopping times (red) �kBT h�(T )i (dots:
experimental data, solid lines: simulation) in charging energy Ec units averaged over many realizations for protocol durations
⌧= 0.05 s (a) and ⌧ = 0.2 s (d) as a function of work threshold values. b,e. test of the generalized work fluctuation relation and
of Eq. (3) (dots: experimental data, solid lines: simulation) for ⌧ = 0.05 s (b) and ⌧ = 0.2 s (e). c,f. Distributions of stopping
times T (c) and corresponding work values W (T ) (f) for a ramp time ⌧ = 0.05 s for work thresholds Wth = 5⇥ 10�4, 3⇥ 10�2

and 10�1Ec. The total uncertainty is shown by shadowed areas; it is the combination of the statistical uncertainty and error
on temperature (about 10%).

monitoring of the environment [31–33]. However, the in-
trinsic invasiveness of quantum measurements has severe
non-trivial consequences for the thermodynamic behav-
ior of the system when gambling strategies are to be em-
ployed to stop the process.

In this case, we derive the following quantum stopping-
time work fluctuation relation (see Methods)

he��[W��F ]��q+�SunciT = 1, (4)

where again W and �F are respectively the work
performed and free energy change during trajectories
stopped at T . The term �q(t) ⌘ lnh (t)|⇢(t)| (t)i �
lnh (t)|⇥†⇢̃(⌧ � t)⇥| (t)i is the quantum analogue of
Eq. (2), ⇢ and ⇢̃ being the density operators in the for-
ward and backward process respectively, and ⇥ the time-
reversal (anti-unitary) operator in quantum mechanics.
As before, time-inversion at the final instant of time ⌧
implies �q(⌧) = 0. The key di↵erence of the quantum
fluctuation relation (4) with respect to its classical coun-
terpart in Eq. (3) is the appearance of a genuine entropic
term associated to quantum measurements, namely the

“uncertainty” entropy production

�Sunc(T ) = � ln

✓
hn(T )|⇢(T )|n(T i)
h (T )|⇢(T )| (T )i

◆
. (5)

This quantity measures how much more surprising
is a particular eigenstate |n(t)i of ⇢(t) with respect
to the stochastic wave function | (t)i, as character-
ized by the logarithm of the squared Ulhman fidelity,
h (t)|⇢(t)| (t)i [20]. In general, | (t)i can be an ar-
bitrary superposition of the instantaneous eigenstates
|n(t)i. In the classical limit the stochastic evolution
of | (t)i is given by jumps between energy levels and
thus | (T )i = |n(T )i. Consequently �Sunc(T ) = 0
in Eq. (5) and �q(T ) = �(T ) for any T , thus recov-
ering Eq. (3) in the classical limit. The correspond-
ing stopping-time second-law inequality for quantum sys-
tems reads hW iT � h�F iT � �kBT (h�qiT � h�SunciT ),
where h�SunciT modifies the entropic balance. Even if
h�Sunci � 0 for any fixed time t  ⌧ , the average over
stopped trajectories h�SunciT may be either positive or
negative depending on the selected gambling strategy.
Therefore, the quantum fluctuations induced by mea-
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FIG. 3. Dissipated work hW iT � h�F iT (blue) and stochastic indistinguishability at stopping times (red) �kBT h�(T )i (dots:
experimental data, solid lines: simulation) in charging energy Ec units averaged over many realizations for protocol durations
⌧= 0.05 s (a) and ⌧ = 0.2 s (d) as a function of work threshold values. b,e. test of the generalized work fluctuation relation and
of Eq. (3) (dots: experimental data, solid lines: simulation) for ⌧ = 0.05 s (b) and ⌧ = 0.2 s (e). c,f. Distributions of stopping
times T (c) and corresponding work values W (T ) (f) for a ramp time ⌧ = 0.05 s for work thresholds Wth = 5⇥ 10�4, 3⇥ 10�2

and 10�1Ec. The total uncertainty is shown by shadowed areas; it is the combination of the statistical uncertainty and error
on temperature (about 10%).

monitoring of the environment [31–33]. However, the in-
trinsic invasiveness of quantum measurements has severe
non-trivial consequences for the thermodynamic behav-
ior of the system when gambling strategies are to be em-
ployed to stop the process.

