

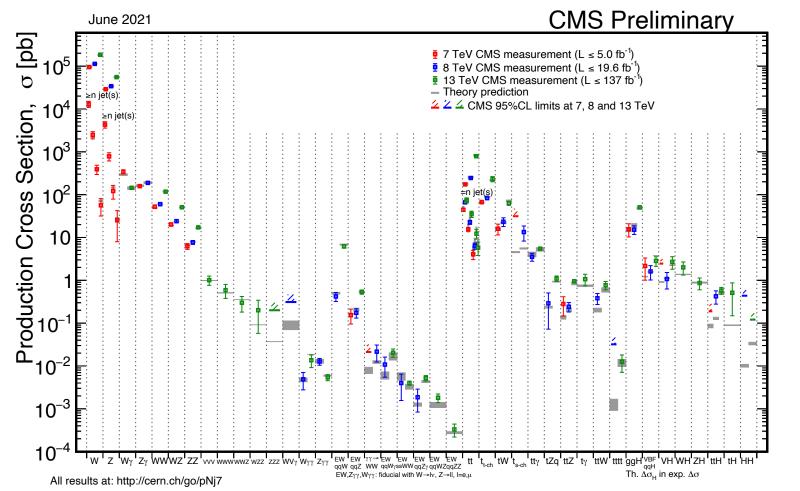


Search for long-lived particles decaying into two muons using data collected with high-rate triggers at CMS

July 22<sup>nd</sup>, 2021

<u>Mario Masciovecchio</u> (University of California, San Diego)

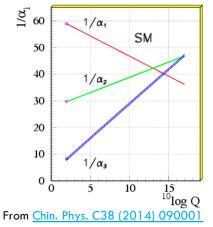
- on behalf of the CMS collaboration -

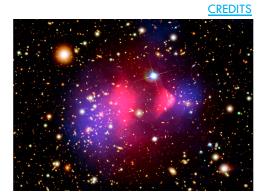

Seminar - INFN (Padova)





#### Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021


- The Standard Model (SM) has been probed over the years at the LHC (and before)
  - ightarrow With great success, ranging over many orders of magnitude
  - ightarrow Including prediction of Higgs boson

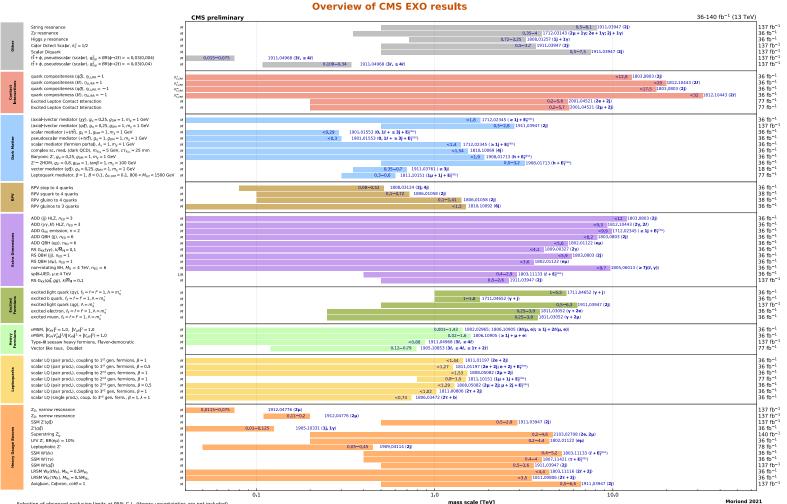



# The Standard Model: a story of success,

### with its limitations

- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Gravitation is <u>not</u> described by SM
  - Sizeable effects are expected at large energy scale
- EWK scale [O(1 TeV)] << Planck scale [ $\simeq 2.4 \cdot 10^{15}$  TeV]
  - Hierarchy problem
  - ↔ With significant fine-tuning to achieve  $m_{Higgs} \simeq 125 \text{ GeV}$
- Unification of forces (Grand Unified Theories) is <u>not</u> supported
   GUTs may explain inflationary dynamics of early Universe
- <u>Why</u> matter-antimatter imbalance in Universe?
- <u>Why</u> three generations of quarks and leptons?
- <u>Why</u> flavor anomalies?
- **Neutrinos** are predicted to be **massless** 
  - Experimental observations imply nonzero mass
- Only baryonic matter, with <u>no</u> **dark matter** candidate
  - From astrophysical and cosmological observations:
    - $\circ~$  Dark matter  $\sim 22\%~$  of energy in Universe
    - $\circ$  Dark energy ~ 74%





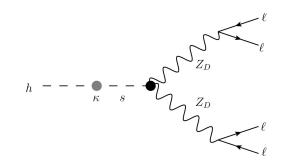



### Going beyond the Standard Model



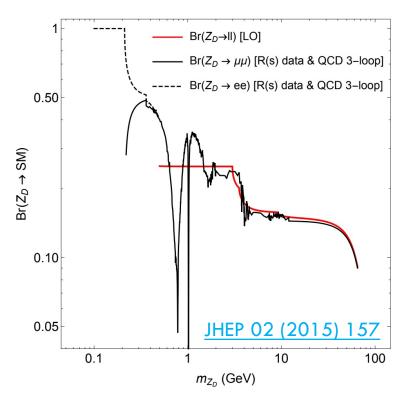
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Limitations to SM hint to physics beyond the SM
- $\rightarrow$  Searches at the LHC are extensively looking for signatures of BSM physics

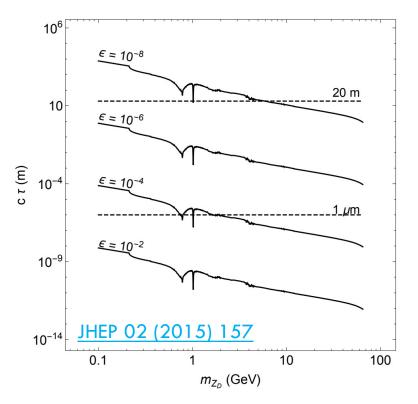



Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

# What are we looking for?

- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Dark matter is expected to interact very weakly with SM, if at all
- $\rightarrow$  Possibility of hidden/dark sector of matter [1, 2]:
  - Dark particles can interact with SM via **weakly interacting mediators**
  - Mass and lifetime of mediators are <u>not</u> strongly constrained
- **1. Dark photon**  $(Z_D)$ :
- Interaction with SM through hypercharge portal
  - \* Via kinetic mixing coupling  $\epsilon$


Interaction with SM through Higgs (h) portal
 Via Higgs mixing к


[1] <u>arXiv:1311.0029</u>; [2] <u>JHEP 02 (2015) 157</u>

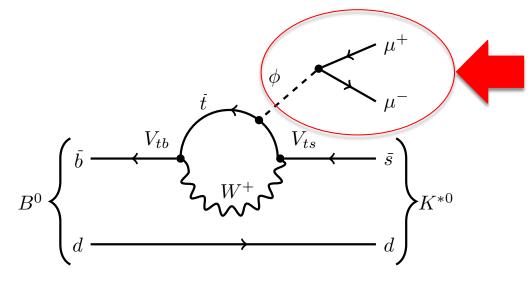


# What are we looking for?

- 6 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- **1. Dark photon** (Z<sub>D</sub>):
- $\circ$  In absence of hidden-sector states below its mass, Z<sub>D</sub> will only decay to SM particles, with coupling of SM fermions to Z<sub>D</sub> proportional to kinetic mixing coupling  $\epsilon$
- \* Sizeable decay branching fraction of  $Z_D \rightarrow \mu\mu$

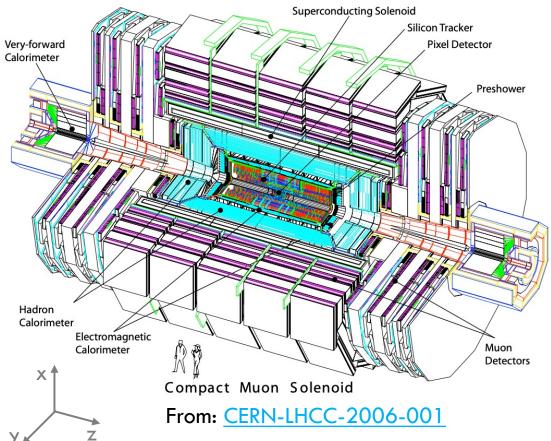




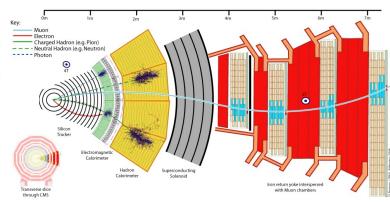



# What are we looking for?

7 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021


#### **2. Singlet scalar field** $(\phi)$ :

- $\,\circ\,$  Minimal extension to the SM adds a singlet scalar field (ф) [3, 4]
  - $\clubsuit \varphi$  is mixing with the SM-like Higgs boson
  - **\*** Coupling of SM fermions to  $\phi$  is proportional to mixing angle (s<sub> $\theta$ </sub>)
  - $\clubsuit \varphi$  is likely long-lived (LL)
- $\rightarrow$  Scalar resonance produced in B hadron decay:  $B \rightarrow \varphi X$ 
  - \* With sizeable **decay** branching fraction of  $\phi \rightarrow \mu \mu$



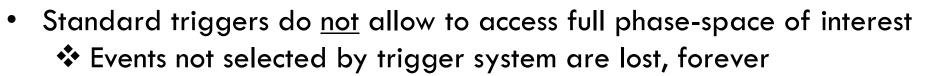

[3] JHEP 1307 (2013) 140; [4] PRD 95 (2017) 115001

- The CMS detector
- <sup>8</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Search for a narrow long-lived dimuon resonance
  - $~\odot~$  With  $m_{LLP}\gtrsim 2m_{\mu}$  and  $c\tau_{0}^{LLP}>0$



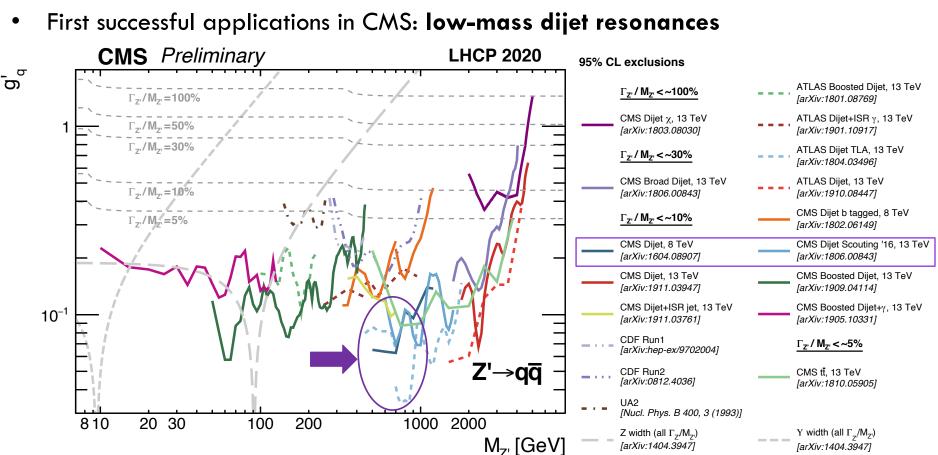
- → <u>Main features</u>:
- Highly granular tracking system
- Electromagnetic+hadron calorimeter
- $\circ$  Superconducting solenoid (B = 3.8 T)
- Robust and redundant muon system




