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The stable carbon isotopes 12,13C are the first nuclei with sufficiently negative 
(p, α) Q values. This makes 12C + 12C the first fusion reaction that needs to be 
considered in nuclear astrophysics.

Key fusion reactions
In a hydrogen-rich environment the light elements such as Li, Be, and B have all 

positive (p, α) Q values. These nuclei are easily destroyed, before fusion reactions 
start to play a role.

 In non-explosive scenarios carbon fusion takes place in the center of 
massive stars toward the end of their lifetime during the carbon-
burning phase at temperatures of about 0.6–1 GK.

 In stellar explosions carbon fusion plays a role during the ignition 
phase of supernovae (1–10 GK). 

Fusion reactions involving 16O, plays a role only at higher temperatures.  

 In explosive environments.



Key fusion reactions

Main problem: 
Gamow energies are in a range where no reliable cross-section  
measurements can be made with present technologies.

Possible solution:
• Extrapolation of the existing experimental data to lower 
energies starting with data at higher energies.
• Theoretical calculations.

The study of fusion of light heavy nuclei (C, O, Si…) at extreme sub- barrier 
energies (e.g. Gamow energies for C+C reaction is 1-3 MeV) is a key to 
understand and predict different scenarios of evolution of the stars.



S-factor
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Some models predict, that the Gamow factor accounts for the main part of 
the strong energy dependence of the fusion cross section, such that the S-
factor exhibits only a weak energy dependence far below the Coulomb 
barrier. 

This feature is often used to extrapolate the cross section into the region of 
the Gamow window, in order to predict the astrophysical reaction rates.

--- Sommerfeld parameter

Gamow factor 

v --- beam velocity 

More convenient representation of the fusion cross section
at low energies 



S-factor for 16O+16O reaction

6 7 8 9 10 11 12 13 14
100

101

102

103

104

7 8 9 10

103

104

 J. Thomas, PRC 31 1985
 G. Hulke, Z. Phys. A 297, 1980
 S. -C. Wu, NPA 422 1984
 A. Kuronen, PRC 591 1987

S 
-fa

cto
r (

Me
V 

mb
)

Ec.m. (MeV)

16O+16O

 

 

• Existence of a maximum in S- factor ?
• The maximum was observed in 64Ni+64Ni and 58Ni+58Ni reaction  Jiang, PRL 93 (2004)
• The structure of S - factor is critical for the extrapolation of data!



S-factor for 12C+12C reaction

• More dramatic situation in 12C+12C reaction !
• Resonant  behavior at low energies does not allow to make a clear conclusion  
about the maximum. 
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The capture cross section

The capture cross-section is a sum of partial capture cross-sections

Тhe partial capture probability at fixed energy and angular momentum
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For the light and medium-heavy nuclei the fusion is governed by the 
penetrability of  the nuclei through the Coulomb and orbital angular 
momentum barriers (the so called capture). 

Different approaches and models offer different 
methods of calculation of capture probability 



The assumptions of the QD approach

The quantum diffusion approach based on the following assumptions:

1. The capture (fusion) can be treated on the one collective variable: the 
relative distance between the colliding nuclei: R.

2. Collective coordinate is coupled to the internal excitations.

3. The internal excitations (for example, low-lying collective modes 
such as dynamical quadropole and octupole excitations of the target 
and projectile, single particle excitations etc. ) can be presented as an 
environment. 

Sargsyan, EPJ A 45, 125 (2010) 
Sargsyan, EPJ A 47, 38 (2011)
Sargsyan, PRC 84, 064614 (2011)



The full Hamiltonian of the system:

 The collective subsystem
(inverted harmonic oscillator)
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coupling bbRV ννν  Coupling between the subsystems

(linear coupling)

The formalism of QD approach



The analytical expressions for the first and 
second moments
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Functions determine the dynamic 
of the first and second moments
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Sargsyan, PRC 77, 024607 (2008)



Nucleus-nucleus interaction potential:

Double-folding formalism used for nuclear part:
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Nucleus-nucleus potential:
1. density - dependent effective nucleon-nucleon interaction
2. Woods-Saxon parameterization for nucleus density 

Adamian et al., Int. J. Mod. Phys E 5, 191 (1996).

