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Connections to astrophysics

⦿ Nucleosynthesis

○ Big-bang

○ Cosmic rays

⦿ Neutron stars

○ Birth (supernovae explosions)

○ Life (NS properties: mass, radius, cooling, …)

○ Death (neutron star mergers)

○ Stellar burning

○ Supernovae explosions

○Neutron stars mergers



Inputs and constraints

Nuclear physics Astrophysics

needed for accurate modelling

provides experimental constraints

○ Properties of finite nuclei (BE, spectra, decay rates, scattering cross sections, …)

○ EoS of nuclear matter (P or E vs. density for different proton fractions and temperatures)

➝  Ab initio calculations of nuclear matter available

➝  Many nuclei of interest are currently out of reach for ab initio calculations

○ Very neutron-rich nuclei

○ Nuclear matter at high densities (and low temperatures)

⦿ Constraints on nuclear properties under extreme conditions (unattainable on Earth)

➝  Complementary to what accessed in high-energy experiments (low density- high T)



What are neutron stars?

⦿ Neutron stars are different things for different people

○ For astronomers, they are tiny stars visible as radio pulsars or sources of X- or γ-rays

○ For particle physicists, they are neutrino sources and probably the only place in the universe 
where deconfined quark matter may be abundant

○ For cosmologists, they are almost black holes

○ For nuclear physicists, they are the largest (neutron-rich) nuclei in the universe (A = 1056-1057; 
M ~ 1-2 M⊙; R ~ 10 km)

[Credits: I. Vidaña]

⦿ However everybody agrees on the fact that they are a type of stellar compact remnant originating 
    from the gravitational collapse of a massive star (8 - 25 M⊙) during a supernova event



Birth of a neutron star



Neutron stars are a type of stellar 
compact remnant that can result from 
the gravitational collapse of a massive 
star (8 M#< M < 25 M#) during a Type 
II, Ib or Ic supernova event. 

  But everybody agrees that   … 



Neutron stars are a type of stellar 
compact remnant that can result from 
the gravitational collapse of a massive 
star (8 M#< M < 25 M#) during a Type 
II, Ib or Ic supernova event. 

  But everybody agrees that   … 

Modelling of supernova explosions involves nuclear physics ingredients 
(EoS across a large range of densities, proton fraction and temperatures)

➝ Complex multi-scale modelling, hinders feedback on nuclear physics

White dwarf: stabilised by degeneracy pressure of electrons

Neutron star: stabilised by degeneracy pressure of neutrons



From a minimal model…

○ Charge neutrality

○ Beta equilibrium

○ Conservation of total baryon number
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➝  Even a small charge unbalance would make the star blow up

➝  Neutrinos fly out of the star shortly after they are produced

⦿ Minimal constituents

⦿ Three simple conditions must be satisfied

Charge-neutral β-equilibrium matter

➝ Proton fraction

○ Simple estimate (non-interacting nucleons)   3%

○ More refined calculations  11%

○ Neutrons (to generate the needed degeneracy pressure stabilising the star)
○ Protons & electrons (neutrons do decay  ➝  β-equilibrium needed)



…to, possibly, a very rich structure

[Figure: F. Weber]



Neutron star crust

[Figure: …]

Crust of a Neutron Star 

Surface Interior 



TOV equations

⦿ Basic description of neutron-star structure

○ Hydrostatic equilibrium equations

+ General relativity corrections necessary given the compactness of these objects

Tolman-Oppenheimer-Volkoff (TOV) equations

Tews QMC Methods for Astrophysical Applications

stars. I will also discuss how the combination of these methods
with systematic interactions from chiral EFT allows us to
extract information on the nuclear EOS in a reliable fashion.
This contribution is organized as follows. In section 2, I will
review neutron stars and the most important recent neutron-star
observations. In section 3, I will address how to study the nuclear
matter in neutron stars using Quantum Monte Carlo methods
and modern nuclear interactions. In section 4, I will then show
results and explain how to use these results to study neutron stars.
Finally, I will summarize in section 5.

2. NEUTRON STARS AND THEIR
PROPERTIES

In this section, I will review neutron stars and their
relevant equations, as well as the most important recent
neutron-star observations.

2.1. Describing Neutron Stars
Neutron stars are one of the final stages of stellar evolution.
While low-mass stars like our sun end their life as white dwarfs,
neutron stars are remnants of core-collapse supernova explosions
of medium-mass stars in the range of 8–20 solar masses (heavier
stars will collapse to black holes; see, e.g., Fryer [22]). Hence,
neutron stars are the most compact stars in the Universe.