From: CMS-OUTREACH-2016-027



- The CMS trigger system
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Search for a narrow long-lived dimuon resonance  $\odot$  With  $m_{LLP} \gtrsim 2m_{\mu}$  and  $c\tau_0^{LLP} > 0$
- Collision data delivered by LHC and collected by the CMS detector are filtered by a two-level trigger system:
  - 1. Level-1 Trigger (L1T) $\Box$ Total rate reduction by ~ 1062. High Level Trigger (HLT) $\Box$
  - Only events selected at HLT are then fully reconstructed offline, due to constraints on computing and storage resources
- → Standard triggers do not allow to access full phase-space of interest due to limitations in acceptance rate




- The CMS scouting triggers
- 10 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021



- Data scouting, used in CMS since 2011:
  - o Idea: "Do more, with less"
    - 1. Increase of trigger acceptance rate
      - Looser (more inclusive) selections
    - 2. Decrease of event size, to compensate
      - Keep only HLT-level information
  - $\,\circ\,$  Similar streams were used by ATLAS and LHCb during LHC Run-2

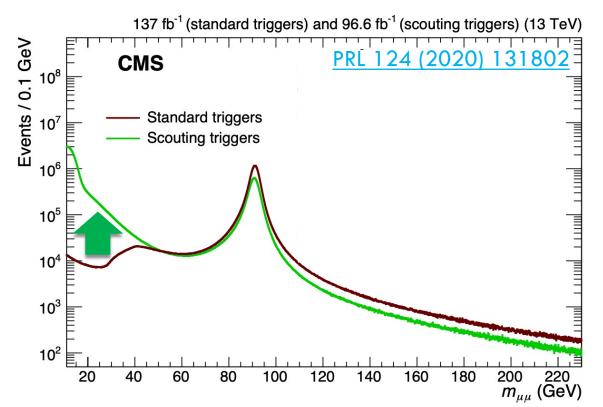




 $\rightarrow$  Allowed to probe otherwise inaccessible parameter space, at low coupling g'<sub>a</sub> (between leptophobic Z' boson and quarks) and mass in range [500, 1000] GeV

# The CMS scouting triggers: a successful example

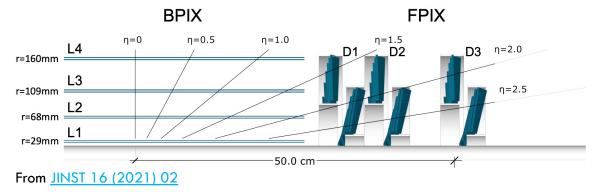
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021 11




12



- The CMS dimuon scouting triggers Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Search for a narrow long-lived dimuon resonance
  - $~\circ~$  With  $m_{LLP}\gtrsim 2m_{\mu}$  and  $c\tau_0^{LLP}>0$
- Standard triggers do <u>not</u> allow to access phase-space of interest


→ Use CMS dimuon scouting triggers (instead of standard triggers)



13



- The CMS dimuon scouting data, in detail Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Search for a **narrow long-lived dimuon resonance**  $\circ$  With  $m_{LLP} \gtrsim 2m_{\mu}$  and  $c\tau_0^{LLP} > 0$
- Standard triggers do <u>not</u> allow to access phase-space of interest
- → Use CMS dimuon scouting data collected in 2017-2018 (101 fb<sup>-1</sup>)
  - Content of 2016 scouting data is different
  - Data collected at high rate with limited information as at HLT
  - Even  $p_T$  thresholds on  $\mu$ 's and  $\sim \underline{no}$  constraint on displacement
    - ✤ Presence of ≥ 2 hits in pixel tracker was required in Run-2
    - $\rightarrow$  Range of accessible transverse displacement:  $0 \le I_{xy} < 11 \text{ cm}$



# A brief digression: **B physics parking** program at CMS

- 14 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Alternative/complementary approach to scouting data to cope with limited trigger acceptance, with focus on **B physics anomalies**

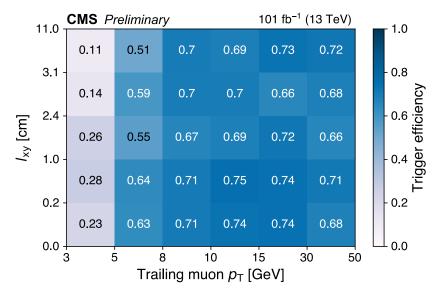
Tag B

Probe B

- Unbiased sample of O(10<sup>10</sup>) B's was collected during LHC Run-2
  - 1. Trigger on muon from "tag" B
  - 2. Collect unbiased sample of "probe" B's
  - Collected data are "parked"
  - → Undergo full offline reconstruction at later stage, to deal with limited computing resources

#### Unprecedented potential for B physics in CMS

 $\,\circ\,$  Including searches for BSM (LLP) signatures


#### For present search, choice to use dimuon scouting data

- $\odot\,$  Due to enhanced inclusiveness of dimuon scouting triggers
- $\,\circ\,$  Due to higher total integrated luminosity of scouting data set

# An inclusive trigger selection



- 15 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Events are selected with at least two opposite-charge (OS) muons
   O With p<sub>τ</sub><sup>μ</sup> > 3 GeV & |η<sup>μ</sup>| < 2.4</li>
  - <u>No</u> explicit constraint on displacement
  - $\odot~$  No explicit constraint on dimuon invariant mass (m\_{\mu\mu})
  - → Trigger selection allows for very inclusive & general search, including low-mass LLP signatures



Trigger efficiency is measured in data:

# Muons and displaced vertices



- 16 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Events w/ at least a pair of  $\mu$ 's associated to a displaced vertex (DV)

#### **DV** selection:

◦ σ(x) ≤ 0.05 cm◦ σ(y) ≤ 0.05 cm

#### $\circ \sigma(z) < 0.10 \text{ cm}$

 $\circ \ \chi^2/dof < 5$ 

 $\circ$  I<sub>xy</sub> < 11 cm

#### <u>µ identification</u>:

- Tracker+muon system
- $\circ$  # tracker layers > 5
- $\circ \chi^2/dof < 3$

#### <u>μ isolation</u>:

- Track isolation [ΔR<0.3] < 0.1 (0.2) p<sub>T</sub><sup>μ</sup>
   Relaxed for 2<sup>nd</sup> μ-pair
- min ΔR(µ, jet) > 0.3
   All HLT calo-jets (p<sub>T</sub>>20 GeV)

#### $\rightarrow$ If >1 pairs of OS $\mu$ 's are selected:

- $\odot~$  Ranking by  $\chi^2(\text{DV})$
- > Use first ( $2\mu$ ) or first two  $\mu$ -pairs ( $4\mu$ )
- \* For  $2^{nd}$   $\mu$ -pair, few selection criteria are relaxed to maximize sensitivity

→ Explore isolated, partially isolated and non-isolated 2µ topologies
 ❖ Exploit ability to search for non-isolated signatures, too

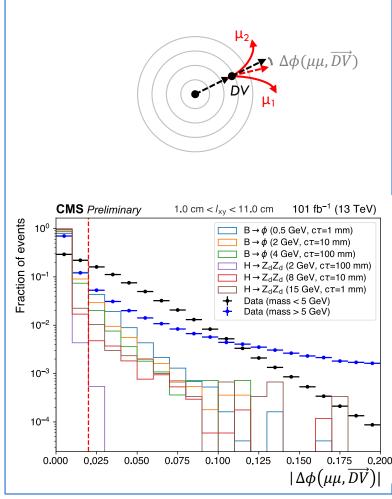
# Sources of background



- 17 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Due to inclusiveness & generality of search and of scouting triggers, background suppression is fundamental

#### Main sources of background:

- $\,\circ\,$  Accidental crossing of cosmic  $\mu$  's
- $\circ$  Accidental crossing of  $\mu$ 's from pileup (PU)
- $\circ$  Accidental crossing of  $\mu$ 's from QCD multijet events
- Material vertices, from interactions with detector material
- $\circ~$  Prompt (non-displaced)  $\mu 's$
- Known dimuon mass resonances
- In the following, will refer to erroneously formed DVs as "fake"

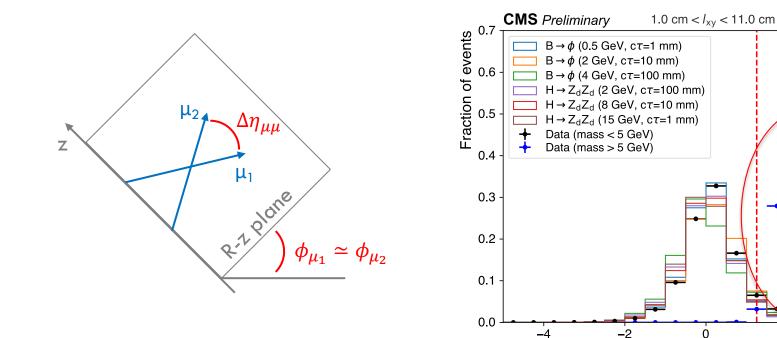

Dedicated selection criteria are applied to suppress background, while retaining BSM signal acceptance for wide range of signals

### Background suppression: event topology Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

- For BSM signal, expect dimuon system vector to be collinear with DV vector
- → Require  $\Delta \phi(\mu \mu, \vec{DV}) < 0.02 (0.1)$

18

- To suppress backgrounds with DV formed from accidental crossing of μ-trajectories
- \* Relaxed for  $2^{nd} \mu$ -pair
- To further suppress backgrounds with fake DVs from cosmic  $\mu$ 's,  $\mu$ 's from PU, or  $\mu$ 's from QCD, also require  $\Delta \phi(\mu_1, \mu_2) < 2.8$





