

First direct neutrino-mass measurement with sub-eV sensitivity

Susanne Mertens Max Planck Institute for Physics & Technical University Munich

Neutrino mass

Neutrino mass

Cosmology

potential: $m_v = 10 - 50 \text{ meV}$

 $m_{\mathbf{v}} = \sum_{i} m_{i}$

Search for 0vßß

potential: m_{ßß} = 7 - 17 meV

 $\boldsymbol{m}_{\boldsymbol{\beta}\boldsymbol{\beta}} = \left| \sum_{i} U_{ei}^2 m_i \right|$

Kinematics of ß-decay potential: $m_{\beta} = 50 - 200 \text{ meV}$ $m_{\beta}^2 = \sum_i |U_{ei}|^2 \cdot m_i^2$

General Idea

- Non-zero neutrino mass distorts the spectrum close to the endpoint
- ✓ Independent of cosmology
- ✓ Independent of neutrino nature
- Observable: $m_{\nu}^2 = \sum_i |U_{ei}|^2 \cdot m_i^2$

The challenge

Key requirements:

- Ultra-strong radioactive source
 - Tritium (12.3 years, E₀ = 18.6 keV)
 - Holmium (4500 years, E₀ = 2.8 keV)
- Excellent energy resolution (~ 1 eV)
- Low background (< 100 mcps)

Where do we stand?

 Limit before KATRIN 1st Results: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

Where do we stand? $v_1 \sim v_2 \sim v_3$ 10¹ Limit before KATRIN 1st Results $\bullet |U_{ei}|^2 \cdot m_i^2$ 10⁰ **On-going experiments** 10^{-1} v_3 II 10⁻² m_{ν} ν_2 V1 10-3 10-3 10⁻² 10^{-1} 10^{-4} 10^{0} m_{lightest} (eV)

 Limit before KATRIN 1st Results: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

 KATRIN goal: Distinguish between degenerate and hierarchical scenario

Where do we stand?

 Limit before KATRIN 1st Results: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

- KATRIN goal: Distinguish between degenerate and hierarchical scenario
- Future: Resolve normal vs inverted neutrino mass ordering

Experimental efforts

KATRIN

- Experimental site: Karlsruhe Institute of Technology (KIT)
- International Collaboration (150 members)
- Design sensitivity: 0.2 eV (90% CL)
 (1000 days of measurement time)

Overview

- How does KATRIN work ?
- What are the latest results?
- What's next?
- What else can we do with the data?

Windowless gaseous tritium source

- molecular tritium in closed loop system
- 10¹¹ decays/s

Transport section

- magnetic guidance of electrons (@ 4 T)
- tritium flow reduction by > 10^{14} + tritium ion removal

Measurement strategy

Data combination

Scan combination

- sum the counts at the same HV set point
- use average HV (σ_{HV} < 34 mV)

Pixel combination

- sum the counts of ALL pixels or in a ring
- use average response function

Data analysis

• Fit of theoretical prediction: $\Gamma(qU) \propto \mathbf{A} \cdot \int_{aU}^{E_0} D(E; \mathbf{m}_{\nu}^2, \mathbf{E}_0) \cdot R(qU, E) dE + \mathbf{B}$

- Free parameters: m_{ν}^2 , E_0 , B, A
- Fit model informed by theoretical and experimental inputs (e-gun, krypton, monitoring, ...)

Systematic uncertainties

Blinded analysis

MC propagation of uncertainties

- Fit performed 10⁵ times
- Each time the systematic parameter is varied according to its uncertainty
- Width of m_{ν}^2 distribution reflects systematic uncertainty from this effect

Overview

- How does KATRIN work ?
- What are the latest results?
- What's next?
- What else can we do with the data?

Improvements wrt 1st campaign

	1 st campaign PRL 123 (2019)		2 nd campaign This talk
Campaign date	April-May 2019		Sept-Nov 2019
Total scan time	522 h (274 scans)		744 h (361 scans)
Source activity	25 GBq	nominal activ	ity 98 GBq
Background	290 mcps	reduction -259	220 mcps
Tritium purity	97.6%	raised purity	98.7%
Electrons in Rol	2 Mio	stats doubled	> 4.3 Mio

New data release

- total statistics: 4 million events
- excellent goodness-of-fit: p-value = 0.8
- Uncertainties are statistics dominated
- Uniform and ring-wise fit lead to consistent results

- ✓ Q-value : 18575.2 ± 0.5 eV
- ✓ good agreement with literature Q = 18575.72 ± 0.07 eV
 E. Myers et al. Phys. Rev. Lett. 114, 013003 (2015)

