FUS＋＋on Heavy－Ion Fusion Far Below the Barrier

Study on deep sub－barrier fusions within the improved coupled－channels method and Bayesian method

Peiwei Wen

January 21， 2022
88 中国石子能科掌研究院
ゆ蝦集团 CHINA INSTITUTE OF ATOMIC ENERGY

## Contents

(1) Introduction on deep sub-barrier fusions
(2) The improved CC: CCFULL-FEM
(3) Bayesian analysis on carbon fusion
(4) Summary

## Contents

(1) Introduction on deep sub-barrier fusions
(2) The improved CC: CCFULL-FEM

3 Bayesian analysis on carbon fusion
(4) Summary

## Time independent sub-barrier quantum tunneling




There are generally two ways to get the tunneling probability:

- Semi-classical approaches: WKB et al.

$$
P_{l}^{\mathrm{WKB}}(E)=\exp \left[-2 \int_{r_{\min }}^{r_{\max }} \sqrt{2 \mu\left[V_{l}(r)-E\right] / \hbar^{2}} d r\right],
$$

- Schrödinger equation under certain boundary conditions.

$$
\left[-\frac{\hbar^{2} d^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{P} Z_{r} e^{2}}{r}-E\right] \psi(r)=0
$$

## Multi-channels problem for heavy-ion reactions

Taking into full order coupling in $V_{n m}$ is important

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{p} Z_{T} e^{2}}{r}+\epsilon_{n}-E\right] \psi_{n}(r)+\sum_{m} V_{n m}(r) \psi_{m}(r)=0
$$




In CCFULL model, the full order couplings are considered.
H. Hagino et al, PRC. 55, 276 (1997).
M. Dasgupta et al, Annu. Rev. Nucl. Part. S 48, 401 (1998);
H. Hagino et al, Comput. Phys. Commun. 123143 (1999);

## Discovery of deep sub-barrier fusion hindrance

B. B. Back, H. Esbensen, C. L. Jiang and K. E. Rehm (2014). Rev. Mod. Phys. 86: 317.
"The comparison with CC calculations using a Woods-Saxon potential allowed them to cleanly identify the fusion hindrance at the lowest energies."

C. L. Jiang, B. B. Back, et al. (2021), Eur. Phys. J. A, 57, 235.

Argonne National Laboratory Experiments:
C. L. Jiang, H. Esbensen et al,

Phys Rev Lett 89 (5), 052701 (2002);
Phys Rev Lett 93 (1), 012701 (2004);
Phys Rev Lett 113 (2), 022701 (2014).

ANU Experiments:
M. Dasgupta, D. J. Hinde, A. Diaz-Torres, et al, Phys Rev Lett 99, 192701 (2007).

INFN Experiments:
G. Montagnoli, A. M. Stefanini, et al,

Physics Letters B 728: 639. (2014)
Physical Review C 97(2): 024610.(2018)
Physical Review C 100(4): 044619. (2019).

Mumbai Experiments:
Shrivastava, A., et al,
Phys Rev C, 96, 034620 (2017);
Phys Rev Lett, 103, 232702. (2009)

## Deep sub-barrier fusion hindrance $\& S$ factor

PHYSICAL REVIEW C 97, 012801 (R) (2018)
Rapid Communications

## Reaction rate for carbon burning in massive stars

C. L. Jiang, ${ }^{1}$ D. Santiago-Gonzalez, ${ }^{1,2}$ S. Almaraz-Calderon, ${ }^{1,3}$ K. E. Rehm, ${ }^{1}$ B. B. Back, ${ }^{1}$ K. Auranen, ${ }^{1}$ M. L. Avila, ${ }^{1}$

Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion cross sections where these back grounds have been minimized. It is found that the astrophysical $S$ factor exhibits a maximum around $E_{\mathrm{cm}}=3.5-4.0 \mathrm{MeV}$, which leads to a reduction of the previously predicted astrophysical reaction rate.

PRL 113, 022701 (2014)
PHYSICAL REVIEW LETTERS

Fusion Hindrance for a Positive- $Q$-Value System ${ }^{24} \mathbf{M g}+{ }^{30} \mathbf{S i}$
C. L. Jiang, ${ }^{1, *}$ A. M. Stefanini, ${ }^{2}$ H. Esbensen, ${ }^{1}$ K. E. Rehm, ${ }^{1}$ S. Almaraz-Calderon, ${ }^{1}$ B. B. Back, ${ }^{1}$ L. Corradi, ${ }^{2}$ E. Fioretto, ${ }^{2}$ G. Montagnoli, ${ }^{3}$ F. Scarlassara, ${ }^{3}$ D. Montanari, ${ }^{3}$ S. Courtin, ${ }^{4}$ D. Bourgin, ${ }^{4}$ F. Haas,,${ }^{4}$ A. Goasduff, ${ }^{5}$

