

Pauli energy and dynamical contributions to nucleus-nucleus interaction

Cédric Simenel

Australian National University

Collaborators: K. Godbey (TAMU, FRIB), A. S. Umar (Vanderbilt University)

- Fusion phenomenology
- Quantitative predictions (no free parameter)
- From deep sub-barrier to above barrier
- Isolate contributions to nucleus-nucleus potentials Pauli repulsion
 - Dynamics (shape polarisation, transfer...)

Outline

- **Microscopic approach to nucleus-nucleus potential** FHF, DCFHF, DC-TDHF
- Application to ¹⁶O+²⁰⁸Pb
- Dynamical isovector contribution to the potential
- Pauli energy distribution

Microscopic approach Hartree-Fock (HF)

$$\begin{array}{c} \delta \left< \Phi \right| \hat{H} \left| \Phi \right> = 0 \\ \uparrow \end{array}$$

Independent nucleons = Slater determinant (=> Pauli)

Microscopic approach Hartree-Fock (HF)

$$\delta \left< \Phi \right| \hat{H} \left| \Phi \right> = 0$$

Independent nucleons = Slater determinant (=> Pauli)

Microscopic approach Hartree-Fock (HF)

$$\delta \left< \Phi \right| \hat{H} \left| \Phi \right> = 0$$

Independent nucleons = Slater determinant (=> Pauli)

$$E[\rho] = \int d^3r \, \mathcal{H}(\mathbf{r})$$

Skyrme SLy4d functional

Microscopic approach Frozen Hartree-Fock (FHF) Brueckner *et al.*, PR 173, 944 (1968) $\delta \langle \Phi | \hat{H} | \Phi \rangle = 0$ $V_{FHF}(R) = E[\rho_1 + \rho_2] - E[\rho_1] - E[\rho_2]$ (No Pauli) $\rho_1(\mathbf{r}) + \rho_2(\mathbf{r} - \mathbf{R})$

Frozen Hartree-Fock (FHF)

Brueckner *et al.*, PR **173**, 944 (1968)

$$V_{FHF}(R) = E[
ho_1 +
ho_2] - E[
ho_1] - E[
ho_2]$$

(No Pauli)

Density-Constrained Frozen Hartree-Fock (DCFHF)

 $\delta \left< \Phi \right| \hat{H} \left| \Phi \right> = 0$

Simenel *et al.*, PRC **95**, 031601 (2017)
$$\delta \langle \Phi | \left[\hat{H} - \int d\mathbf{r} \,\lambda(\mathbf{r})\rho(\mathbf{r}) \right] |\Phi\rangle = 0$$

Frozen Hartree-Fock (FHF)

Brueckner *et al.*, PR **173**, 944 (1968)

$$V_{FHF}(R) = E[
ho_1 +
ho_2] - E[
ho_1] - E[
ho_2]$$

(No Pauli)

Density-Constrained Frozen Hartree-Fock (DCFHF)

 $\delta \left< \Phi \right| \hat{H} \left| \Phi \right> = 0$

Simenel et al., PRC 95, 031601 (2017)

$$\delta \langle \Phi | \left[\hat{H} - \int d\mathbf{r} \,\lambda(\mathbf{r})\rho(\mathbf{r}) \right] | \Phi \rangle = 0$$

$$\rho_1(\mathbf{r}) + \rho_2(\mathbf{r} - \mathbf{R})$$

$$V_{DCFHF}(R) = \langle \Phi | \hat{H} | \Phi \rangle - E[\rho_1] - E[\rho_2]$$

Frozen Hartree-Fock (FHF)

Brueckner et al., PR 173, 944 (1968)

$$V_{FHF}(R) = E[\rho_1 + \rho_2] - E[\rho_1] - E[\rho_2]$$

(No Pauli)

Density-Constrained Frozen Hartree-Fock (DCFHF)