In this case, we derive the following quantum stopping-
time work fluctuation relation (see Methods)

he��[W��F ]��q+�SunciT = 1, (4)

where again W and �F are respectively the work
performed and free energy change during trajectories
stopped at T . The term �q(t) ⌘ lnh (t)|⇢(t)| (t)i �
lnh (t)|⇥†⇢̃(⌧ � t)⇥| (t)i is the quantum analogue of
Eq. (2), ⇢ and ⇢̃ being the density operators in the for-
ward and backward process respectively, and ⇥ the time-
reversal (anti-unitary) operator in quantum mechanics.
As before, time-inversion at the final instant of time ⌧
implies �q(⌧) = 0. The key di↵erence of the quantum
fluctuation relation (4) with respect to its classical coun-
terpart in Eq. (3) is the appearance of a genuine entropic
term associated to quantum measurements, namely the

“uncertainty” entropy production

�Sunc(T ) = � ln
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This quantity measures how much more surprising
is a particular eigenstate |n(t)i of ⇢(t) with respect
to the stochastic wave function | (t)i, as character-
ized by the logarithm of the squared Ulhman fidelity,
h (t)|⇢(t)| (t)i [20]. In general, | (t)i can be an ar-
bitrary superposition of the instantaneous eigenstates
|n(t)i. In the classical limit the stochastic evolution
of | (t)i is given by jumps between energy levels and
thus | (T )i = |n(T )i. Consequently �Sunc(T ) = 0
in Eq. (5) and �q(T ) = �(T ) for any T , thus recov-
ering Eq. (3) in the classical limit. The correspond-
ing stopping-time second-law inequality for quantum sys-
tems reads hW iT � h�F iT � �kBT (h�qiT � h�SunciT ),
where h�SunciT modifies the entropic balance. Even if
h�Sunci � 0 for any fixed time t  ⌧ , the average over
stopped trajectories h�SunciT may be either positive or
negative depending on the selected gambling strategy.
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FIG. 3. Dissipated work hW iT � h�F iT (blue) and stochastic indistinguishability at stopping times (red) �kBT h�(T )i (dots:
experimental data, solid lines: simulation) in charging energy Ec units averaged over many realizations for protocol durations
⌧= 0.05 s (a) and ⌧ = 0.2 s (d) as a function of work threshold values. b,e. test of the generalized work fluctuation relation and
of Eq. (3) (dots: experimental data, solid lines: simulation) for ⌧ = 0.05 s (b) and ⌧ = 0.2 s (e). c,f. Distributions of stopping
times T (c) and corresponding work values W (T ) (f) for a ramp time ⌧ = 0.05 s for work thresholds Wth = 5⇥ 10�4, 3⇥ 10�2

and 10�1Ec. The total uncertainty is shown by shadowed areas; it is the combination of the statistical uncertainty and error
on temperature (about 10%).

monitoring of the environment [31–33]. However, the in-
trinsic invasiveness of quantum measurements has severe
non-trivial consequences for the thermodynamic behav-
ior of the system when gambling strategies are to be em-
ployed to stop the process.

In this case, we derive the following quantum stopping-
time work fluctuation relation (see Methods)

he��[W��F ]��q+�SunciT = 1, (4)

where again W and �F are respectively the work
performed and free energy change during trajectories
stopped at T . The term �q(t) ⌘ lnh (t)|⇢(t)| (t)i �
lnh (t)|⇥†⇢̃(⌧ � t)⇥| (t)i is the quantum analogue of
Eq. (2), ⇢ and ⇢̃ being the density operators in the for-
ward and backward process respectively, and ⇥ the time-
reversal (anti-unitary) operator in quantum mechanics.
As before, time-inversion at the final instant of time ⌧
implies �q(⌧) = 0. The key di↵erence of the quantum
fluctuation relation (4) with respect to its classical coun-
terpart in Eq. (3) is the appearance of a genuine entropic
term associated to quantum measurements, namely the

“uncertainty” entropy production

�Sunc(T ) = � ln

✓
hn(T )|⇢(T )|n(T i)
h (T )|⇢(T )| (T )i

◆
. (5)

This quantity measures how much more surprising
is a particular eigenstate |n(t)i of ⇢(t) with respect
to the stochastic wave function | (t)i, as character-
ized by the logarithm of the squared Ulhman fidelity,
h (t)|⇢(t)| (t)i [20]. In general, | (t)i can be an ar-
bitrary superposition of the instantaneous eigenstates
|n(t)i. In the classical limit the stochastic evolution
of | (t)i is given by jumps between energy levels and
thus | (T )i = |n(T )i. Consequently �Sunc(T ) = 0
in Eq. (5) and �q(T ) = �(T ) for any T , thus recov-
ering Eq. (3) in the classical limit. The correspond-
ing stopping-time second-law inequality for quantum sys-
tems reads hW iT � h�F iT � �kBT (h�qiT � h�SunciT ),
where h�SunciT modifies the entropic balance. Even if
h�Sunci � 0 for any fixed time t  ⌧ , the average over
stopped trajectories h�SunciT may be either positive or
negative depending on the selected gambling strategy.
Therefore, the quantum fluctuations induced by mea-