$$
\text { S. Szilner, }{ }^{6} \text { and T. Mijatovic }{ }^{6}
$$

Measurements of the excitation function for the fusion of ${ }^{24} \mathrm{Mg}+{ }^{30} \mathrm{Si}(Q=17.89 \mathrm{MeV})$ have been extended toward lower energies with respect to previous experimental data. The $S$-factor maximum observed in this large, positive- $Q$-value system is the most pronounced among such systems studied thus far. The significance and the systematics of an $S$-factor maximum in systems with positive fusion $Q$ values are discussed. This result would strongly impact the extrapolated cross sections and reaction rates in the carbon and oxygen burnings and, thus, the study of the history of stellar evolution.


$$
\langle\sigma \nu\rangle \approx\left(\frac{2}{\mu}\right)^{\frac{1}{2}} \frac{\Delta E_{0}}{(k T)^{3 / 2}} S\left(E_{0}\right) \exp \left(-\frac{3 E_{0}}{k T}\right) ; \quad S(E)=\sigma E \exp (2 \pi \eta) ; \quad \eta=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \epsilon_{0} \hbar v}
$$

Fusion between light nuclei is of interest because its important roles in the late stages of massive star evolution.

## Explanations: adiabatic approximation \& deep potential



Center-of-Mass Distance $r$


- T. Ichikawa, K. Hagino and A. Iwamoto, Phys Rev C 75, 064612 (2007); Phys Rev Lett 103, 202701 (2009); T. Ichikawa, Phys Rev C 92 (6), 064604 (2015).
On top of the conventional CC method, an extra one-dimensional adiabatic potential barrier is assumed after the reacting nuclei contact with each other, considering the formation of the composite system.
- K. Hagino, A. B. Balantekin, N. W. Lwin et al, Phys Rev C 97, 034623 (2018). Two Woods-Saxon potentials with different slopes.


## Explanations: sudden approximation \& shallow potential




- Ş. Mişicu and H. Esbensen, Phys Rev Lett 96 (11), 112701 (2006); Phys Rev C 75, 034606 (2007); ....

Hindrance of Heavy-Ion Fusion due to Nuclear Incompressibility. Double-folding potential with M3Y forces supplemented by a repulsive core.

- C. Simenel, A. S. Umar, K. Godbey, et al, Phys Rev C 95, R031601 (2017).

Density constrained time dependent Hartree-Fock model. It is concluded that: " ...to explain experimental fusion data at deep sub-barrier energies, then cannot be justified by an effect of incompressibility. It is more likely that it simulates other effects such as Pauli repulsion."

- V. V. Sargsyan, G. G. Adamian, N. V. Antonenko et al, Eur Phys J A 56, 19 (2020). Extended quantum diffusion approach + Double folding potential.


## Some open questions

## About deep sub-barrier fusion hindrance:

- Whether could the CC calculation of the fusion cross section be stable at the deep sub-barrier energy region?
Some works used an extra imaginary potential around the potential minimum to eliminate the fluctuations of the conventional CC calculation. However, one has to add more parameters.
- Is Woods-Saxon potential able to describe the deep sub-barrier fusion hindrance phenomenon well enough?
It is said that it is not able to describe it in many works. And hybrid potential model, other potential models, and reaction mechanisms are widely used now.
- What's the mechanism of the fusion hindrance?

The shallow potential or deep potential.

## Contents

## (1) Introduction on deep sub-barrier fusions

(2) The improved CC: CCFULL-FEM

3 Bayesian analysis on carbon fusion
(4) Summary

## Import gradients for solving the coupled-channels equation

There are several parts to construct the coupled-channels approach:
(1) Nuclear potential:
real potential (double folding, proximity, Woods-Saxon potential), complex potential
(2) Coupled potential:
full order coupling, linear coupling, or the quadratic coupling
(3) Boundary condition:
regular boundary condition, incoming wave boundary condition
(9) Numerical method:
finite difference method (Numerov, three-point difference), finite element method (KANTBP), R-matrix method.
O. Chuluunbaatar, A. A. Gusev, et al, CPC. 177, 649 (2007)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014)

## The incoming wave boundary condition

The incoming wave boundary conditions (IWBC)

$$
\psi_{n}(r)=\left\{\begin{array}{l}
T_{n} \exp \left(-i k_{n}\left(r_{\min }\right) r\right), \quad r \leq r_{\min } \\
H_{l}^{-}\left(k_{n} r\right) \delta_{n, 0}+R_{n} H_{l}^{+}\left(k_{n} r\right), r \geq r_{\max }
\end{array}\right.
$$

Here $k_{n}=k_{n}(r \rightarrow+\infty)$, and $k_{n}(r)$ is the local wave number for $n$-th channel

$$
k_{n}(r)=\sqrt{\frac{2 \mu}{\hbar^{2}}\left(E-\epsilon_{n}-\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}-V_{N}^{(0)}(r)-\frac{Z_{P} Z_{T} e^{2}}{r}-V_{n n}(r)\right)}
$$

There are problems in the previous boundary condition.