While stars in their burning stages are supported against
gravitational collapse by the thermal energy released in nuclear
fusion, these processes have stopped in white dwarfs and neutron
stars. White dwarfs are the remaining cores of lighter stars that
have shed their outer layers. They typically consist of Carbon
and/or Oxygen, and have masses of the order of the mass of
our sun compressed to the size of a typical planet, with radii
of the order of several 1, 000 km. Due to the resulting densities
and the fermionic nature of electrons, the electrons in white
dwarfs form a degenerate gas. It costs energy to compress this
electron gas, leading to a degeneracy pressure exerted outwards
that balances the gravitational force that otherwise would collapse
the star. Such a degenerate electron gas can typically support
a white dwarf with a maximum mass of ∼ 1.4M⊙, the so-
called Chandrasekhar mass [23]. If a white dwarf accretes mass
and surpasses this limit, the electron pressure does not suffice
anymore to stabilize the star against gravitational collapse. This is
what happens in core-collapse supernovae of heavier stars, where
the white-dwarf-like core collapses due to continued accretion
of fusion products. This collapse then triggers the supernova
explosion of the star.

As a consequence of the core collapse, the densities of
the electrons and nuclei increase dramatically, leading to an
increasing Fermi energy for the electrons. At some point, it
becomes energetically favorable for protons in the core to absorb
electrons and form neutrons, lowering the proton fraction. As the
collapse continues, at the largest densities in the core neutron-
rich nuclei begin to dissolve into free nucleons, mostly neutrons.
The collapse is halted when the core reaches radii of the order
O(10) km. The abrupt stop of the contraction causes a so-
called bounce that ultimately leads to a supernova explosion and

ejects the remaining outer layers of the star, leaving a dense
remnant. Due to their small proton fraction of the order of 5–
10%, these young stars are called proto-neutron stars. They will
cool over time and form cold neutron stars. Similar to white
dwarfs, neutron stars are stabilized against gravitational collapse
by the degeneracy pressure of their fermionic constituents, the
neutrons. The discovery of the neutron by Chadwick [24] led to
the postulation of neutron stars [25] long before their discovery
in the 1960s [26, 27].

To investigate how the degeneracy pressure exerted by the
neutron gas stabilizes neutron stars, one needs to start from
the equations that describe the neutron-star structure. A less
compact cold star (e.g., a white dwarf) would be described by the
following structure equations:

dP

dr
= −

Gm(r)ϵ(r)

r2
,

dm

dr
= 4πϵ(r)r2 , (1)

where P is the pressure, G is the gravitational constant, m is the
mass, ϵ is the energy density, and r is the radial coordinate. The
first equation describes hydrostatic equilibrium and states that
the pressure exerted outwards has tomatch the gravitational force
acting inwards. The second equation is the conservation of mass.
These equations are derived within Newtonian gravity, but since
neutron stars are very compact, the structure equations need to
be modified by general-relativistic extensions of Equation (1).
These are the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [31, 32]:

dP

dr
= −G

m(r)ϵ(r)

r2

(

1+
4πr3P

m(r)c2

) (

1+
P

ϵ(r)c2

)

×
(

1−
2Gm(r)

rc2

)−1

(2)

dm

dr
= 4πϵ(r)r2 ,

where c is the speed of light. In the following, we will write all
equations in natural units and set c = 1. The energy density for
non-relativistic nucleonic matter is given by

ϵ = n ·
(

mN +
E

A
(n, x)

)

. (3)

Here, n is the baryon number density and mN the nucleon mass.
The first term of the energy density reflects the rest-mass density,
while the second term is the specific internal energy.

To solve the TOV equations, the only required input is a
relation between the pressure P and the energy density ϵ. This
relation is the EOS, P = P(ϵ). With the EOS as input, the
TOV equations can be solved by integrating from the stars center
at r = 0 (where P = Pc and m = 0) to the stars edge at
radius R (where P = 0 and m(R) = M). Hereby, the central
pressure Pc is an input parameter, that determines the mass M
and the radius R for the given EOS. Solving the TOV equations
for many different values for Pc maps out the mass-radius (MR)
relation, that describes the radius of a NS for a given mass, see
Figure 1 for an example EOS. The EOS and the resulting MR
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stars. I will also discuss how the combination of these methods
with systematic interactions from chiral EFT allows us to
extract information on the nuclear EOS in a reliable fashion.
This contribution is organized as follows. In section 2, I will
review neutron stars and the most important recent neutron-star
observations. In section 3, I will address how to study the nuclear
matter in neutron stars using Quantum Monte Carlo methods
and modern nuclear interactions. In section 4, I will then show
results and explain how to use these results to study neutron stars.
Finally, I will summarize in section 5.