Slow driving

Threshold

4

a b c

d e f

FIG. 3. Dissipated work hW iT � h�F iT (blue) and stochastic indistinguishability at stopping times (red) �kBT h�(T )i (dots:
experimental data, solid lines: simulation) in charging energy Ec units averaged over many realizations for protocol durations
⌧= 0.05 s (a) and ⌧ = 0.2 s (d) as a function of work threshold values. b,e. test of the generalized work fluctuation relation and
of Eq. (3) (dots: experimental data, solid lines: simulation) for ⌧ = 0.05 s (b) and ⌧ = 0.2 s (e). c,f. Distributions of stopping
times T (c) and corresponding work values W (T ) (f) for a ramp time ⌧ = 0.05 s for work thresholds Wth = 5⇥ 10�4, 3⇥ 10�2

and 10�1Ec. The total uncertainty is shown by shadowed areas; it is the combination of the statistical uncertainty and error
on temperature (about 10%).

monitoring of the environment [31–33]. However, the in-
trinsic invasiveness of quantum measurements has severe
non-trivial consequences for the thermodynamic behav-
ior of the system when gambling strategies are to be em-
ployed to stop the process.

In this case, we derive the following quantum stopping-
time work fluctuation relation (see Methods)
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where again W and �F are respectively the work
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stopped at T . The term �q(t) ⌘ lnh (t)|⇢(t)| (t)i �
lnh (t)|⇥†⇢̃(⌧ � t)⇥| (t)i is the quantum analogue of
Eq. (2), ⇢ and ⇢̃ being the density operators in the for-
ward and backward process respectively, and ⇥ the time-
reversal (anti-unitary) operator in quantum mechanics.
As before, time-inversion at the final instant of time ⌧
implies �q(⌧) = 0. The key di↵erence of the quantum
fluctuation relation (4) with respect to its classical coun-
terpart in Eq. (3) is the appearance of a genuine entropic
term associated to quantum measurements, namely the
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to the stochastic wave function | (t)i, as character-
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h (t)|⇢(t)| (t)i [20]. In general, | (t)i can be an ar-
bitrary superposition of the instantaneous eigenstates
|n(t)i. In the classical limit the stochastic evolution
of | (t)i is given by jumps between energy levels and
thus | (T )i = |n(T )i. Consequently �Sunc(T ) = 0
in Eq. (5) and �q(T ) = �(T ) for any T , thus recov-
ering Eq. (3) in the classical limit. The correspond-
ing stopping-time second-law inequality for quantum sys-
tems reads hW iT � h�F iT � �kBT (h�qiT � h�SunciT ),
where h�SunciT modifies the entropic balance. Even if
h�Sunci � 0 for any fixed time t  ⌧ , the average over
stopped trajectories h�SunciT may be either positive or
negative depending on the selected gambling strategy.
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he��[W��F ]��q+�SunciT = 1, (4)

where again W and �F are respectively the work
performed and free energy change during trajectories
stopped at T . The term �q(t) ⌘ lnh (t)|⇢(t)| (t)i �
lnh (t)|⇥†⇢̃(⌧ � t)⇥| (t)i is the quantum analogue of
Eq. (2), ⇢ and ⇢̃ being the density operators in the for-
ward and backward process respectively, and ⇥ the time-
reversal (anti-unitary) operator in quantum mechanics.
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monitoring of the environment [31–33]. However, the in-
trinsic invasiveness of quantum measurements has severe
non-trivial consequences for the thermodynamic behav-
ior of the system when gambling strategies are to be em-
ployed to stop the process.

In this case, we derive the following quantum stopping-
time work fluctuation relation (see Methods)

he��[W��F ]��q+�SunciT = 1, (4)