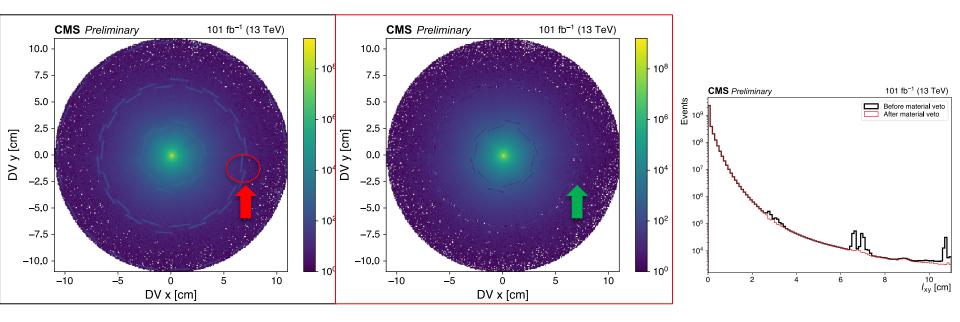

### Background suppression: vs. pileup muons Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

19

- Reject fake DV's from overlapping pileup (PU) μ-tracks
  - $\odot$  Require  $log_{10}(|\Delta\eta_{\mu\mu}|/|\Delta\varphi_{\mu\mu}|) < 1.25$ 
    - $\clubsuit$  Fake DV's from PU  $\mu\text{-tracks}$  overlapping in R- $\varphi$  plane and far in R-z plane





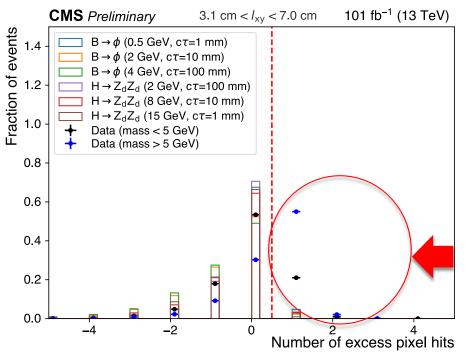

101 fb<sup>-1</sup> (13 TeV)

2

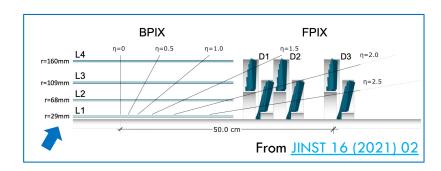
 $\log_{10} |\Delta \eta_{\mu\mu} / \Delta \phi_{\mu\mu}|$ 

# Background suppression: vs. material vertices

- <sup>20</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Reject DV's near pixel modules, to suppress material effects
  - DV is required to be at >0.05 cm from nearest pixel module
    - Position of module plane is extracted directly from detector geometry





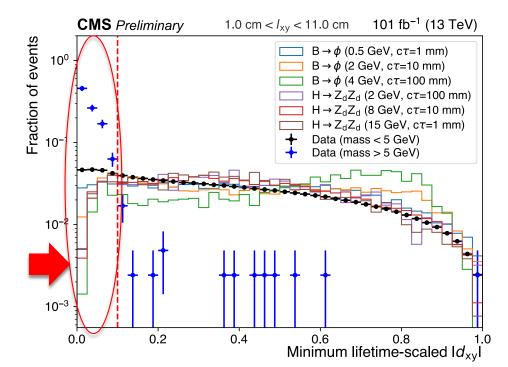


### Background suppression:

#### vs. prompt muons

- <sup>21</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Reject muons with # observed pixel hits > # expected pixel hits
  - To reject "fake" displaced muons
    - If a muon is truly displaced, no hits from beamspot to DV are expected
    - Only applied for  $I_{xy} > 3.5$  cm [i.e., beyond 1<sup>st</sup> pixel layer (L1)]



- 1. Propagate  $\mu$ 's outwards from DV
- 2. Count # compatible pixel modules
- $\rightarrow$  Reject  $\mu$ 's with excess pixel hits

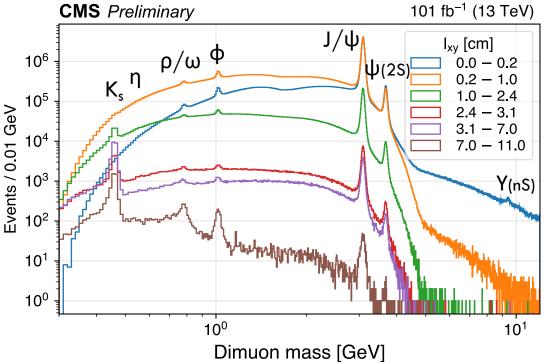



### Background suppression: explicit displacement requirement Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

- Require each muon to be displaced wrt. primary vertex (PV)
  - Require  $|\mathbf{d}_{xy}/\sigma_{xy}| > 2$  (1)

22

- $\clubsuit$  Relaxed for  $2^{nd}$   $\mu\text{-pair}$
- $\odot~{\sf Require~|d_{xy}|/(l_{xy}\,m_{\mu\mu}/p_{T}^{\mu\mu})}>0.1~(0.05)$ 
  - Impact parameter is scaled by lifetime, for <u>lifetime-independent</u> cut
  - \* Relaxed for  $2^{nd} \mu$ -pair




# Known dimuon mass resonances

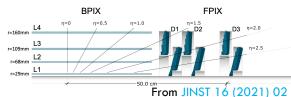


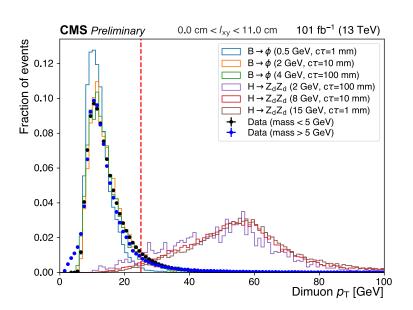
- <sup>23</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Known resonances are clearly visible using CMS scouting data!
  - $\clubsuit$  Here, shown in bins of transverse displacement ( $I_{xy}$ )
  - $\circ$  Known resonances, including those where  $\pi$ 's are mis-ID'd as  $\mu$ 's, are treated <u>as a signal</u>: mass and width are determined by a fit
  - $\rightarrow$  A range of  $\pm 5\sigma$  around each known resonant peak is **masked**,

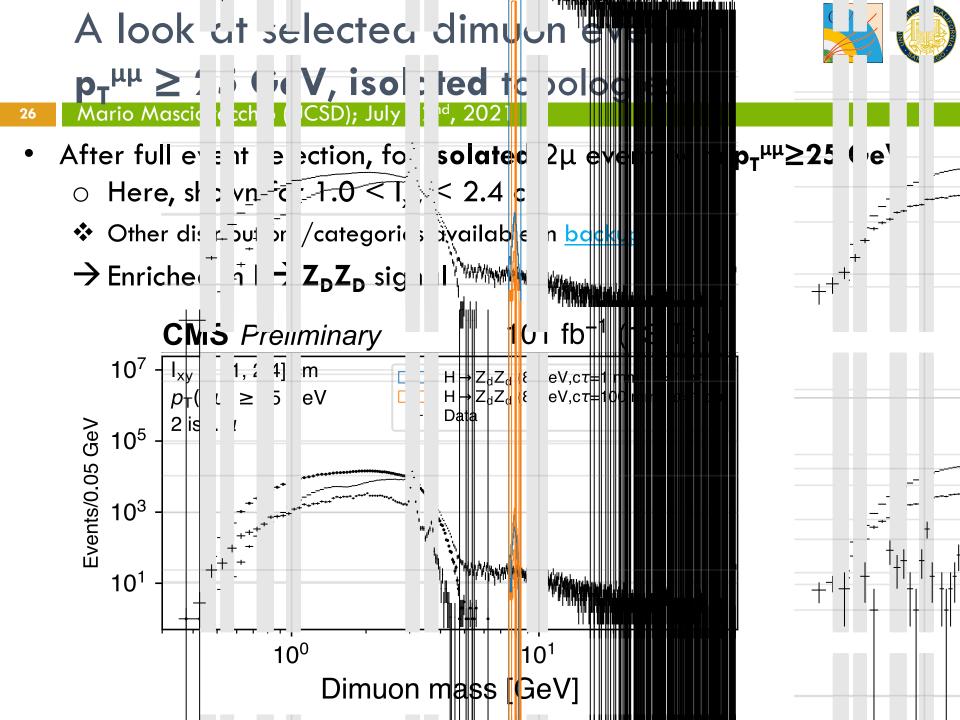
i.e., it is required to not overlap with any search mass window

