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Goal

• Fusion phenomenology

• Quantitative predictions (no free parameter)

• From deep sub-barrier to above barrier

• Isolate contributions to nucleus-nucleus potentials

Pauli repulsion

Dynamics (shape polarisation, transfer…)



Outline

• Microscopic approach to nucleus-nucleus potential

FHF, DCFHF, DC-TDHF

• Application to 16O+208Pb

• Dynamical isovector contribution to the potential

• Pauli energy distribution
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Dynamics

Courtesy of K. Godbey

Time-Dependent HF

12C+12C at E~VB
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Isovector (transfer) dynamics with DCTDHF
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asan integral of the energy density H (r ) [52]

E =

Z

d3rH (r ) , (2)

which includes the kinetic, isoscalar, isovector, and Coulomb

terms [53]:

H (r ) =
h̄2

2m
t 0 + H 0(r ) + H 1(r ) + H C(r ) . (3)

In particular,

H I(r ) = C
r
I r 2
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I s
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⇣
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⌘
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where we have used the gauge invariant form suitable for

time-dependent calculations. The isospin index I = 0,1 for

isoscalar and isovector energy densities, respectively. The

most common choice of SkyrmeEDF restricts thedensity de-

pendence of the coupling constants to the C
r
I and Cs

I terms

only. These density dependent coefficients contribute to the

coupling of isoscalar and isovector fields in the Hartree-Fock

Hamiltonian. The isoscalar (isovector) energy density, H 0(r )

(H 1(r )), depends on the isoscalar (isovector) particle density,

r 0 = r n + r p (r 1 = r n− r p), with analogous expressions for

other densities and currents. Values of the coupling coeffi-

cients as well as their relation to the alternative parametriza-

tions of theSkyrmeEDF can be found in[53].
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FIG. 1. (Color online) For the40Ca+48Casystem; Total and isoscalar
DC-TDHF potentials. The shaded region corresponds to the reduc-

tion originating from theisovector contribution to theenergy density.
The insert shows the isoscalar and isovector contributions to the in-

teraction barrier without theCoulomb potential. TheTDHF collision
energy wasEc.m. = 55MeV.

The above form of the EDF is more suitable for study-

ing the isospin dependence of nuclear properties and have

been employed in nuclear structure studies[53]. In the same

spirit we can utilize this approach to study isospin depen-

dent effectsinnuclear reactionsmicroscopically. Inparticular,

the density-constrained time-dependent Hartree-Fock (DC-

TDHF) method [41] can be employed to study isospin effects

on fusion barriers and fusion cross-sections. The DC-TDHF

approach calculates the nucleus-nucleus potentials V(R) di-

rectly from TDHF dynamics and has been used to calculate

fusion cross-sections for a wide range of reactions[54–60].

The basic idea of this approach is the following: At certain

times t or, equivalently, at certain internuclear distances R(t),

a static energy minimization is performed while constraining

the proton and neutron densities to be equal to the instanta-

neous TDHF densities. We refer to the minimized energy as

the “density constrained energy” EDC(R). The ion-ion inter-

action potential V(R) is obtained by subtracting the constant

binding energies EA1
and EA2

of the two individual nuclei

V(R) = EDC(R) − EA1
− EA2

. (5)

The calculated ion-ion interaction barriers contain all of the

dynamical changes in the nuclear density during the TDHF

time-evolution in aself-consistent manner. As aconsequence

of the dynamics the DC-TDHF potential is energy depen-

dent [54]. Using the decomposition of the Skyrme EDF into

isoscalar and isovector parts [Eq. (4)], wecan re-write thispo-

tential as

V(R) = Â
I= 0,1

vI(R) + VC(R) , (6)

where vI(R) denotes the potential computed by using the

isoscalar and isovector parts of the Skyrme EDF given in

Eq. (3) in Eq. (5). The Coulomb potential is also calculated

viaEq. (5) using the Coulomb energy density.

Wehave used the DC-TDHF approach to study fusion bar-

riers for a number of systems. Calculations were done in a

three-dimensional Cartesian geometry with no symmetry as-

sumptions[61] and using the Skyrme SLy4 EDF[62]. The

three-dimensional Poisson equation for the Coulomb poten-

tial is solved by using Fast-Fourier Transform techniques and

the Slater approximation is used for the Coulomb exchange

term. Thebox size used for all the calculations waschosen to

be 60⇥30⇥30 fm3, with a mesh spacing of 1.0 fm in all di-

rections. Thesevaluesprovidevery accurate resultsdueto the

employment of sophisticated discretization techniques[63].

In Fig.1 we show the total and isoscalar fusion barriers

(both including theCoulomb contribution) for the 40Ca+48Ca

system at Ec.m. = 55 MeV. For theCa+Ca systems theenergy

dependence is relatively weak [54,64,65]. The reduction of

Dynamics
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The above form of the EDF is more suitable for study-

ing the isospin dependence of nuclear properties and have

been employed in nuclear structure studies[53]. In the same

spirit we can utilize this approach to study isospin depen-

dent effectsinnuclear reactionsmicroscopically. Inparticular,

the density-constrained time-dependent Hartree-Fock (DC-

TDHF) method [41] can be employed to study isospin effects

on fusion barriers and fusion cross-sections. The DC-TDHF

approach calculates the nucleus-nucleus potentials V(R) di-

rectly from TDHF dynamics and has been used to calculate

fusion cross-sections for a wide range of reactions[54–60].