where again W and �F are respectively the work
performed and free energy change during trajectories
stopped at T . The term �q(t) ⌘ lnh (t)|⇢(t)| (t)i �
lnh (t)|⇥†⇢̃(⌧ � t)⇥| (t)i is the quantum analogue of
Eq. (2), ⇢ and ⇢̃ being the density operators in the for-
ward and backward process respectively, and ⇥ the time-
reversal (anti-unitary) operator in quantum mechanics.
As before, time-inversion at the final instant of time ⌧
implies �q(⌧) = 0. The key di↵erence of the quantum
fluctuation relation (4) with respect to its classical coun-
terpart in Eq. (3) is the appearance of a genuine entropic
term associated to quantum measurements, namely the
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is a particular eigenstate |n(t)i of ⇢(t) with respect
to the stochastic wave function | (t)i, as character-
ized by the logarithm of the squared Ulhman fidelity,
h (t)|⇢(t)| (t)i [20]. In general, | (t)i can be an ar-
bitrary superposition of the instantaneous eigenstates
|n(t)i. In the classical limit the stochastic evolution
of | (t)i is given by jumps between energy levels and
thus | (T )i = |n(T )i. Consequently �Sunc(T ) = 0
in Eq. (5) and �q(T ) = �(T ) for any T , thus recov-
ering Eq. (3) in the classical limit. The correspond-
ing stopping-time second-law inequality for quantum sys-
tems reads hW iT � h�F iT � �kBT (h�qiT � h�SunciT ),
where h�SunciT modifies the entropic balance. Even if
h�Sunci � 0 for any fixed time t  ⌧ , the average over
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Summary and discussion
•  Martingales are not scary! Useful for new developments in stochastic 

thermodynamics:  stopping times, extrema, and beyond  

•  Work extraction beyond the free energy change without feedback control,  
by stopping a driven mesoscopic system at stochastic times 
 
 

•   No violation of the Second Law with information:  
 
 

•   Optimal work extraction requires:  
      patience (first-passage phenomena) 
      nonequilibrium (time-asymmetric protocols) 
      and wisdom (suitable stopping times) 

•   Further applications: biophysics, computation, frenesy, etc. 

•  

LETTERSNATURE PHYSICS

extraction cycles require only a single-bit measurement (Fig. 1a). 
For a two-state system, with relaxation rate R, the average infor-
mation content in the stored multiple-bit sequences can be exactly 
computed (Supplementary Section 1). It is given by I(τ) = Imin + I1(τ), 
where Imin > 0 is the minimum information content and I1(τ) > 0 is a 
monotonically decreasing function of τ such that I1(τ → ∞) = 0. The 
expressions for Imin and I1(τ) are given by
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, giving Imax (τ) = − log 

(Rτ) + 1 − log P0 − log P1. The chain of inequalities follows:

τ τ≤ < < <  W W k TI k TI k TI( ) ( ) ( 6)max
CMD

B min B B max

We stress that Wmax
CMD is independent of τ. The lowest value of Imin in 

equations (4) and (6) is obtained for P0 = P1 = 1/2, =I 3 log(2)min ,  
with stored sequences containing three bits on average. This is in 
contrast with the classical MD where the information content of 
one-bit sequences is equal to log(2). In fact, the CMD must store at 

least two bits per cycle (the first bit defining the cycle class, the last 
bit closing the cycle when the molecule changes compartment). The 
efficiency of the CMD is defined by the ratio of Wmax

CMD (equation (3))  
to the energy required to erase the stored sequences, Q = kBTI. 
Maximum efficiency ϵmax is obtained in the limit τ → ∞:
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Interestingly, for P0 = P1 = 1/2, the efficiency is minimal in the CMD 
ϵ = ∕( 1 2)max , whereas it is maximal in the classical MD (ϵ = 1max ). 

Instead, in the limits P0 → 0, 1 the CMD yields ϵ → 1max . The behav-
iour of τ ϵW W I I, , ( ) , ,max

MD
max
CMD

min max is shown in Fig. 1c (continuous 
lines). Note that for uncompressed sequences (that is, containing 
redundant information), the efficiency is lower than equation (7) 
(Supplementary Section 2).

Equation (5) shows that information content diverges in the 
continuum time limit τ → 0 when sequences contain an arbi-
trary large number of bits. However, it does so logarithmically, 

τ τ→ −I R( ) log( )max , rather than linearly with the number of bits, 
Imax(τ) → 1/Rτ, showing that stored sequences are highly redundant 
for τ ≪ 1/R. A similar problem is found in data compression where 
information can be encoded using fewer bits than in the original 
representation17. In general, the information content of sequences, 
storing the outcome of measurements repeated at τ, diverges loga-
rithmically for τ smaller than the de-correlation time.