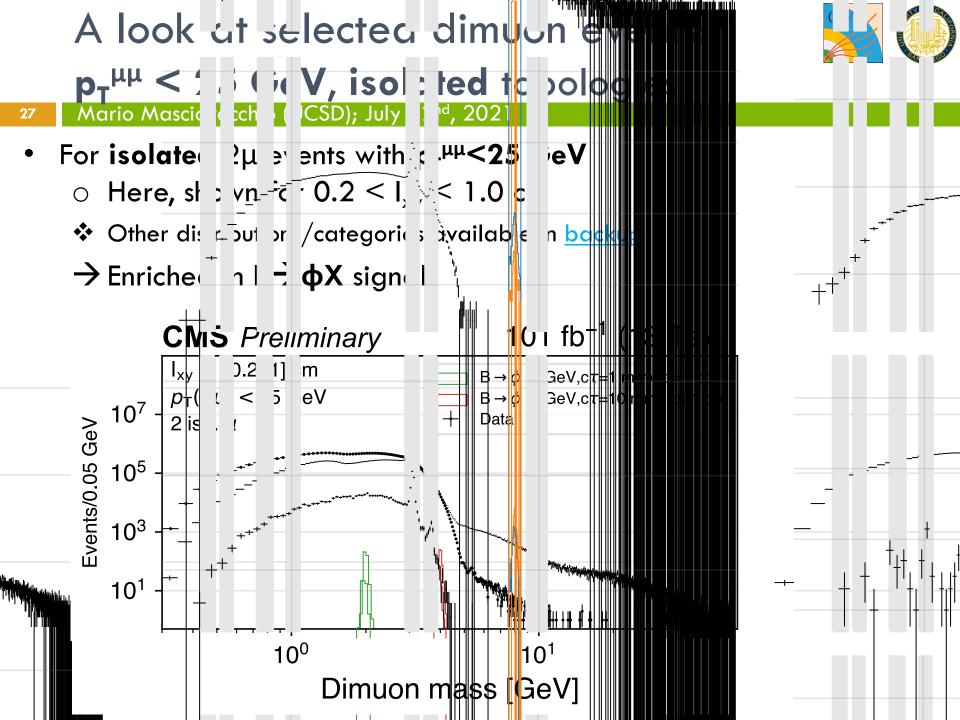


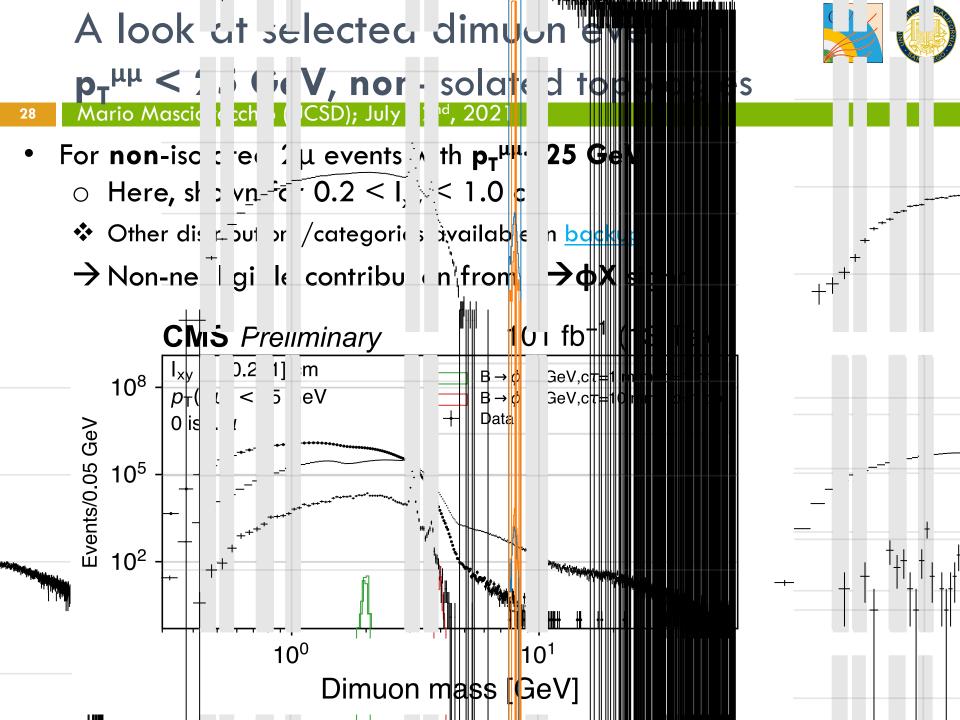
| 1 | Resonance    | Mean mass [GeV] | $\sigma$ [MeV] | Lower bound [GeV]  | Upper bound [GeV]  |
|---|--------------|-----------------|----------------|--------------------|--------------------|
| I |              |                 |                | (mean $-5\sigma$ ) | (mean $+5\sigma$ ) |
| I | Ks           | 0.46            | 5              | 0.43               | 0.49               |
| l | η            | 0.55            | 5              | 0.52               | 0.58               |
| I | ρ/ω          | 0.78            | 10             | 0.73               | 0.84               |
| I | $\phi(1020)$ | 1.02            | 10             | 0.96               | 1.08               |
| l | J/ψ          | 3.09            | 40             | 2.91               | 3.27               |
| I | $\Psi(2S)$   | 3.68            | 40             | 3.47               | 3.89               |
| I | Y(1S)        | 9.43            | 90             | 8.99               | 9.87               |
| I | Y(2S)        | 10.00           | 80             | 9.61               | 10.39              |
| 1 | Y(3S)        | 10.32           | 90             | 9.87               | 10.77              |


# Looking for a range of BSM signals





- 24 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- As we do <u>not</u> target a specific BSM signal model, we can <u>not</u> apply too specific selection criteria
- → We rather categorize events, in the attempt to maximize sensitivity to a wide range of BSM signal models
  - Aim at exploring a wide range of lifetime hypotheses
     Categorize events according to displacement (I<sub>xy</sub>)
  - Aim at exploring different **production topologies** 
    - > Categorize events according to  $\mathbf{p}_{T}^{\mu\mu}$
    - Categorize events according to muon isolation
  - Aim at exploring a wide range of mass hypotheses
     Slide over dimuon mass spectrum in each category
    - Slide over dimuon mass spectrum in each category


# Categorization of dimuon events

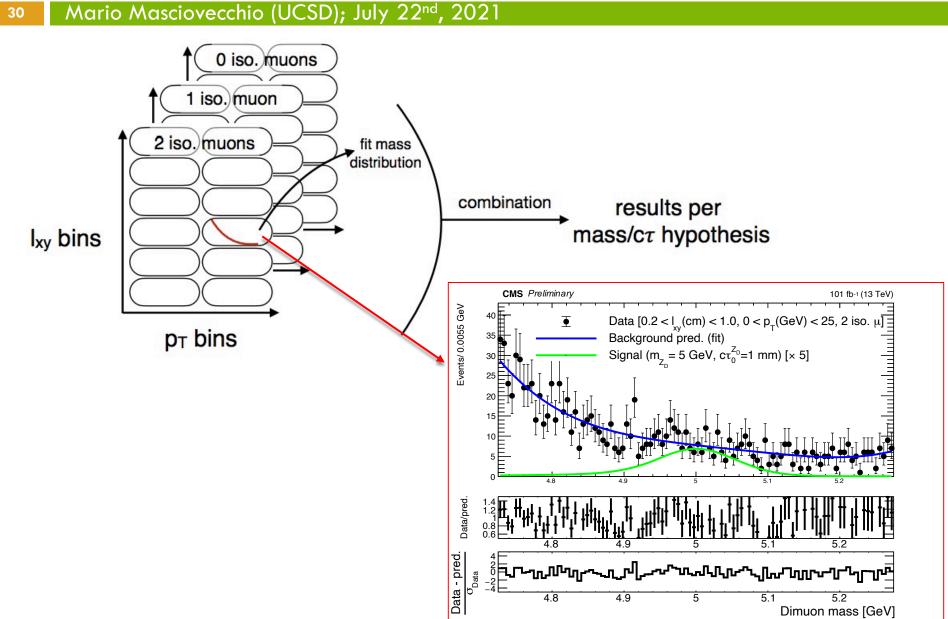

- <sup>25</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
  - After selection, categorize dimuon events in multi-dimensional bins:
    - O Ixy: [0.0, 0.2, 1.0, 2.4, 3.1, 7.0, 11.0] cm
       ✤ Driven by geometry of CMS pixel tracker
    - **p**<sub>T</sub><sup>μμ</sup>: [0, 25, ∞] GeV
      - ♦  $B \rightarrow \phi X$  signal is mostly at low  $p_T^{\mu\mu}$
      - $\bigstar h \rightarrow Z_D Z_D \text{ signal is mostly at high } p_T^{\mu\mu}$
    - Isolation:
      - 1. Fully isolated topologies
        - Both μ's are isolated
      - 2. Partially isolated topologies
        - Only one  $\mu$  is isolated
      - 3. Non-isolated topologies
        - No μ is isolated
    - ightarrow Total of 36 dimuon event categories







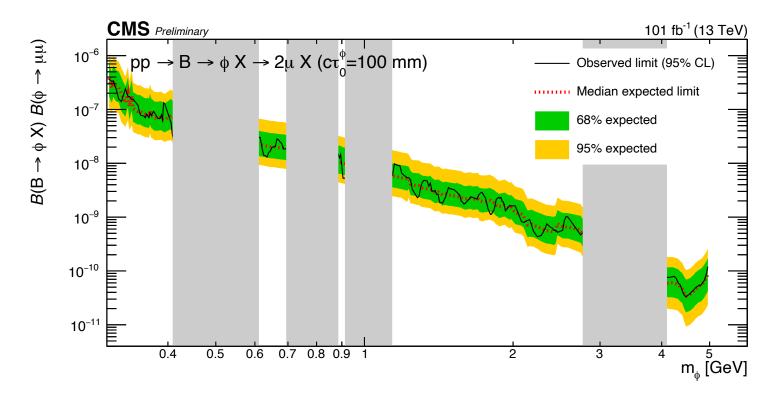





# Analysis strategy



- <sup>29</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- In each dimuon event category, slide over dimuon mass spectrum
  - $\circ~$  Steps and windows according to signal mass resolution (  $\sigma$  ):
    - σ is determined from signal fit (double Crystal Ball + Gauss)
      - ~1.1% of mass hypothesis and ~ constant
    - $\blacktriangleright$  Mass window = ±5  $\sigma$  around signal mass hypothesis
  - Simultaneous fit of dimuon mass spectrum in all categories
    - \* Use polynomial + exponential functional forms to fit  $m_{\mu\mu}$
    - Determine best order via (modified) F-test
      - Systematic uncertainty to account for choice (**discrete profiling**)
    - Evaluate potential bias via extensive bias tests
    - Cross-check goodness of fit (GOF) via GOF test
  - ightarrow Search for narrow resonant peak over background continuum


# Analysis strategy, with a cartoon



# Upper limits: $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$



- <sup>31</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Upper limits on  $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$ , for B inclusive production  $\circ$  Using only dimuon events



Other lifetime hypotheses are available in <u>backup</u>

Upper limits:  $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$ 



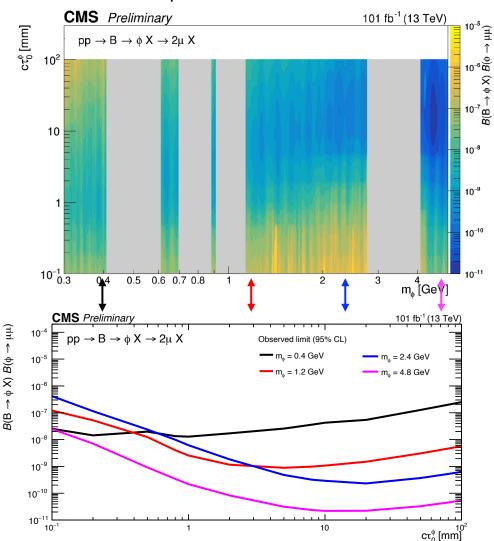

- How do we compare to others? Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

32

- LHCb set limits on exclusive topologies ( $B^0 \rightarrow \varphi K^{*0}$  or  $B^{\pm} \rightarrow \varphi K^{\pm}$ )
  - $\succ$  Rescale our inclusive upper limits by fraction of B<sup>0</sup>'s / B<sup>±</sup>'s

#### $\rightarrow$ Achieve better sensitivity than LHCb at increasing mass / lifetime



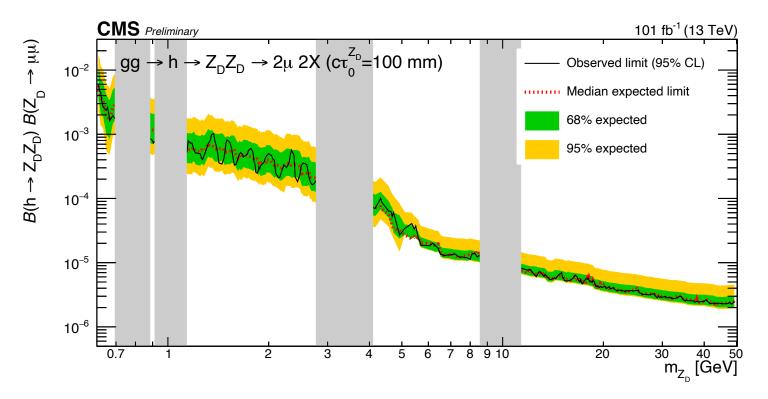

Other lifetime hypotheses are available in <u>backup</u>

### Upper limits on $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$ : $c\tau_{o}^{\phi} - m_{\phi}^{\phi} + vs. c\tau_{o}^{\phi}$ Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