- The plane wave boundary condition at the left boundary $r_{\text {min }}$ involves only the diagonal part. This requires that the off-diagonal matrix elements tend to zero.
- However, at $r_{\min }$, the distance between two nuclei is so short that the off-diagonal matrix elements are usually not zero. There can be sudden noncontinuous changes in the left boundary.
- A linear transformation should be done at the left boundary.
V.V. Samarin, V.I. Zagrebaev, 2004 NPA 734 E9;
V.I. Zagrebaev, V.V. Samarin, 2004 Phys. Atom. Nucl. 67 1462;


## The new method KANTBP

The coupled-channels Schrödinger equation

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{P} Z_{T} e^{2}}{r}+\epsilon_{n}-E\right] \psi_{n n_{o}}+\sum_{n^{\prime}=1}^{N} V_{n n^{\prime}}(r) \psi_{n^{\prime} n_{o}}(r)=0 \tag{1}
\end{equation*}
$$

with

- $n_{o}$ is a number of the open entrance channel with a positive relative energy $E_{n_{o}}=E-\epsilon_{n_{o}}>0, n_{o}=1, \ldots, N_{o} \leq N$.
- $\left\{\psi_{n n_{o}}(r)\right\}_{n=1}^{N}$ are components of a desirable matrix solution.

Let $\mathbf{W}$ is the symmetric matrix of dimension $N \times N$

$$
\begin{equation*}
W_{n m}=W_{m n}=\frac{2 \mu}{\hbar^{2}}\left[\left(\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{P} Z_{T} e^{2}}{r}+\epsilon_{n}\right) \delta_{n m}+V_{n m}(r)\right] \tag{2}
\end{equation*}
$$

Then the equation can be expressed as

$$
\begin{equation*}
-\psi_{n m}^{\prime \prime}(r)+\sum_{m^{\prime}} W_{n m^{\prime}} \psi_{m^{\prime} m}(r)=\frac{2 \mu E}{\hbar^{2}} \psi_{n m}(r) \tag{3}
\end{equation*}
$$

## The new method KANTBP

Diagonalize the matrix at $r=r_{\text {min }}$

$$
\begin{equation*}
\mathbf{W} \mathbf{A}=\mathbf{A} \tilde{\mathbf{W}}, \quad\{\tilde{\mathbf{W}}\}_{n m}=\delta_{n m} \tilde{W}_{m m}, \quad \tilde{W}_{11} \leq \tilde{W}_{22} \ldots \leq \tilde{W}_{N N} . \tag{4}
\end{equation*}
$$

The functions $y_{m}(r)$ are solutions of the uncoupled equations

$$
\begin{equation*}
y_{m}^{\prime \prime}(r)+K_{m}^{2} y_{m}(r)=0, \quad K_{m}^{2}=\frac{2 \mu E}{\hbar^{2}}-\tilde{W}_{m m} . \tag{5}
\end{equation*}
$$

In open channels at $K_{m}^{2}>0, m=1, \ldots, M_{o} \leq N$ the solutions $y_{m}(r)$ have the form:

$$
\begin{equation*}
y_{m}(r)=\frac{\exp \left(-\imath K_{m} r\right)}{\sqrt{K_{m}}} . \tag{6}
\end{equation*}
$$

In this case $\psi_{n n_{o}}(r)$ expressed by the linear combinations of the linear independent solutions

$$
\begin{equation*}
\psi_{n n_{o}}(r)=\sum_{m=1}^{M_{o}} A_{n m} y_{m}(r) \hat{T}_{m n_{o}}, \quad r=r_{\min } \tag{7}
\end{equation*}
$$

In this way, the off-diagonal matrix elements have been considered in the calculation.

