

Two analytic formulas of Heavy-ion Fusion Cross sections

Cheng Lie Jiang

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Fusion hindrance at extreme sub-barrier energies discovered twenty years ago.

We will demonstrate two simple, analytic cross section formulas which can reproduce the hindrance behavior very well

EPJ A57, 235 (2021)

Wong formula: Includes the effects of quantum mechanical tunneling through the Coulomb potential

$$\sigma_W(E) = \frac{R^2}{2E} \hbar \omega \ln[1 + \exp((2\pi/\hbar\omega)(E - V))]$$

R: radius

V: potential barrier height

 $\hbar\omega$: curvature of the potential barrier

All three parameters, are L independent

Rowley and Hagino, PRC 91, 044617 (2015)

The R, V and $\hbar\omega$ are sensitive to

angular momentum L, they suggested:

Different parameter set for each angular

momentum should be used in the

calculations with Wong formula

Modified-Wong formula,

we assume:

$$\hbar\omega \to \hbar\omega \exp\left[\lambda \frac{E-V}{V}\right]$$

$$\sigma_f(E) = \frac{R^2}{2E} \hbar \omega \exp\left[\lambda \frac{E - V}{V}\right] \ln\left[1 + \frac{E - V}{V}\right] \ln\left[1 + \frac{E - V}{V}\right]$$

$$\exp((2\pi/\hbar\omega\exp\left[\lambda\frac{E-V}{V}\right])(E-V))$$
.

For 35 systems, whose lowest measured cross sections < 0.02 mb, all can be well reproduced, including the hindrance behaviors. (submitted to EPJ A)

system	Q	$_{\mathrm{type}}$	N	data range	χ_0^2	R	V	W	λ	$\mid E_s^f \mid$	$ E_s^{exp} $	ref.
	MeV			mb - mb		$_{ m fm}$	MeV	MeV		MeV	MeV	
$^{16}O+^{18}O$	24.41	EVR	21	0.006 - 224	0.12	7.13	9.67	3.02	1.18	6.54		25
$^{12}C+^{24}Mg$	16.30	EVR	21	.015 - 668	2.17	6.27	11.05	2.70	1.41	9.80	9.7	26-28
$^{12}C+^{30}Si$	14.11	EVR	22	0.0027 - 815	0.82	7.91	13.54	4.62	2.25	10.74	10.5	29 30
⁶ Li+ ¹⁹⁸ Pt	8.53	EVR	10	0.00017 - 348	24.5	8.22	29.53	17.91	4.32			31
⁷ Li+ ¹⁹⁸ Pt	8.82	EVR	11	0.0002 - 1004	4.40	9.76	28.19	6.76	2.19			32
24 Mg+ 30 Si	17.89	EVR	20	0.0080 - 332	0.33	8.17	24.10	4.20	2.67	20.91	20.8	33 34
	· 											
$^{40}Ar + ^{154}Sm$	-75.31	EVR+FF	15	0.0016 - 407	56.72	8.45	122.97	17.6	6.02	98.28		<u>53</u>
76 Ge $+^{86}$ Kr	-97.91	EVR	15	0.0068 - 347	13.7	8.13	130.45	13.1	6.27	116.30		54
58 Ni $+^{124}$ Sn	-112.30	EVR+FF	15	0.00046 - 570	1.07	8.41	156.86	13.3	5.49	138.80		55, 56
$^{64}\text{Ni} + ^{124}\text{Sn}$	-117.51	EVR+FF	17	0.0008 - 605	0.82	7.66	155.28	16.8	12.9	141.9		55, 56

Denisov and Sedykh, EPJ A55, 153 (2019), had developed another modification of Wong formula: They gave: two simple expressions of R and V, a complex expression of $\hbar\omega$ with total 9 parameters. Fit with 1995 cross sections of 85 fusion excitation functions. Results can describe the average behaviors of these 85 systems

N. Rowley, G.R. Satchler and P.H. Stelson

Phys. Lett. B 254, 25 (1991)