- Limits at 95% CL on  $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$  in  $c\tau_0^{\phi} m_{\phi}$  plane and vs.  $c\tau_0^{\phi}$
- For B→ $\phi$ X signal, we probe m<sub> $\phi$ </sub> in range [0.3, 5] GeV and c $\tau_0^{\phi}$  in range [0.1, 100] mm

33

- ✤ Background is ~0 at dimuon mass
   ≳ 5 GeV, while it is larger at lower dimuon mass
- Background is lower at increasing displacement from interaction point
- At low m<sub>φ</sub>, signal acceptance decreases due to φ's boost
- > At low  $m_{\varphi}$ , constraints are stronger at low  $c\tau_0^{\varphi}$
- > At high  $m_{\varphi}$ , constraints are stronger at high  $c\tau_0^{\varphi}$








## Upper limits: $B(h \rightarrow Z_D Z_D) \cdot B(Z_D \rightarrow \mu \mu)$

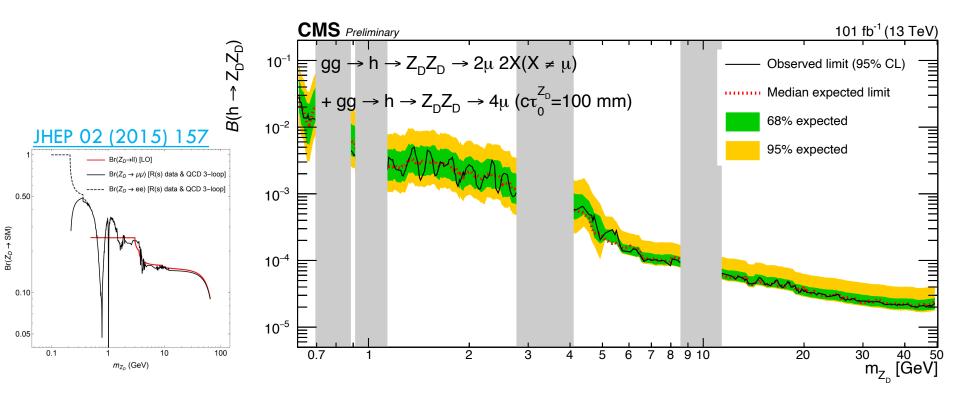
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
  - Upper limits on  $B(h \rightarrow Z_D Z_D) \cdot B(Z_D \rightarrow \mu \mu)$ 
    - $\circ$  Using only dimuon events
    - No assumption on  $B(Z_D \rightarrow \mu \mu)$



Other lifetime hypotheses are available in <u>backup</u>

Using events with two muon pairs (=4 $\mu$ )

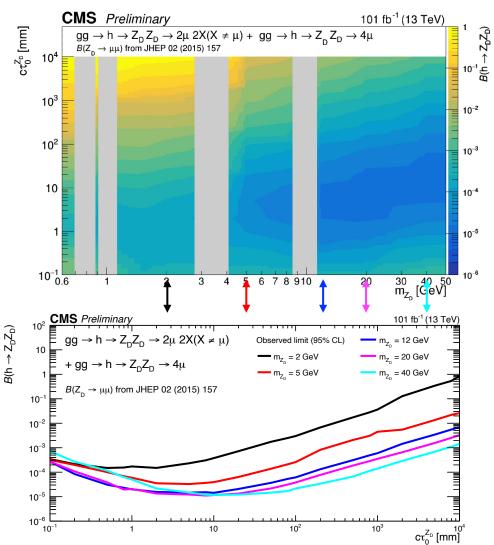



to further constrain  $h \rightarrow Z_D Z_D$  signal Mario Masciovecchio; July 22<sup>nd</sup>, 2021

- Background is ~0 at  $m_{\mu\mu} \gtrsim 5$  GeV in high  $p_T^{\mu\mu}$  isolated  $2\mu$  categories, while it increases at lower masses
- 4 $\mu$  channel is relatively free of background at low m\_{\mu\mu} wrt. 2 $\mu$
- $\rightarrow$  Can exploit selected  $4\mu$  events to further constrain  $h \rightarrow Z_D Z_D$  signal, despite acceptance penalty for  $h \rightarrow Z_D Z_D \rightarrow 4\mu$  due to  $B^2(Z_D \rightarrow \mu\mu)$ 
  - $\circ~$  Require all 4  $\mu 's$  to be isolated
  - $\,\circ\,\,$  Require  $m_{4\mu}$  to be consistent with Higgs boson (h): 115 <  $m_{4\mu}$  < 135 GeV
  - $\odot~$  Require  $\mid m_{\mu\mu,1} m_{\mu\mu,2} \mid / \left< m_{\mu\mu} \right> < 5\%$

#### $\rightarrow$ Observe exactly zero events in 4 $\mu$ event category

# Upper limits: $B(h \rightarrow Z_D Z_D)$


- <sup>36</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Upper limits on  $B(h \rightarrow Z_D Z_D)$ 
  - $\circ~$  Using both  $2\mu~and~4\mu~events$
  - Using  $B(Z_D \rightarrow \mu\mu)$  from <u>JHEP 02 (2015) 157</u>

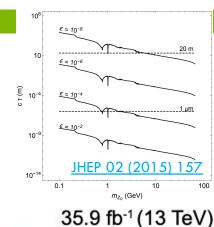


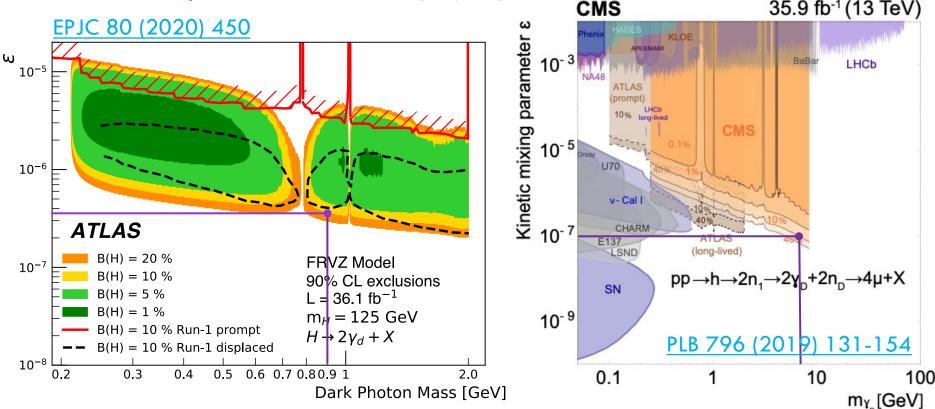
Other lifetime hypotheses are available in <u>backup</u>



- Limits at 95% CL on  $B(h \rightarrow Z_D Z_D)$  in  $c \tau_0^{Z_D} m_{Z_D}$  plane and vs.  $c \tau_0^{Z_D}$
- For  $h \rightarrow Z_D Z_D$  signal, we probe  $m_{Z_D}$  in range [0.6, 50] GeV and  $c\tau_0^{Z_D}$  in range [0.1, 10<sup>4</sup>] mm
- ✤ Background is ~0 at dimuon mass
   ≳ 5 GeV, while it is larger at lower dimuon mass
- Background is lower at increasing displacement from interaction point
- At low mz<sub>D</sub>, signal acceptance decreases due to Z<sub>D</sub>'s boost
- > At low  $m_{Z_D}$ , constraints are stronger at low  $c\tau_0^{Z_D}$
- > At high  $m_{Z_D}$ , constraints are stronger at intermediate  $c\tau_0^{Z_D}$







# Upper limits on $B(h \rightarrow Z_D Z_D)$ : $\varepsilon$ vs. $m_{Z_D}$



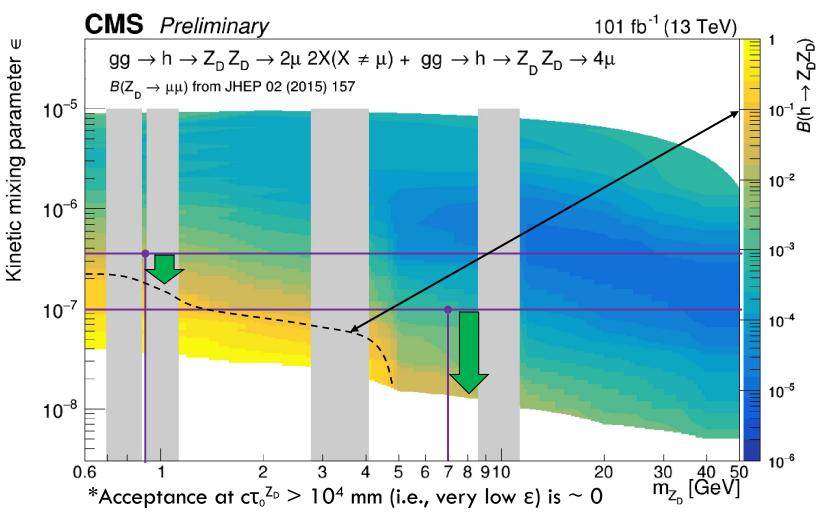
- A sample of previous results Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Previous results from <u>ATLAS</u> and <u>CMS</u>, at  $\sqrt{s} = 13$  TeV
  - >  $B(h \rightarrow Z_D Z_D) = 10\%$  at 90% CL:

- $\circ$  Exclude ε ≥ **3.5** · **10**<sup>-7</sup> for m<sub>Z<sub>D</sub></sub> ≥ 0.9 GeV (<u>ATLAS</u>)
- $\circ$  Exclude ε ≥ 10<sup>-7</sup> for m<sub>Z<sub>D</sub></sub> ≥ 7 GeV (<u>CMS</u>)
- ♦ A  $2^{nd}$  search by ATLAS covers  $m_{Z_D} \in [20, 60]$  GeV





# Upper limits on $B(h \rightarrow Z_D Z_D)$ : $\varepsilon$ vs. $m_{Z_D}$




- How do we compare to previous results?
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