Recent technological advancements have made possible the prac-
tical implementation of Szilard engines9,10,13. Here, we report a room-
temperature nanoscale Szilard engine composed of a single DNA 
molecule manipulated by optical tweezers (Fig. 2a). In our experi-
ments, a single DNA hairpin was tethered between two micrometre-
sized plastic beads (Materials and methods). The force applied on 
the molecule was controlled and measured, varying the position of 
the optical trap, λ. Under a suitable force, the molecule will exhibit 
spontaneous fluctuations between the folded and the unfolded states. 
This is equivalent to the initial state of the Szilard engine, where the 
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Fig. 1 | Classical MD versus CMD. a, In the classical MD, a single observation is made, and depending on the measurement outcome (0,!1), a work 
extraction process is implemented, which yields W0 and!W1 values, respectively. b, In the CMD, multiple observations are made every τ, and a work 
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The minimum information content is obtained in the limit 
Rτ ≫ 1, where τ = − ∕ + ∕τ−I P P P P P P( ) e ( log( ) log( ) )R

1 0 0 1 1 1 0  + O( τ−e R2 ),  
whereas a diverging value is obtained for Rτ ≪ 1: 

τ τ→ = − + + +I R( 0) log( ) 1 P P
P

P P
P1

log( ) log( )0
2

0

1

1
2

1

0
, giving Imax (τ) = − log 

(Rτ) + 1 − log P0 − log P1. The chain of inequalities follows:

τ τ≤ < < <  W W k TI k TI k TI( ) ( ) ( 6)max
CMD

B min B B max

We stress that Wmax
CMD is independent of τ. The lowest value of Imin in 

equations (4) and (6) is obtained for P0 = P1 = 1/2, =I 3 log(2)min ,  
with stored sequences containing three bits on average. This is in 
contrast with the classical MD where the information content of 
one-bit sequences is equal to log(2). In fact, the CMD must store at 

least two bits per cycle (the first bit defining the cycle class, the last 
bit closing the cycle when the molecule changes compartment). The 
efficiency of the CMD is defined by the ratio of Wmax

CMD (equation (3))  
to the energy required to erase the stored sequences, Q = kBTI. 
Maximum efficiency ϵmax is obtained in the limit τ → ∞:
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1

Interestingly, for P0 = P1 = 1/2, the efficiency is minimal in the CMD 
ϵ = ∕( 1 2)max , whereas it is maximal in the classical MD (ϵ = 1max ). 

Instead, in the limits P0 → 0, 1 the CMD yields ϵ → 1max . The behav-
iour of τ ϵW W I I, , ( ) , ,max

MD
max
CMD

min max is shown in Fig. 1c (continuous 
lines). Note that for uncompressed sequences (that is, containing 
redundant information), the efficiency is lower than equation (7) 
(Supplementary Section 2).

Equation (5) shows that information content diverges in the 
continuum time limit τ → 0 when sequences contain an arbi-
trary large number of bits. However, it does so logarithmically, 

τ τ→ −I R( ) log( )max , rather than linearly with the number of bits, 
Imax(τ) → 1/Rτ, showing that stored sequences are highly redundant 
for τ ≪ 1/R. A similar problem is found in data compression where 
information can be encoded using fewer bits than in the original 
representation17. In general, the information content of sequences, 
storing the outcome of measurements repeated at τ, diverges loga-
rithmically for τ smaller than the de-correlation time.

Recent technological advancements have made possible the prac-
tical implementation of Szilard engines9,10,13. Here, we report a room-
temperature nanoscale Szilard engine composed of a single DNA 
molecule manipulated by optical tweezers (Fig. 2a). In our experi-
ments, a single DNA hairpin was tethered between two micrometre-
sized plastic beads (Materials and methods). The force applied on 
the molecule was controlled and measured, varying the position of 
the optical trap, λ. Under a suitable force, the molecule will exhibit 
spontaneous fluctuations between the folded and the unfolded states. 
This is equivalent to the initial state of the Szilard engine, where the 
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Fig. 1 | Classical MD versus CMD. a, In the classical MD, a single observation is made, and depending on the measurement outcome (0,!1), a work 
extraction process is implemented, which yields W0 and!W1 values, respectively. b, In the CMD, multiple observations are made every τ, and a work 
extraction process is implemented when the molecule changes compartment (1!→!0,!0!→!1), yielding W0 and W1 values, respectively. The black dots 
indicated by 0 (upper right) indicate multiple measurements in the right vessel V0 until the molecule changes compartment (0 → 1). c, Work, information 
content and efficiency as a function of P0 for the classical MD and the CMD. Mean work (classical MD: pink triangles; CMD: blue diamonds) obtained from 
the experiments (see Figs. 2 and 3) and theoretical prediction from equations (1) and (3) (pink and blue lines). The horizontal line shows WL!=!kBTlog2. 
Information content in the CMD for different values of Rτ (equations (4), (5) and (6)) from Rτ!=!0.1 to Rτ!=!∞ (light to dark green lines). Maximum 
efficiency in the CMD (equation (7)) obtained from experiments and theory (orange diamonds and line, scale on the right axis). In all cases, error bars 
represent the standard error of the mean.
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