## The new method KANTBP

Summary of the boundary conditions for open channels

$$
\psi_{n n_{o}}^{a s}(r)=\left\{\begin{array}{l}
\sum_{m=1}^{M_{o}} A_{n m} \frac{\exp \left(-\imath K_{m} r\right)}{\sqrt{K_{m}}} \hat{T}_{m n_{o}}, \quad r=r_{\min },  \tag{8}\\
\hat{H}_{l}^{-}\left(k_{n} r\right) \delta_{n, n_{o}}+\hat{H}_{l}^{+}\left(k_{n} r\right) \hat{R}_{n n_{o}}, r=r_{\max }
\end{array}\right.
$$

In this case the partial tunneling probability from the ground state $\left(n_{o}=1\right)$ is

$$
\begin{equation*}
P_{l}(E) \equiv T_{n_{o} n_{o}}^{(l)}(E) \tag{9}
\end{equation*}
$$

At fixed orbital momentum $l$, it is given by summation over all possible intrinsic states:

$$
\begin{equation*}
T_{n_{o} n_{o}}^{(l)}(E)=\sum_{m=1}^{M_{o}}\left|\hat{T}_{m n_{o}}\right|^{2}, \quad R_{n_{o} n_{o}}^{(l)}(E)=\sum_{n=1}^{N_{o}}\left|\hat{R}_{n n_{o}}\right|^{2}, \quad T_{n_{o} n_{o}}^{(l)}(E)=1-R_{n_{o} n_{o}}^{(l)}(E) \tag{10}
\end{equation*}
$$

The condition $T_{n_{o} n_{o}}^{(l)}(E)+R_{n_{o} n_{o}}^{(l)}(E)-1=0$ fulfills with ten significant digits by the element method KANTBP.
O. Chuluunbaatar, A. A. Gusev, A.G. Abrashkevich et al, CPC. 177, 649 (2007)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, Math. Mod. Geom. 3, 222 (2015) V. I. Zagrebaev, Phys. Rev. C 78047602 (2008)
S. I. Vinitsky, P. W. Wen, A. A. Gusev, O. Chuluunbaatar, R. G. Nazmitdinov, A. K. Nasirov, C. J. Lin, H. M. Jia and A. Góźdź, Acta Phys. Pol. B Proc. Suppl. 13 (3), 549 (2020).



There are obvious differences in sub-barrier energy region.

## ${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo},{ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$ : Deep sub-barrier fusion

## Hindrance of Heavy-Ion Fusion due to Nuclear Incompressibility

Ş. Mişicu* and H. Esbensen
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
(Received 26 January 2006; published 21 March 2006)



The M3Y+repulsion potential is usually used.

Ş. Mişicu, et al, 2007 PRC 75 034606;
C.L. Jiang et al, 2018 PRC 97012801

## ${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo},{ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$ : Deep sub-barrier fusion

Two potentials including a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy



## ${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo}$ : Deep sub-barrier fusion

P.W. Wen, O. Chuluunbaatar, A.A. Gusev, et al. (2020). Phys Rev C 101, 014618.



New calculations are more stable and agree with experimental data better



The M3Y+repulsion potential is usually used. The weak imaginary potential is adopted to eliminate some unwanted fluctuations.
A.M. Stefanini, et al, 2008 PRC 78 044607; G. Montagnoli et al, 2013 PRC 87014611


New calculations are more stable, and are higher than experimental data at deep sub-barrier energy.
P. W. Wen, O. Chuluunbaatar, et al, Phy. Rev. C, 101:014618, 2020.


## A strict test with $\Delta E=0.1 \mathrm{MeV}$ (preliminary)

Chuluunbaatar O, Gusev AA, Vinitsky SI, Abrashkevich AG, Wen PW, Lin CJ. Submitted to Computer Physics Communications. (KANTBP3.1 \& CCFULL-FEM)


There are obvious differences in both sub-barrier and above-barrier energy regions.
P. W. Wen, C. J. Lin, R. Nazmitdinov, S. I. Vinitsky, et al. PRC, 103, 054601, 2021.


Woods-Saxon potential and multiphonon coupling are enough.

TABLE I. Woods-Saxon potential parameters $V_{0}(\mathrm{MeV}), a_{0}(\mathrm{fm})$, and $R_{0}(\mathrm{fm})$ for ${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo},{ }^{64} \mathrm{Ni}+{ }^{64} \mathrm{Ni}$, and ${ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$ reaction systems. The potential barrier $V_{\mathrm{B}}$ and the minimum of the potential pocket $V_{\mathrm{P}}$ are also listed.

|  | ${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo}$ | ${ }^{64} \mathrm{Ni}+{ }^{64} \mathrm{Ni}$ | ${ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$ |
| :--- | :---: | :---: | ---: |
| $V_{0}(\mathrm{MeV})$ | 79.938 | 65.829 | 53.529 |
| $a_{0}(\mathrm{fm})$ | 0.686 | 0.801 | 0.944 |
| $R_{0}(\mathrm{fm})$ | 10.190 | 9.239 | 7.790 |
| $V_{\mathrm{B}}(\mathrm{MeV})$ | 136.993 | 96.389 | 51.946 |
| $V_{\mathrm{P}}(\mathrm{MeV})$ | 119.344 | 85.699 | 43.298 |



$\langle l\rangle$ could be used as a probe to seperate these two mechanisms.
Ichikawa, T. Phys Rev C 92, 064604 (2015).