39

Compare upper limits at 95% CL to 90% CL limits from <u>ATLAS</u> and <u>CMS</u>

 $\rightarrow$  Achieve stronger constraints by  $\sim 2x$  to  $\sim 10x$ 

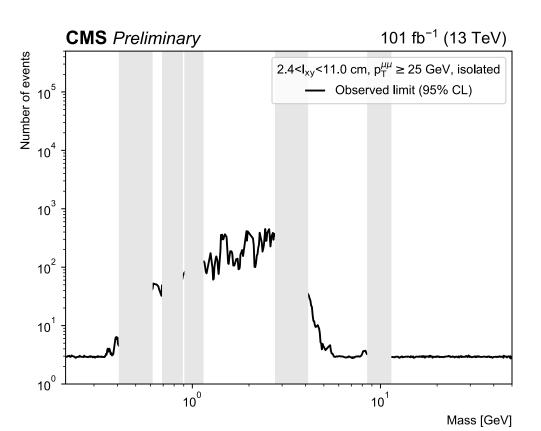


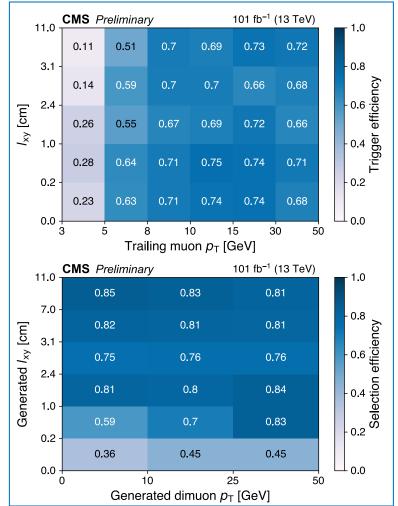
# Model-independent constraints



- 40 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- We provide model-independent upper limits on number of events in each of 20 non-exclusive dimuon aggregate regions
   → To favor reinterpretations of our results
  - CAVEAT: constraints are less stringent than full analysis

| <i>l</i> <sub>xy</sub> range [cm] | $p_{\mathrm{T}}^{\mu\mu}$ [GeV] | Number of isolated muons |
|-----------------------------------|---------------------------------|--------------------------|
| 0.2 - 11.0                        | $\geq 0$                        | $\geq 0$ 2               |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 1.0 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 2.4 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 3.0 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 7.0 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |


- Using scouting data, this search can probe otherwise/previously inaccessible phase-space
  - At low dimuon mass
  - With nonzero displacement
- Unprecedented sensitivity is achieved to range of BSM long-lived physics signatures
- → Usage and reinterpretation of results is (hopefully) valuable


# Model-independent constraints:



### an example

- 41 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- We provide model-independent upper limits on number of events in each of 20 non-exclusive dimuon aggregate regions
  - Together with efficiency maps
  - Instructions are available in <u>backup</u>





# Outlook, towards the LHC Run-3



- 42 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Extensive R&D activity on scouting triggers towards LHC Run-3
  - <u>Goal(s)</u>:
    - > Collect scouting data at **higher rate** than in Run-2
    - Improve object reconstruction as much as possible
    - > Enhance scouting data event content & trigger selection
    - $\rightarrow$  Extend range of accessible physics signatures further
  - How can we achieve such goals?
    - Accelerate event reconstruction
    - Use full detector information
    - Plan for CMS HLT farm to be heterogeneous (CPU+GPU)
    - $\rightarrow$  Perform faster <u>pixel track reconstruction on GPU</u>
    - → Use CMS Particle-Flow algorithm (with information from all CMS sub-detectors) to reconstruct all scouting physics objects

# Summary



- 43 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Have presented preliminary results from <u>CMS search EXO-20-014</u>: search for long-lived dimuon resonances in CMS scouting data
  - First search for long-lived BSM signatures using scouting data
  - Preliminary results have recently become <u>public</u>
  - Additional material for reinterpretation of results is available
- \* Scouting data allowed to access <u>otherwise inaccessible phase-space</u>
- Achieved most stringent constraints on a range of BSM signatures
- Paper is going to be submitted to JHEP, soon
  - $\circ~$  Additional material will be uploaded to HEPData
  - $\circ$   $\,$  In the meanwhile, please contact us for any input  $\,$
- <u>Outlook</u>, towards the LHC **Run-3** (and beyond):
- Scouting triggers have been extensively developed towards Run-3
   In terms of trigger selection and object reconstruction
- Unprecedented chance to search so far unexplored phase-space!



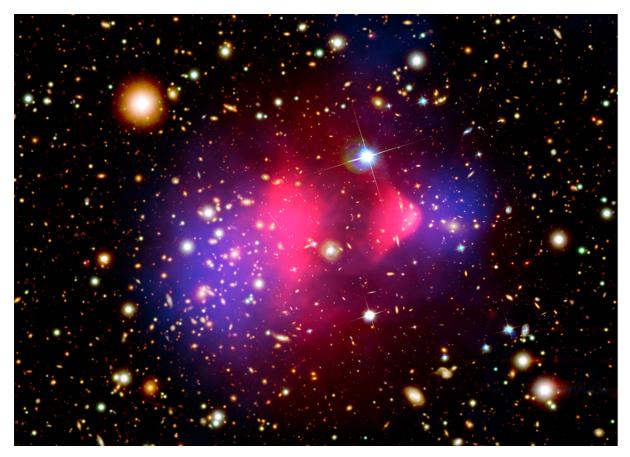
# The end... till the LHC Run-3

44 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

# THANK YOU!






Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

## The Standard Model: a story of success...



with its limitations – Dark matter

- 46 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- The SM fails to provide a particle candidate for **dark matter** (DM)
- From astrophysical and cosmological observations: DM  $\sim$ 22% of the Universe



#### CREDITS:

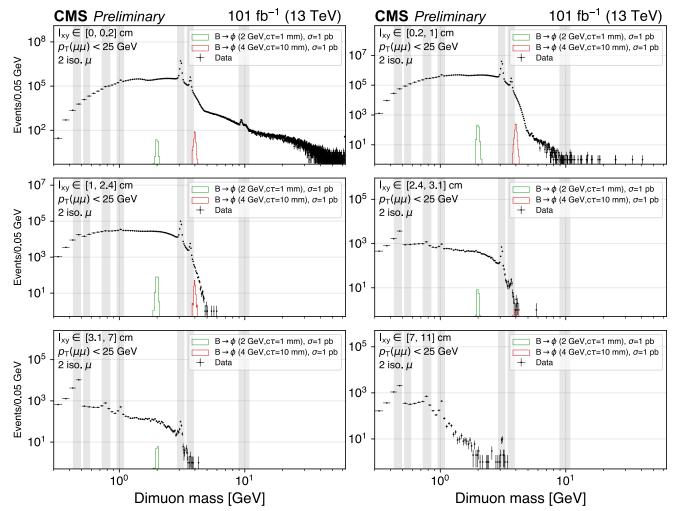
X-ray: <u>NASA</u>/CXC/M.Markevitch et al.; Optical: <u>NASA</u>/<u>STScl</u>; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: <u>NASA</u>/<u>STScl</u>; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

# A note on $B \rightarrow \phi X$ MC simulation



#### 47 Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

- $B \rightarrow \varphi X$  signal events are generated with PYTHIA 8.2  $\odot X = K^+, K^0, \varphi(ss), \Lambda, D_s^+$  for  $B = B^+, B^0, B_s, \Lambda_b, B_c$
- B signal MC is reweighted to FONLL
  - Absolute cross-section
  - $\circ$  p<sub>T</sub> spectrum of the B hadron


# A look at selected dimuon events:

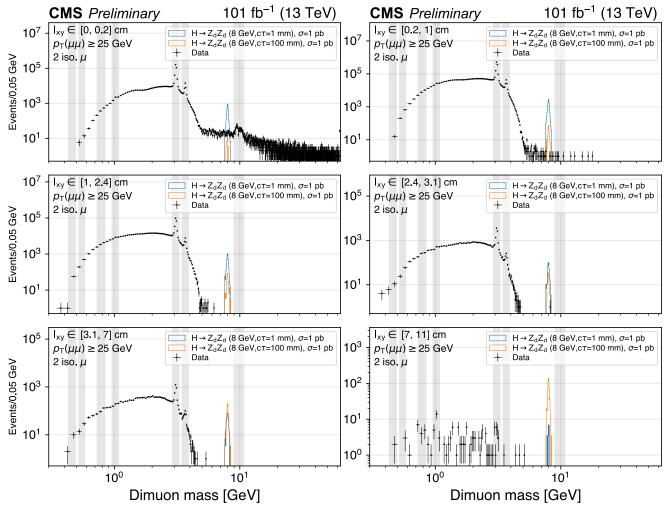


**p**<sub>T</sub><sup>μμ</sup> < **25 GeV**, isolated topologies [all] Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

For isolated 2μ events with p<sub>τ</sub><sup>μμ</sup><25 GeV</li>

### ○ Enriched in $B \rightarrow \phi X$ signal




## A look at selected dimuon events:



**p**<sub>T</sub><sup>μμ</sup> ≥ **25 GeV**, isolated topologies [all] Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

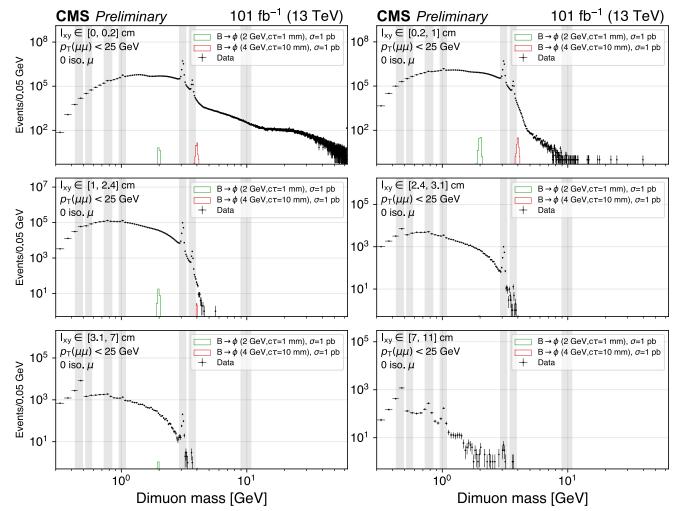
For isolated 2µ events with p<sub>τ</sub><sup>µµ</sup>≥25 GeV