On the "distribution of barrier"

interpretation of heavy-ion fusion

$$D(E) = \frac{1}{\pi R^2} \frac{d^2(E\sigma(E))}{dE^2}, \int D(E)dE = 1$$

$$B_{exp}(E) = \frac{d^2(\sigma_{exp}(E)E)}{d^2E}$$

$$\sigma(E)E = \int_{E_0}^{E} \left(\int_{E_0}^{E'} \frac{d^2(\sigma E'')}{d(E'')^2} dE'' \right) dE'$$
$$= \pi R_0^2 \int_{E_0}^{E} \left(\int_{E_0}^{E'} D_{\text{test}}(E'') dE'' \right) dE'.$$

$$D_{\text{test}}(E) = \sum_{i=1}^{L} D_{i}(E) = \sum_{i=1}^{L} \frac{\omega_{i}}{\sqrt{2\pi}W_{i}} \exp\left[-\left(\frac{E - V_{i}}{\sqrt{2}W_{i}}\right)^{2}\right]$$

$$\sigma(E)E = \pi R_0^2 \sum_{i=1}^L \frac{\omega_i W_i}{\sqrt{2\pi}} \left[\sqrt{\pi} Z_i \operatorname{erfc}(-Z_i) + \exp(-Z_i^2) \right],$$
(16)

with $Z_i = (E - V_i)/\sqrt{2}W_i$.

A special case

Single-Gaussian barrier distribution formula

$$D_{\text{test}}(E) = \frac{1}{\sqrt{2\pi}W} \exp\left[-\left(\frac{E - V}{\sqrt{2}W}\right)^2\right]$$

 V_i , W are the centroids, the standard deviations of the Gaussian function

$$\sigma(E)E = \pi R^2 \frac{W}{\sqrt{2\pi}} \left[\sqrt{\pi} Z \operatorname{erfc}(-Z) + \exp(-Z^2) \right],$$

$$Z = (E - V)/\sqrt{2}W$$
,
erfc(Z) is the complementary error function

Eur. Phys. J. A 54, 218 (2018)

We obtained the single-Gaussian formula from the expression:

$$\sigma(E)E = \int_{E_0}^{E} \left(\int_{E_0}^{E'} \frac{d^2(\sigma E'')}{d(E'')^2} dE'' \right) dE'$$
$$= \pi R_0^2 \int_{E_0}^{E} \left(\int_{E_0}^{E'} D_{\text{test}}(E'') dE'' \right) dE'.$$

The same expression has been obtained by K. Siwek-Wilczynska et al., (Acta Phys. Pol. B 33, 451 (2002)) with another way, which has not been widely used and referenced in the literature

Rowley's reciple: double differentiation

$$B_{exp}(E) = \frac{d^2(\sigma_{exp}(E)E)}{d^2E}$$

Weak points for obtaining fusion barrier distribution:

Must be measured with small energy steps.

Ambiguities for B(E), since large energy steps must be used.

For obtaining good fit, we compare

$$\chi_0^2 = \frac{1}{N} \sum_{i=1}^{N} ((\sigma_i - \sigma_{exp-i}) / \Delta \sigma_{exp-i})^2,$$

$$\chi^2 = \frac{N}{N - M} \chi_0^2$$

system	LG, M	χ_0^2	χ^2	system	LG, M	χ_0^2	χ^2
$^{40}\text{Ca} + ^{194}\text{Pt}$	1G, 3	41.9	46.4	$^{16}O + ^{144}Sm$	1G, 3	21.8	24.5
N=31	2G, 6	37.5	46.5	N=27	2G, 6	3.3	4.3
	3G, 9	11.0	15.5		3G, 9	3.2	4.8
$^{16}O + ^{154}Sm$	1G, 3	13.0	14.1	$^{40}\text{Ca} + ^{192}\text{Os}$	1G, 3	16.7	17.9
N=37	2G, 6	3.0	3.5	N=45	2G, 6	15.3	17.7
	3G, 9	2.9	3.9		3G, 9	14.8	18.5
	4G, 12	2.5	3.7		4G, 12	13.8	18.2

In Summary:

Two simple analytic cross section formulas:

Modified-Wong,

Single-Gaussian barrier distribution;

reproduce well the hindrance behavior

An improved method to obtain barrier distribution:

three- or four-Gaussian barrier distribution

Collaborators:

Ernst Rehm Birger Back

Henning Esbensen Kouichi Hagino

Alberto Stefanini Giovanna Montagnoli

Benjamin Kay Daniel Santiago

Thank You!