 $\delta \left< \Phi \right| \hat{H} \left| \Phi \right> = 0$

Simenel et al., PRC 95, 031601 (2017)

$$\delta \langle \Phi | \left[\hat{H} - \int d\mathbf{r} \,\lambda(\mathbf{r})\rho(\mathbf{r}) \right] | \Phi \rangle = 0$$

$$\rho_1(\mathbf{r}) + \rho_2(\mathbf{r} - \mathbf{R})$$

$$V_{DCFHF}(R) = \langle \Phi | \hat{H} | \Phi \rangle - E[\rho_1] - E[\rho_2]$$

Time-Dependent HF

 $\delta \left\langle \Phi \right| \, \left[\hat{H} - i \partial_t \right] \, \left| \Phi \right\rangle = 0$

 $^{12}C+^{12}C$ at $E \sim V_B$ Courtesy of K. Godbey

Density-Constrained Time-Dependent Hartree-Fock (DC-TDHF)

Simenel et al., PRC 95, 031601 (2017)

$$\delta \langle \Phi | \left[\hat{H} - \int d\mathbf{r} \,\lambda(\mathbf{r})\rho(\mathbf{r}) \right] |\Phi\rangle = 0$$

$$\rho_{TDHF}(\mathbf{r}, t)$$

$$V_{DCTDHF}[R(t)] = \langle \Phi | \hat{H} | \Phi \rangle - E[\rho_1] - E[\rho_2]$$

$$\delta \langle \Phi | \left[\hat{H} - i\partial_t \right] |\Phi\rangle = 0$$

Microscopic approach Frozen Hartree-Fock (FHF)

Static, no Pauli

Density-Constrained Frozen Hartree-Fock (DCFHF)

Static + Pauli

Density-Constrained Time-Dependent Hartree-Fock (DC-TDHF)

Dynamic + Pauli

Deep sub-barrier fusion

Deep sub-barrier fusion

Isovector (transfer) dynamics with DCTDHF

$$H(\mathbf{r}) = \frac{\overline{h^2}}{2m} t_0 + H_0(\mathbf{r}) + H_1(\mathbf{r}) + H_C(\mathbf{r})$$

Isovector (transfer) dynamics with DCTDHF

$$H(\mathbf{r}) = \frac{\overline{h^2}}{2m} t_0 + H_0(\mathbf{r}) + H_1(\mathbf{r}) + H_C(\mathbf{r})$$

isoscalar isovector

Isovector (transfer) dynamics with DCTDHF

$$H(\mathbf{r}) = \frac{\overline{h^2}}{2m} t_0 + H_0(\mathbf{r}) + H_1(\mathbf{r}) + H_C(\mathbf{r})$$

isoscalar isovector

=> V(R) =
$$v_0(R) + v_1(R) + V_C(R)$$

= 0 in FHF
=> purely dynamical (polarisation and transfer)

Isovector (transfer) dynamics with DCTDHF

Nucleon localisation function

Probability of finding 2 nucleons

 $P_{qs}(\mathbf{r}, \mathbf{r}') = \rho_q(\mathbf{r}s, \mathbf{r}s)\rho_q(\mathbf{r}'s, \mathbf{r}'s) - |\rho_q(\mathbf{r}s, \mathbf{r}'s)|^2$

Short range behaviour (**r~r**') => localisation measure

$$D_{qs_{\mu}} = \tau_{qs_{\mu}} - \frac{1}{4} \frac{|\nabla \rho_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}} - \frac{|\mathbf{j}_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}}$$

Nucleon localisation function

Probability of finding 2 nucleons

 $P_{qs}(\mathbf{r}, \mathbf{r}') = \rho_q(\mathbf{r}s, \mathbf{r}s)\rho_q(\mathbf{r}'s, \mathbf{r}'s) - |\rho_q(\mathbf{r}s, \mathbf{r}'s)|^2$

Short range behaviour (**r~r**') => localisation measure

$$D_{qs_{\mu}} = \tau_{qs_{\mu}} - \frac{1}{4} \frac{|\nabla \rho_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}} - \frac{|\mathbf{j}_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}}$$