### ○ Enriched in $h \rightarrow Z_D Z_D$ signal



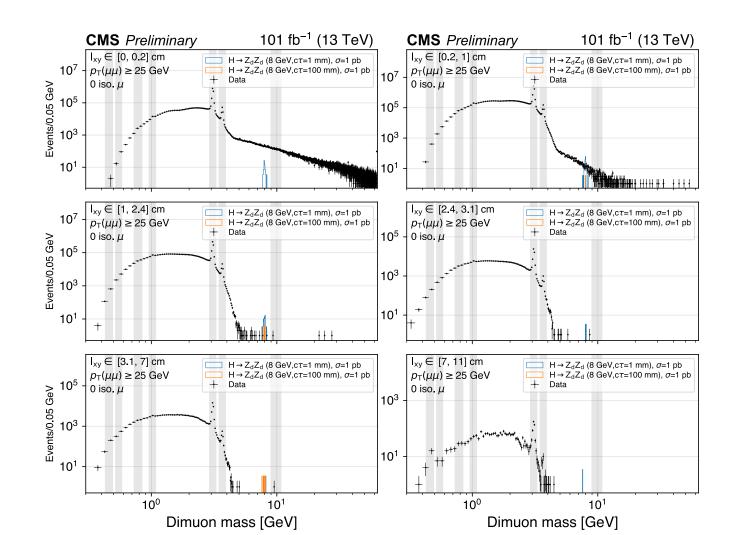
# A look at selected dimuon events:




 $p_T^{\mu\mu} < 25 \text{ GeV}$ , non-isolated topologies [all]

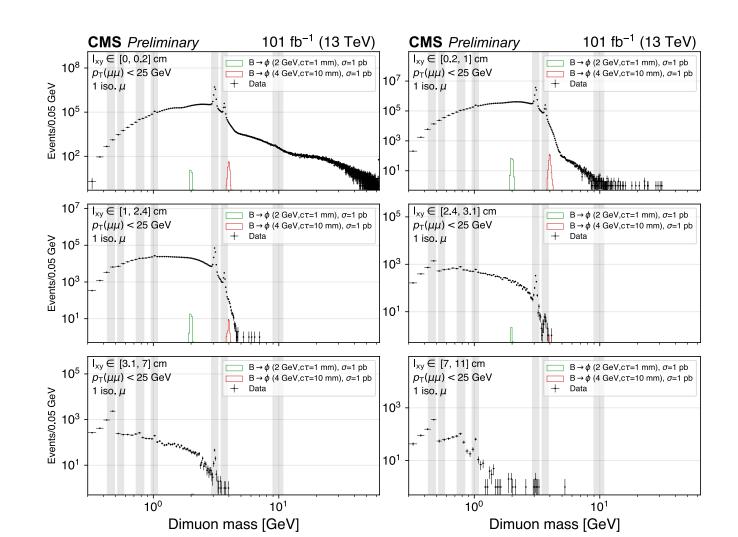
Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

50


• For **non**-isolated  $2\mu$  events with **p**<sub>T</sub><sup> $\mu\mu$ </sup> < 25 GeV

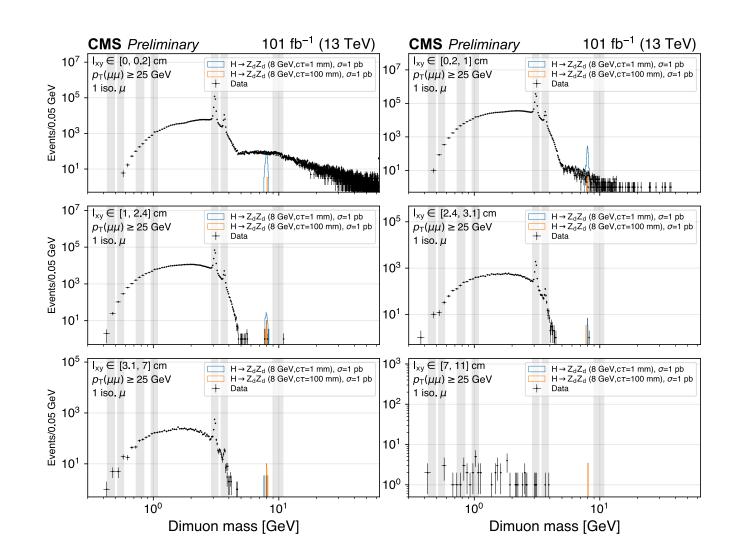
 $\circ$  Non-negligible contribution from B $\rightarrow \phi X$  signal




### A look at selected dimuon events: $p_T^{\mu\mu} \ge 25 \text{ GeV}$ , non-isolated topologies [all] Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021



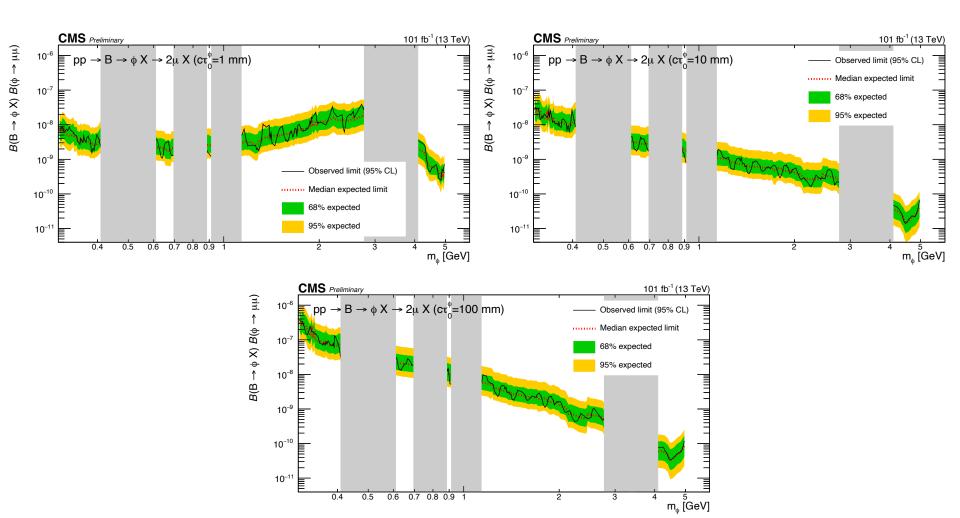



## A look at selected dimuon events: $p_T^{\mu\mu} < 25 \text{ GeV}$ , partially isolated topologies [all] Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

• For partially isolated  $2\mu$  events with  $p_T^{\mu\mu} < 25 \text{ GeV}$ 



## A look at selected dimuon events: $p_T^{\mu\mu} \ge 25 \text{ GeV}$ , partially isolated topologies [all] Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021


• For partially isolated  $2\mu$  events with  $p_T^{\mu\mu} \ge 25 \text{ GeV}$ 



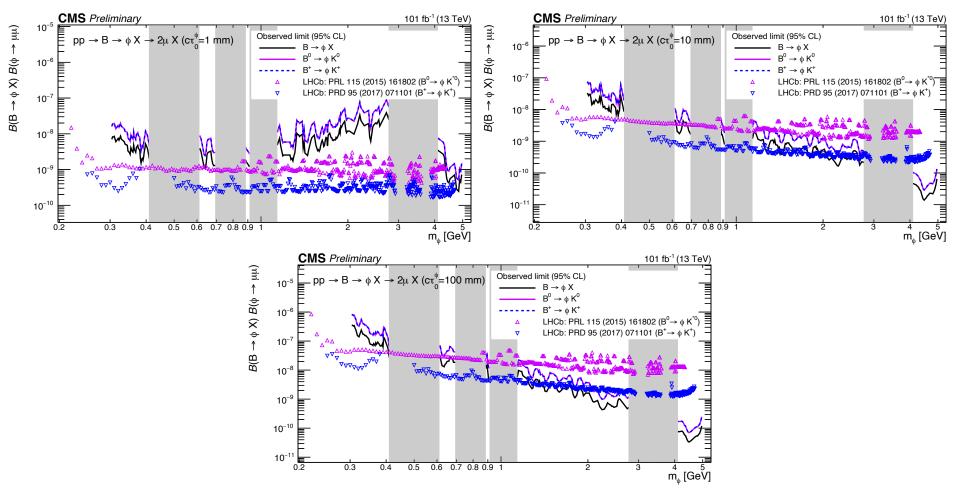


## Upper limits: $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$ [all]

- 54
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Inclusive limits on  $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$
- Using only dimuon events



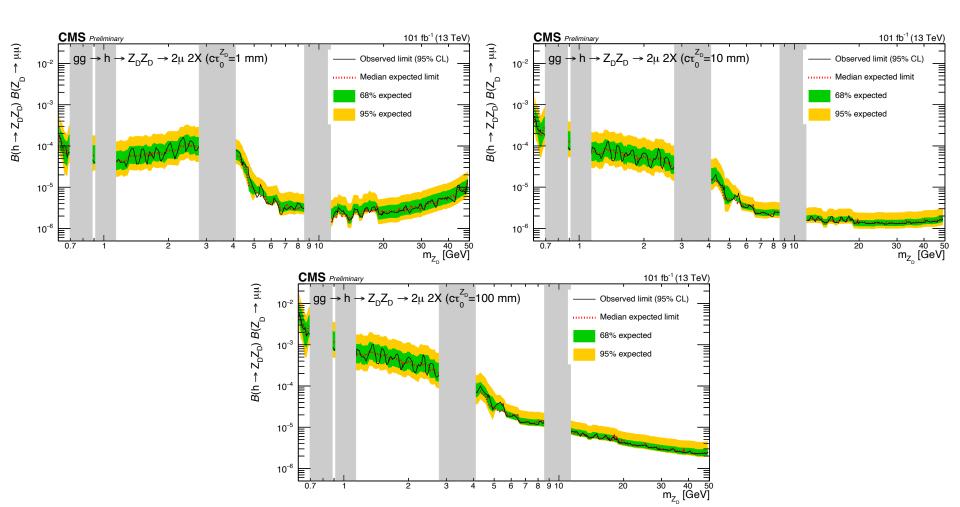
Upper limits:  $B(B \rightarrow \phi X) \cdot B(\phi \rightarrow \mu \mu)$ 




- How do we compare to others? [all]
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