2. NEUTRON STARS AND THEIR
PROPERTIES

In this section, I will review neutron stars and their
relevant equations, as well as the most important recent
neutron-star observations.

2.1. Describing Neutron Stars
Neutron stars are one of the final stages of stellar evolution.
While low-mass stars like our sun end their life as white dwarfs,
neutron stars are remnants of core-collapse supernova explosions
of medium-mass stars in the range of 8–20 solar masses (heavier
stars will collapse to black holes; see, e.g., Fryer [22]). Hence,
neutron stars are the most compact stars in the Universe.

While stars in their burning stages are supported against
gravitational collapse by the thermal energy released in nuclear
fusion, these processes have stopped in white dwarfs and neutron
stars. White dwarfs are the remaining cores of lighter stars that
have shed their outer layers. They typically consist of Carbon
and/or Oxygen, and have masses of the order of the mass of
our sun compressed to the size of a typical planet, with radii
of the order of several 1, 000 km. Due to the resulting densities
and the fermionic nature of electrons, the electrons in white
dwarfs form a degenerate gas. It costs energy to compress this
electron gas, leading to a degeneracy pressure exerted outwards
that balances the gravitational force that otherwise would collapse
the star. Such a degenerate electron gas can typically support
a white dwarf with a maximum mass of ∼ 1.4M⊙, the so-
called Chandrasekhar mass [23]. If a white dwarf accretes mass
and surpasses this limit, the electron pressure does not suffice
anymore to stabilize the star against gravitational collapse. This is
what happens in core-collapse supernovae of heavier stars, where
the white-dwarf-like core collapses due to continued accretion
of fusion products. This collapse then triggers the supernova
explosion of the star.

As a consequence of the core collapse, the densities of
the electrons and nuclei increase dramatically, leading to an
increasing Fermi energy for the electrons. At some point, it
becomes energetically favorable for protons in the core to absorb
electrons and form neutrons, lowering the proton fraction. As the
collapse continues, at the largest densities in the core neutron-
rich nuclei begin to dissolve into free nucleons, mostly neutrons.
The collapse is halted when the core reaches radii of the order
O(10) km. The abrupt stop of the contraction causes a so-
called bounce that ultimately leads to a supernova explosion and

ejects the remaining outer layers of the star, leaving a dense
remnant. Due to their small proton fraction of the order of 5–
10%, these young stars are called proto-neutron stars. They will
cool over time and form cold neutron stars. Similar to white
dwarfs, neutron stars are stabilized against gravitational collapse
by the degeneracy pressure of their fermionic constituents, the
neutrons. The discovery of the neutron by Chadwick [24] led to
the postulation of neutron stars [25] long before their discovery
in the 1960s [26, 27].

To investigate how the degeneracy pressure exerted by the
neutron gas stabilizes neutron stars, one needs to start from
the equations that describe the neutron-star structure. A less
compact cold star (e.g., a white dwarf) would be described by the
following structure equations:

dP

dr
= −

Gm(r)ϵ(r)

r2
,

dm

dr
= 4πϵ(r)r2 , (1)

where P is the pressure, G is the gravitational constant, m is the
mass, ϵ is the energy density, and r is the radial coordinate. The
first equation describes hydrostatic equilibrium and states that
the pressure exerted outwards has tomatch the gravitational force
acting inwards. The second equation is the conservation of mass.
These equations are derived within Newtonian gravity, but since
neutron stars are very compact, the structure equations need to
be modified by general-relativistic extensions of Equation (1).
These are the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [31, 32]:
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)

×
(

1−
2Gm(r)

rc2

)−1

(2)

dm

dr
= 4πϵ(r)r2 ,

where c is the speed of light. In the following, we will write all
equations in natural units and set c = 1. The energy density for
non-relativistic nucleonic matter is given by

ϵ = n ·
(

mN +
E

A
(n, x)

)

. (3)

Here, n is the baryon number density and mN the nucleon mass.
The first term of the energy density reflects the rest-mass density,
while the second term is the specific internal energy.