Jiang, C. L. et al 2018 PRC 97012801

A. Diaz-Torres, et al, 2018 PRC 97055802


## Contents

## (1) Introduction on deep sub-barrier fusions

(2) The improved CC: CCFULL-FEM
(3) Bayesian analysis on carbon fusion
(4) Summary

## Bayesian method vs Frequentist method

PHYSICAL REVIEW LETTERS 122, 232502 (2019)
Direct Comparison between Bayesian and Frequentist Uncertainty Quantification for Nuclear Reactions
G. B. King, ${ }^{1,2}$ A. E. Lovell, ${ }^{3,4}$ L. Neufcourt, ${ }^{1,5}$ and F. M. Nunes ${ }^{1,2, *}$


Bayesian method: more flexible, represent reality more accurately

## Bayesian method

The posterior probability distribution functions:

$$
P(x \mid D)=\frac{P(D \mid x) P(x)}{P(D)}
$$

- $P(x)$ : uniform prior distribution of the model parameter $x$.

Yang, L., Lin, C. J., Zhang, Y. X., Wen, P. W., et al. (2020) Phys. Lett. B 807, 135540
"We found that the ... parameters strongly depends on the prior knowledge ... We suggest that... a flat distribution could be employed as a convincing prior knowledge of the Bayesian framework. "

- $P(D \mid x)$ : the likelihood function with a Gaussian distribution. $P(D)$ is the normalization constant and integrates to 1 .

The Markov chain Monte Carlo algorithm emcee:

- The sampling depends on a few tuning parameters.
- It uses an ensemble of walkers which can be moved in parallel.
D. Foreman-Mackey, D. W. Hogg, D. Lang, et al. Publ Astron Soc Pac 125, 306 (2013).
D. P. Fleming, R. Barnes, R. Luger, and J. T. VanderPlas, Astrophys J 891, 155 (2020).


## Test results (preliminary)



## Bayesian method vs MIGRAD in Minuit (preliminary)

James, F., Roos, M. (1975). Comput. Phys. Commun., 10(6), 343-367.




- F1: $V_{0}=59.67^{ \pm 32.14} \mathrm{MeV}, a=$ $0.91^{ \pm 0.30} \mathrm{fm}, r_{0}=0.76^{ \pm 0.17} \mathrm{fm}$
- F2: $V_{0}=13.05^{ \pm 0.51} \mathrm{MeV}, a=$ $0.69^{ \pm 0.02} \mathrm{fm}, r_{0}=1.16^{ \pm 0.01} \mathrm{fm}$

The search based on the MIGRAD method is easily traped in the local minimums near the initial value.

## More experimental data (preliminary)

T. P. Luo, P. W. Wen, C.J. Lin, Lei, Yang et al. submitted to Chin. Phys. C




Narrow distributions

No obvious maximum

## Contents

(1) Introduction on deep sub-barrier fusions
(2) The improved CC: CCFULL-FEM

3 Bayesian analysis on carbon fusion
(4) Summary

- The CCFULL-FEM approach with KANTBP3.1 could reproduce the the deep sub-barrier fusion cross sections, as well as the $S$ factor, of several typical reactions by using the most simple WS potential and multiphonon couplings.
- The Bayesian method is more powerful than the MIGRAD approach, and its analysis shows no hindrance for ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion reaction between $1 \sim 3 \mathrm{MeV}$ (preliminary).
- $\langle l\rangle$ could be used to clarify the mechanism of shallow or deep potential, especially for ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ reaction.

Chuluunbaatar O, Gusev AA, Vinitsky SI, Abrashkevich AG, Wen PW, Lin CJ. Submitted to Computer Physics Communications. (KANTBP3.1 \& CCFULL-FEM)

Thank my collaborators of these workes:

- China Institute of Atomic energy, Beijing

Chengjian Lin, Huiming Jia, Lei Yang, Tianpeng Luo, Feng Yang, et al

- Joint Institute of Nuclear Physics, Dubna
S. I. Vinitsky, O. Chuluunbaatar, R. Nazmitdinov, G. G. Gusev, A. Nasirov, et al

> Thank you for your attention!