55

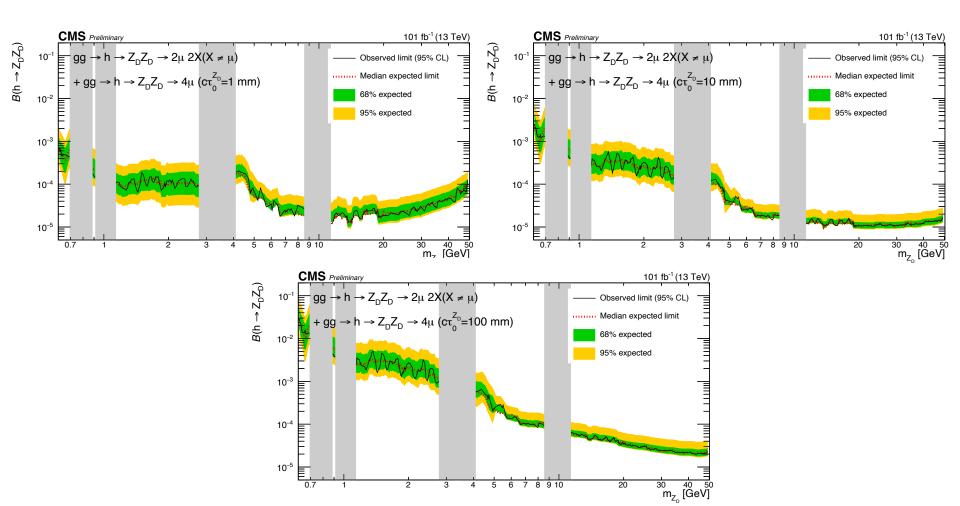
- LHCb set limits on exclusive topologies ( $B^0 \rightarrow \varphi K^{*0}$  or  $B^{\pm} \rightarrow \varphi K^{\pm}$ )
  - $\blacktriangleright$  Rescale our inclusive upper limits by fraction of B<sup>0</sup>'s / B<sup>±</sup>'s


ightarrow Achieve better sensitivity than LHCb at increasing mass / lifetime



# Upper limits: $B(h \rightarrow Z_D Z_D) \cdot B(Z_D \rightarrow \mu\mu)$ [all]




- <sup>56</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Using only dimuon events
- ♦ No assumption on  $B(Z_D \rightarrow \mu \mu)$



## Upper limits: $B(h \rightarrow Z_D Z_D)$ [all]



- <sup>57</sup> Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- Using both dimuon and 4µ events
- ♦ Using  $B(Z_D \rightarrow \mu\mu)$  from <u>JHEP 02 (2015) 157</u>



# Material for reinterpretation:

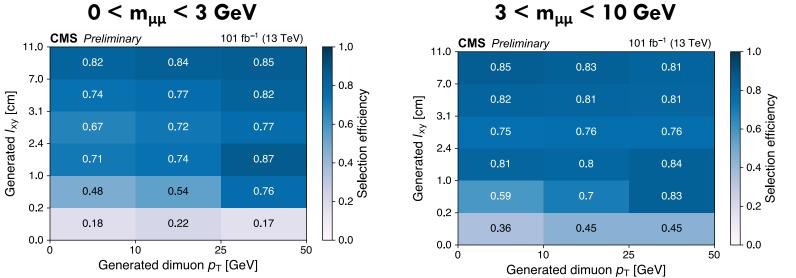
instructions

58

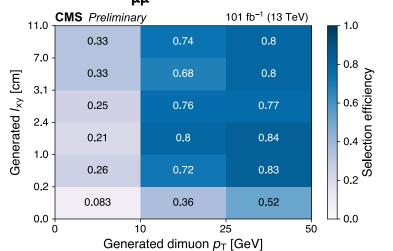
- Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021
- We provide model-independent <u>upper limits on number of events</u> in each of 20 non-exclusive dimuon **aggregate regions** O Together with efficiency maps

| <i>l</i> <sub>xy</sub> range [cm] | $p_{\mathrm{T}}^{\mu\mu}$ [GeV] | Number of isolated muons |
|-----------------------------------|---------------------------------|--------------------------|
| 0.2 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 1.0 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 2.4 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 3.0 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |
| 7.0 - 11.0                        | $\geq 0$                        | $\geq 0$<br>2            |
|                                   | $\geq 25$                       | $\geq 0$ 2               |

### How to use:

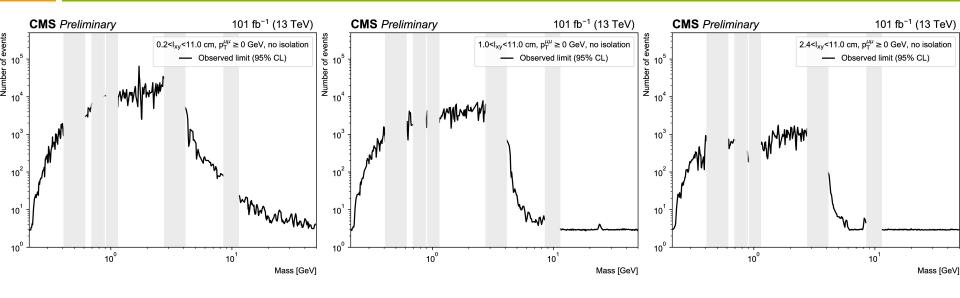

- Select "best" aggregate signal region, based on signal of interest
- 2. Evaluate trigger selection efficiency
- 3. Evaluate <u>signal selection efficiency</u>
- 4. Use selected aggregate signal region and selection efficiency for reinterpretation of our results

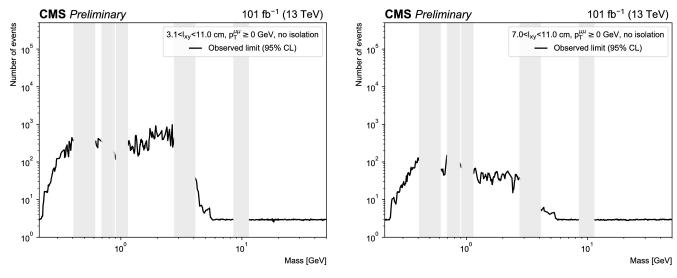



## Material for reinterpretation:

#### selection efficiency maps Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021

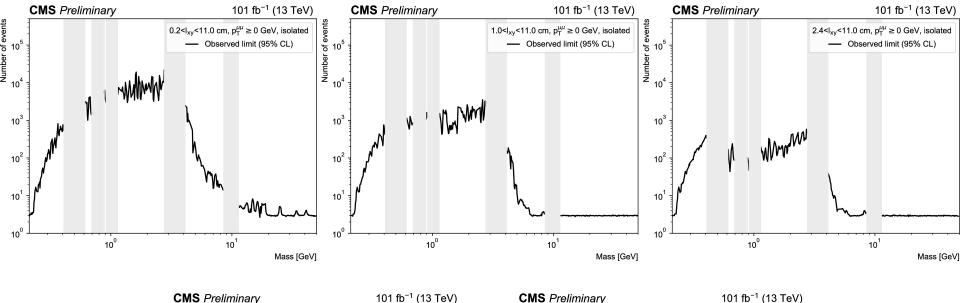
59

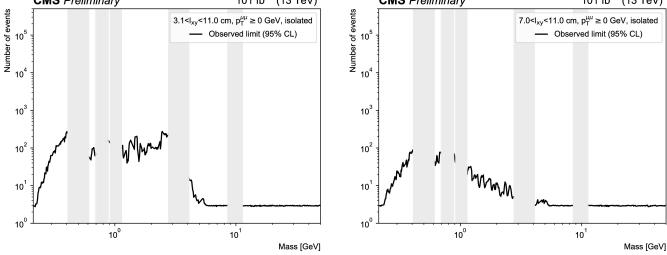




 $m_{\mu\mu} > 10 \; \text{GeV}$ 



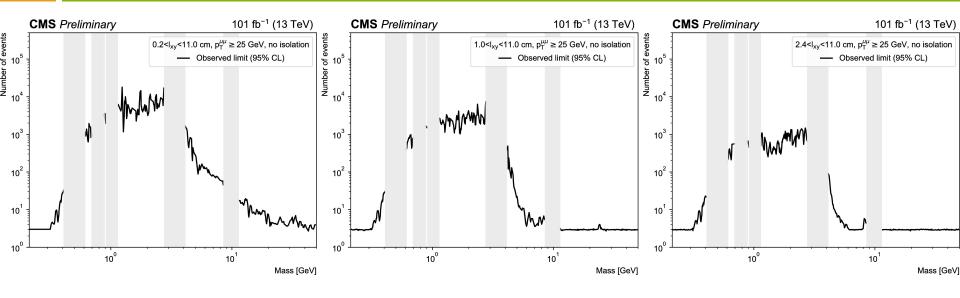
# Model-independent upper limits: no $\mu$ isolation requirement, $p_T{}^{\mu\mu} \geq 0~GeV$

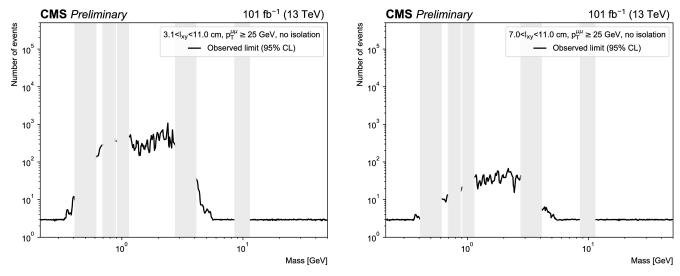

#### Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021





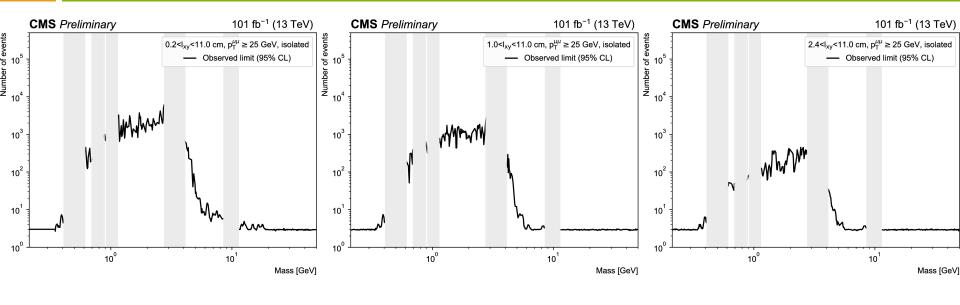

# Model-independent upper limits: with two isolated $\mu$ s, $p_T^{\mu\mu} \ge 0$ GeV

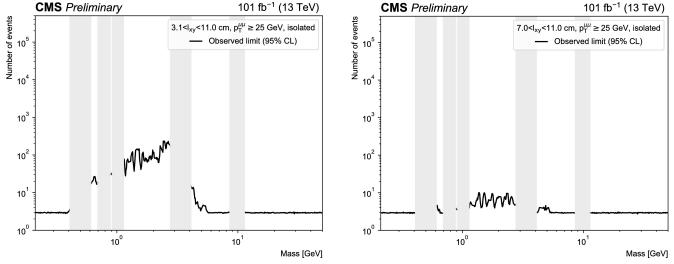

#### Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021






# Model-independent upper limits: no $\mu$ isolation requirement, $p_T^{\mu\mu} \ge 25 \text{ GeV}$


#### Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021






# Model-independent upper limits: with two isolated $\mu$ s, $p_T^{\mu\mu} \ge 25 \text{ GeV}$

#### Mario Masciovecchio (UCSD); July 22<sup>nd</sup>, 2021