The basic idea of this approach is the following: At certain

times t or, equivalently, at certain internuclear distances R(t),

a static energy minimization is performed while constraining

the proton and neutron densities to be equal to the instanta-

neous TDHF densities. We refer to the minimized energy as

the “density constrained energy” EDC(R). The ion-ion inter-

action potential V(R) is obtained by subtracting the constant

binding energies EA1
and EA2

of the two individual nuclei

V(R) = EDC(R) − EA1
− EA2

. (5)

The calculated ion-ion interaction barriers contain all of the

dynamical changes in the nuclear density during the TDHF

time-evolution in aself-consistent manner. As aconsequence

of the dynamics the DC-TDHF potential is energy depen-

dent [54]. Using the decomposition of the Skyrme EDF into

isoscalar and isovector parts [Eq. (4)], wecan re-write thispo-

tential as

V(R) = Â
I= 0,1

vI(R) + VC(R) , (6)

where vI(R) denotes the potential computed by using the

isoscalar and isovector parts of the Skyrme EDF given in

Eq. (3) in Eq. (5). The Coulomb potential is also calculated

viaEq. (5) using the Coulomb energy density.

Wehave used the DC-TDHF approach to study fusion bar-

riers for a number of systems. Calculations were done in a

three-dimensional Cartesian geometry with no symmetry as-

sumptions[61] and using the Skyrme SLy4 EDF[62]. The

three-dimensional Poisson equation for the Coulomb poten-

tial is solved by using Fast-Fourier Transform techniques and

the Slater approximation is used for the Coulomb exchange

term. Thebox size used for all the calculations waschosen to

be 60⇥30⇥30 fm3, with a mesh spacing of 1.0 fm in all di-

rections. Thesevaluesprovidevery accurate resultsdueto the

employment of sophisticated discretization techniques[63].

In Fig.1 we show the total and isoscalar fusion barriers

(both including theCoulomb contribution) for the 40Ca+48Ca

system at Ec.m. = 55 MeV. For theCa+Ca systems theenergy

dependence is relatively weak [54,64,65]. The reduction of

Dynamics
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FIG. 1. (Color online) For the40Ca+48Casystem; Total and isoscalar
DC-TDHF potentials. The shaded region corresponds to the reduc-

tion originating from theisovector contribution to theenergy density.
The insert shows the isoscalar and isovector contributions to the in-

teraction barrier without theCoulomb potential. TheTDHF collision
energy wasEc.m. = 55MeV.

The above form of the EDF is more suitable for study-

ing the isospin dependence of nuclear properties and have

been employed in nuclear structure studies[53]. In the same

spirit we can utilize this approach to study isospin depen-

dent effectsinnuclear reactionsmicroscopically. Inparticular,

the density-constrained time-dependent Hartree-Fock (DC-

TDHF) method [41] can be employed to study isospin effects

on fusion barriers and fusion cross-sections. The DC-TDHF

approach calculates the nucleus-nucleus potentials V(R) di-

rectly from TDHF dynamics and has been used to calculate

fusion cross-sections for a wide range of reactions[54–60].

The basic idea of this approach is the following: At certain

times t or, equivalently, at certain internuclear distances R(t),

a static energy minimization is performed while constraining

the proton and neutron densities to be equal to the instanta-

neous TDHF densities. We refer to the minimized energy as

the “density constrained energy” EDC(R). The ion-ion inter-

action potential V(R) is obtained by subtracting the constant

binding energies EA1
and EA2

of the two individual nuclei

V(R) = EDC(R) − EA1
− EA2

. (5)

The calculated ion-ion interaction barriers contain all of the

dynamical changes in the nuclear density during the TDHF

time-evolution in aself-consistent manner. As aconsequence

of the dynamics the DC-TDHF potential is energy depen-

dent [54]. Using the decomposition of the Skyrme EDF into

isoscalar and isovector parts [Eq. (4)], wecan re-write thispo-

tential as

V(R) = Â
I= 0,1

vI(R) + VC(R) , (6)

where vI(R) denotes the potential computed by using the

isoscalar and isovector parts of the Skyrme EDF given in

Eq. (3) in Eq. (5). The Coulomb potential is also calculated

viaEq. (5) using the Coulomb energy density.

Wehave used the DC-TDHF approach to study fusion bar-

riers for a number of systems. Calculations were done in a

three-dimensional Cartesian geometry with no symmetry as-

sumptions[61] and using the Skyrme SLy4 EDF[62]. The

three-dimensional Poisson equation for the Coulomb poten-

tial is solved by using Fast-Fourier Transform techniques and

the Slater approximation is used for the Coulomb exchange

term. Thebox size used for all the calculations waschosen to

be 60⇥30⇥30 fm3, with a mesh spacing of 1.0 fm in all di-

rections. Thesevaluesprovidevery accurate resultsdueto the

employment of sophisticated discretization techniques[63].

In Fig.1 we show the total and isoscalar fusion barriers

(both including theCoulomb contribution) for the 40Ca+48Ca

system at Ec.m. = 55 MeV. For theCa+Ca systems theenergy

dependence is relatively weak [54,64,65]. The reduction of

Dynamics

isoscalar isovector

=>  V(R) = v0(R) + v1(R) +VC(R)

= 0 in FHF 

=> purely dynamical (polarisation and transfer)
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Conclusions

- Microscopic predictions (no free parameters)

- FHF, DCFHF, and DC-TDFHF to isolate Pauli repulsion and dynamics

- Applications to 16O+208Pb

- Pauli repulsion inside the fusion barrier => Deep sub-barrier fusion hindrance

- Isovector dynamics (transfer)

- NLF => Pauli energy

- Pauli repulsion in the neck

- Different dynamical effects for protons and neutrons