New upper limit

- Frequentist limit: $m_{
 m v} < 0.9~{
 m eV}$ (90% CL)
- Bayesian: $m_{
 m v} < 0.85~{
 m eV}$ (90% Cl)
- Sensitivity: $m_{
 m v} < 0.7~{
 m eV}$ (90% CL)

Lokhov & Tkachov, Phys. Part. Nucl. 46 (2015) 347 Feldman & Cousins, Phys. Rev. D57 (1998) 3873

Historical context

• KATRIN (2021):

first direct neutrino-mass experiment to reach sub-eV sensitivity and limit

- 1st and 2nd campaign combined result: $m_{\nu}^{2} = (0.11^{+0.33}_{-0.33}) eV^{2}$
- 1st and 2nd campaign combined limit:

 $m_{
m v} < 0.8$ eV (90% CL)

KATRIN Collab. arXiv:2105.08533 [hep-ex]

Overview

- How does KATRIN work ?
- What are the latest results?
- What's next?
- What else can we do with the data?

Uncertainty budget of 2nd campaign

Uncertainty budget of 2nd campaign

Uncertainty budget of 2nd campaign

KATRIN backgrounds

 $\widehat{}$

• •

• •

Turning and the second s

KATRIN backgrounds

- ²¹⁹Rn-induced background
- ²¹⁰Pb-induced background

KATRIN background mitigation

- LN cooled baffle + shifted analyzing plane
 S. Goerhardt, et al., JINST 13 (2018) no.10, T10004
- ✓ Background reduction by factor of 2.3 to about 130 mcps (original design: 10 mcps)
- ✓ Further R&D ongoing

Outlook

Overview

- How does KATRIN work ?
- What are the latest results?
- What's next?
- What else can we do with the data?

New Physics with KATRIN

Sterile neutrinos

- Additional neutrino mass eigenstates or arbitrary scale
- Interaction via their mixing with active states

Sterile neutrinos

Heavy sterile neutrinos (> GeV)

Lightness of neutrinos
 + Matter/Anti-matter asymmetry

Light sterile neutrinos (~1 eV)

• Short-baseline neutrino oscillation anomalies

KeV-scale sterile neutrinos (~ 1 - 50 keV)

• Dark matter candidate

Accessible in beta-decays

eV-scale sterile neutrino search

- Search performed on data set of first and second neutrino mass campaign
- 3+1 sterile neutrino model
- Grid search in m_4 , $|U_{e4}|^2$ plane

$$\frac{d\Gamma}{dE} = \left(1 - |U_{e4}|^2\right) \frac{d\Gamma}{dE}(m_{\beta}^2) + |U_{e4}|^2 \frac{d\Gamma}{dE}(m_{4}^2)$$

$$\lim_{\beta \to \infty} \lim_{\beta \to \infty}$$

eV-scale sterile neutrino search (1st campaign)

High Δm_{41} region:

✓ Improve exclusion with respect to DANSS, PROSPECT, STEREO

✓ Exclude parameter space of Reactor Anomaly (RAA)

Low Δm_{41} region:

✓ Improve MAINZ and TROITSK limit

- \checkmark The Neutrino-4 hint at the edge of exclusion limit
- ✓ Test part of BEST result with future data

keV-scale sterile neutrinos

- Idea: make use of the luminous KATRIN source to explore full beta spectrum to search for BSM physics
- Develop a novel detector system

TRISTAN Detector

Mertens et al, Phys.Rev. D91 (2015) 4, 042005 Mertens et al, JCAP 1502 (2015) 02, 020

TRISTAN detector

- Silicon drift detector (SDD) technology
 - ✓ Capability of handling high rates (> 10^8 cps)
 - ✓ Excellent energy resolution (300 eV @ 20 keV)
- Challenge
 - Control of systematics at the ppm-level
 - Operation of 3500 pixel focal plane array
- Status
 - ✓ Excellent performance of prototypes
 - S. Mertens et al, J. Phys. G46 (2019)
 S. Mertens et al, J. Phys. G48 (2020)
 M. Gugiatti et al, NIM-A 979 (2020)
 M. Biassoni et al, Eur. Phys. J. Plus 136, 125 (2021)
 P. King et al JINST 16 T07007 (2021)
 - ✓ Operation of 166-pixel module (largest SDD module ever operated)
 – thanks to Polimi and Bicocca

Conclusion

- First sub-eV neutrino mass limit from a direct experiment
- Various improvements of systematics and background in place
- Sensitivity close to 0.2 eV (90% CL) targeted within next years

- High precision KATRIN data available for interesting new physics searches
- Upgrade of KATRIN beamline with SDD array will allow to extend the measurement interval

Thank you for your attention

Thanks to To my group The KATRIN collaboration Thierry Lasserre And many others

Susanne Mertens

Technical University Munich & Max Planck Institute for Physics