Pauli kinetic energy

$$E_{qs}^{\rm P} = \frac{\hbar^2}{2m} \int d^3r \ D_{qs}(\mathbf{r})$$

Pauli (static)
$$\Delta E_{q\mu}^{P(F)}(R) = \frac{\hbar^2}{2m} \sum_{s_{\mu}} \int d^3r \left[D_{qs_{\mu}}^{DCFHF}(\mathbf{r}, R) - D_{qs_{\mu}}^{FHF}(\mathbf{r}, R) \right]$$

repulsion

Dynamic $\Delta E_{q\mu}^{P(D)}(R) = \frac{\hbar^2}{2m} \sum_{s_{\mu}} \int d^3 r \left[D_{qs_{\mu}}^{DC-TDHF}(\mathbf{r}, R) - D_{qs_{\mu}}^{DCFHF}(\mathbf{r}, R) \right]$

Nucleon localisation function

Probability of finding 2 nucleons

 $P_{qs}(\mathbf{r},\mathbf{r}') = \rho_q(\mathbf{r}s,\mathbf{r}s)\rho_q(\mathbf{r}'s,\mathbf{r}'s) - |\rho_q(\mathbf{r}s,\mathbf{r}'s)|^2$

Short range behaviour (**r~r**') => localisation measure

$$D_{qs_{\mu}} = \tau_{qs_{\mu}} - \frac{1}{4} \frac{|\nabla \rho_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}} - \frac{|\mathbf{j}_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}}$$

Pauli kinetic energy

$$E_{qs}^{\rm P} = \frac{\hbar^2}{2m} \int d^3r \ D_{qs}(\mathbf{r})$$

Pauli (static)
$$\Delta E_{q\mu}^{P(F)}(R) = \frac{\hbar^2}{2m} \sum_{s_{\mu}} \int d^3 r \left[D_{qs_{\mu}}^{DCFHF}(\mathbf{r}, R) - D_{qs_{\mu}}^{FHF}(\mathbf{r}, R) \right]$$

repulsion

Dynamic

$$\Delta E_{q\mu}^{\mathrm{P(D)}}(R) = \frac{\hbar^2}{2m} \sum_{s_{\mu}} \int d^3 r \left[D_{qs_{\mu}}^{\mathrm{DC-TDHF}}(\mathbf{r}, R) - D_{qs_{\mu}}^{\mathrm{DCFHF}}(\mathbf{r}, R) \right]$$

Umar, Simenel, Godbey, PRC 2021

Nucleon localisation function

Probability of finding 2 nucleons

 $P_{qs}(\mathbf{r},\mathbf{r}') = \rho_q(\mathbf{r}s,\mathbf{r}s)\rho_q(\mathbf{r}'s,\mathbf{r}'s) - |\rho_q(\mathbf{r}s,\mathbf{r}'s)|^2$

Short range behaviour (**r~r**') => localisation measure

$$D_{qs_{\mu}} = \tau_{qs_{\mu}} - \frac{1}{4} \frac{|\nabla \rho_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}} - \frac{|\mathbf{j}_{qs_{\mu}}|^2}{\rho_{qs_{\mu}}}$$

Pauli kinetic energy

$$E_{qs}^{\rm P} = \frac{\hbar^2}{2m} \int d^3r \ D_{qs}(\mathbf{r})$$

Pauli (static)
$$\Delta E_{q\mu}^{P(F)}(R) = \frac{\hbar^2}{2m} \sum_{s_{\mu}} \int d^3r \left[D_{qs_{\mu}}^{DCFHF}(\mathbf{r}, R) - D_{qs_{\mu}}^{FHF}(\mathbf{r}, R) \right]$$

repulsion

Dynamic

$$\Delta E_{q\mu}^{\mathrm{P(D)}}(R) = \frac{\hbar^2}{2m} \sum_{s_{\mu}} \int d^3 r \left[D_{qs_{\mu}}^{\mathrm{DC-TDHF}}(\mathbf{r}, R) - D_{qs_{\mu}}^{\mathrm{DCFHF}}(\mathbf{r}, R) \right]$$

Umar, Simenel, Godbey, PRC 2021

Conclusions

- Microscopic predictions (no free parameters)
- FHF, DCFHF, and DC-TDFHF to isolate Pauli repulsion and dynamics
- Applications to ¹⁶O+²⁰⁸Pb
- Pauli repulsion inside the fusion barrier => Deep sub-barrier fusion hindrance
- Isovector dynamics (transfer)
- NLF => Pauli energy
- Pauli repulsion in the neck
- Different dynamical effects for protons and neutrons