1. The same height and the position of the barrier of the real potential with the height 
and the position of inverted oscillator. 

2. The condition of equality of the energy under the barrier: 2
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Determination of the “ effective frequency” of the replaced oscillator: 



The capture probability in quantum 
diffusion approach

Capture probability depends on the ratio of mean value and the 
variance of  the collective coordinate:
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Our approach takes into account the fluctuation and dissipation effects in 
the collisions of heavy ions which model the coupling with various channels.

• The coupling to  internal excitations leads to fluctuation of collective 
coordinate.
• Equations  for the mean value and variance contain friction and diffusion.
• The friction and diffusion are obtained in a self-consistent way.
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The capture probability

The QD approach was successfully applied to describe the heavy 
ion fusion reactions at near- and below the Coulomb barrier 

energies.

Constant friction coefficient was used.

The frequency of the approximated 
oscillator.

The internal excitation width --- is responsible for non-Markovian effects.γ



To consider reactions at extremely low 
energies one need to extend the model!! 
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 The friction is proportional to the square of the nuclear force:

• This form of friction takes into account the comparatively larger overlap of
the nuclear surfaces is case of two heavier nuclei.
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 Determination of the excitation width: 
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Gross, Phys. Rep. 45, 175 (1978)
Weidenmuller, Prog. Part. Nucl. Phys. 3, 49 (1980)

Sargsyan, EPJ A 56, 19 (2020)
Sargsyan, Phys. Lett. B 824, 136792 (2022)



Results of calculations
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• The main trend of new experimental data is reproduced.
• We clearly identify a maximum in S- factor.



Results of calculations

• The calculation is in good agreement with the experimental data
• The lowest data are very close to the position of the maximum of S factor
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Results of calculations
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Results of calculations
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Results of calculations
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Results of calculations
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At low energies (weak friction limit) one obtains simple 
expression for the capture probability !
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 For very light nuclei the formulas are applicable already at energies 1-2 
MeV below the barrier. 

 The formulas could be used to obtain analytical expression for the S- factor 
position and reaction rates.

Probability at extreme sub-barrier energies
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The position Es of the S- factor maximum
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Only small angular momenta contribute to the fusion! 
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of the S- factor maximum: 

For the considered reactions one always get a solution!  

After expanding in power of 1/Ec and making a replacement Vb -> Ec one obtain 
the simple approximated expression for the position of S- factor maximum:

Sargsyan, Phys. Lett. B 824, 136792 (2022)
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Employing the well-known asymptotic parametrization
we deduce in leading order the simple expression: 

 In addition to the nuclear interaction, there are fluctuation and dissipation 
effects in the model due to the coupling of relative motion to the excitations of 
various channels. 

 As a result, the energy dependence of the fusion probability differs from the 
energy dependence of the Gamow tunneling probability, PG∼ e−2πη, through the 
simple Coulomb interaction potential. 

 The origin of the maximum of S-factor is the nuclear interaction and dissipative 
effects which effectively widen the potential barrier at Ec.m.< Es.

The origin of the S-factor maximum
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from which we conclude that the position of the S-factor maximum is 
determined by the thickness of the potential surface layer given by a0 to 
the contact distance (R1+R2)between two nuclei. 



Summary 
 The structure of astrophysical S-factor for various reactions is analyzed 
within the extended quantum diffusion approach .
 We compared the calculated fusion cross sections with the available 
experimental data. In all cases we obtained a good description of the 
experiments .
 For the considered reactions, the S-factor shows a clear maximum in the 
sub-barrier energy range Es∼(0.60 − 0.86)Vb . 
 We propose an analytical expression, predicting very reliably, the 
dependence of the S-factor maximum on the ion mass and charge numbers, 
which may be used not only in stellar burning studies but also as a guidance 
for future experiments .
 Another interesting behavior of the obtained S-factor is its strong 
dependence on Ec.m. at the collision energies below the maximum which will 
reduce considerably the stellar burning rates and its temperature 
dependence. 



Thank you!
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