To solve the TOV equations, the only required input is a
relation between the pressure P and the energy density ϵ. This
relation is the EOS, P = P(ϵ). With the EOS as input, the
TOV equations can be solved by integrating from the stars center
at r = 0 (where P = Pc and m = 0) to the stars edge at
radius R (where P = 0 and m(R) = M). Hereby, the central
pressure Pc is an input parameter, that determines the mass M
and the radius R for the given EOS. Solving the TOV equations
for many different values for Pc maps out the mass-radius (MR)
relation, that describes the radius of a NS for a given mass, see
Figure 1 for an example EOS. The EOS and the resulting MR

Frontiers in Physics | www.frontiersin.org 3 May 2020 | Volume 8 | Article 153

Tews QMC Methods for Astrophysical Applications

stars. I will also discuss how the combination of these methods
with systematic interactions from chiral EFT allows us to
extract information on the nuclear EOS in a reliable fashion.
This contribution is organized as follows. In section 2, I will
review neutron stars and the most important recent neutron-star
observations. In section 3, I will address how to study the nuclear
matter in neutron stars using Quantum Monte Carlo methods
and modern nuclear interactions. In section 4, I will then show
results and explain how to use these results to study neutron stars.
Finally, I will summarize in section 5.

2. NEUTRON STARS AND THEIR
PROPERTIES

In this section, I will review neutron stars and their
relevant equations, as well as the most important recent
neutron-star observations.

2.1. Describing Neutron Stars
Neutron stars are one of the final stages of stellar evolution.
While low-mass stars like our sun end their life as white dwarfs,
neutron stars are remnants of core-collapse supernova explosions
of medium-mass stars in the range of 8–20 solar masses (heavier
stars will collapse to black holes; see, e.g., Fryer [22]). Hence,
neutron stars are the most compact stars in the Universe.

While stars in their burning stages are supported against
gravitational collapse by the thermal energy released in nuclear
fusion, these processes have stopped in white dwarfs and neutron
stars. White dwarfs are the remaining cores of lighter stars that
have shed their outer layers. They typically consist of Carbon
and/or Oxygen, and have masses of the order of the mass of
our sun compressed to the size of a typical planet, with radii
of the order of several 1, 000 km. Due to the resulting densities
and the fermionic nature of electrons, the electrons in white
dwarfs form a degenerate gas. It costs energy to compress this
electron gas, leading to a degeneracy pressure exerted outwards
that balances the gravitational force that otherwise would collapse
the star. Such a degenerate electron gas can typically support
a white dwarf with a maximum mass of ∼ 1.4M⊙, the so-
called Chandrasekhar mass [23]. If a white dwarf accretes mass
and surpasses this limit, the electron pressure does not suffice
anymore to stabilize the star against gravitational collapse. This is
what happens in core-collapse supernovae of heavier stars, where
the white-dwarf-like core collapses due to continued accretion
of fusion products. This collapse then triggers the supernova
explosion of the star.

As a consequence of the core collapse, the densities of
the electrons and nuclei increase dramatically, leading to an
increasing Fermi energy for the electrons. At some point, it
becomes energetically favorable for protons in the core to absorb
electrons and form neutrons, lowering the proton fraction. As the
collapse continues, at the largest densities in the core neutron-
rich nuclei begin to dissolve into free nucleons, mostly neutrons.
The collapse is halted when the core reaches radii of the order
O(10) km. The abrupt stop of the contraction causes a so-
called bounce that ultimately leads to a supernova explosion and

ejects the remaining outer layers of the star, leaving a dense
remnant. Due to their small proton fraction of the order of 5–
10%, these young stars are called proto-neutron stars. They will
cool over time and form cold neutron stars. Similar to white
dwarfs, neutron stars are stabilized against gravitational collapse
by the degeneracy pressure of their fermionic constituents, the
neutrons. The discovery of the neutron by Chadwick [24] led to
the postulation of neutron stars [25] long before their discovery
in the 1960s [26, 27].

To investigate how the degeneracy pressure exerted by the
neutron gas stabilizes neutron stars, one needs to start from
the equations that describe the neutron-star structure. A less
compact cold star (e.g., a white dwarf) would be described by the
following structure equations:

dP

dr
= −

Gm(r)ϵ(r)

r2
,

dm

dr
= 4πϵ(r)r2 , (1)

where P is the pressure, G is the gravitational constant, m is the
mass, ϵ is the energy density, and r is the radial coordinate. The
first equation describes hydrostatic equilibrium and states that
the pressure exerted outwards has tomatch the gravitational force
acting inwards. The second equation is the conservation of mass.
These equations are derived within Newtonian gravity, but since
neutron stars are very compact, the structure equations need to
be modified by general-relativistic extensions of Equation (1).
These are the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [31, 32]:
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)−1
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dm
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= 4πϵ(r)r2 ,

where c is the speed of light. In the following, we will write all
equations in natural units and set c = 1. The energy density for
non-relativistic nucleonic matter is given by

ϵ = n ·
(

mN +
E

A
(n, x)

)

. (3)

Here, n is the baryon number density and mN the nucleon mass.
The first term of the energy density reflects the rest-mass density,
while the second term is the specific internal energy.

To solve the TOV equations, the only required input is a
relation between the pressure P and the energy density ϵ. This
relation is the EOS, P = P(ϵ). With the EOS as input, the
TOV equations can be solved by integrating from the stars center
at r = 0 (where P = Pc and m = 0) to the stars edge at
radius R (where P = 0 and m(R) = M). Hereby, the central
pressure Pc is an input parameter, that determines the mass M
and the radius R for the given EOS. Solving the TOV equations
for many different values for Pc maps out the mass-radius (MR)
relation, that describes the radius of a NS for a given mass, see
Figure 1 for an example EOS. The EOS and the resulting MR
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stars. I will also discuss how the combination of these methods
with systematic interactions from chiral EFT allows us to
extract information on the nuclear EOS in a reliable fashion.
This contribution is organized as follows. In section 2, I will
review neutron stars and the most important recent neutron-star
observations. In section 3, I will address how to study the nuclear
matter in neutron stars using Quantum Monte Carlo methods
and modern nuclear interactions. In section 4, I will then show
results and explain how to use these results to study neutron stars.
Finally, I will summarize in section 5.

2. NEUTRON STARS AND THEIR
PROPERTIES

In this section, I will review neutron stars and their
relevant equations, as well as the most important recent
neutron-star observations.

2.1. Describing Neutron Stars
Neutron stars are one of the final stages of stellar evolution.
While low-mass stars like our sun end their life as white dwarfs,
neutron stars are remnants of core-collapse supernova explosions
of medium-mass stars in the range of 8–20 solar masses (heavier
stars will collapse to black holes; see, e.g., Fryer [22]). Hence,
neutron stars are the most compact stars in the Universe.

While stars in their burning stages are supported against
gravitational collapse by the thermal energy released in nuclear
fusion, these processes have stopped in white dwarfs and neutron
stars. White dwarfs are the remaining cores of lighter stars that
have shed their outer layers. They typically consist of Carbon
and/or Oxygen, and have masses of the order of the mass of
our sun compressed to the size of a typical planet, with radii
of the order of several 1, 000 km. Due to the resulting densities
and the fermionic nature of electrons, the electrons in white
dwarfs form a degenerate gas. It costs energy to compress this
electron gas, leading to a degeneracy pressure exerted outwards
that balances the gravitational force that otherwise would collapse
the star. Such a degenerate electron gas can typically support
a white dwarf with a maximum mass of ∼ 1.4M⊙, the so-
called Chandrasekhar mass [23]. If a white dwarf accretes mass
and surpasses this limit, the electron pressure does not suffice
anymore to stabilize the star against gravitational collapse. This is
what happens in core-collapse supernovae of heavier stars, where
the white-dwarf-like core collapses due to continued accretion
of fusion products. This collapse then triggers the supernova
explosion of the star.

As a consequence of the core collapse, the densities of
the electrons and nuclei increase dramatically, leading to an
increasing Fermi energy for the electrons. At some point, it
becomes energetically favorable for protons in the core to absorb
electrons and form neutrons, lowering the proton fraction. As the
collapse continues, at the largest densities in the core neutron-
rich nuclei begin to dissolve into free nucleons, mostly neutrons.
The collapse is halted when the core reaches radii of the order
O(10) km. The abrupt stop of the contraction causes a so-
called bounce that ultimately leads to a supernova explosion and

ejects the remaining outer layers of the star, leaving a dense
remnant. Due to their small proton fraction of the order of 5–
10%, these young stars are called proto-neutron stars. They will
cool over time and form cold neutron stars. Similar to white
dwarfs, neutron stars are stabilized against gravitational collapse
by the degeneracy pressure of their fermionic constituents, the
neutrons. The discovery of the neutron by Chadwick [24] led to
the postulation of neutron stars [25] long before their discovery
in the 1960s [26, 27].

To investigate how the degeneracy pressure exerted by the
neutron gas stabilizes neutron stars, one needs to start from
the equations that describe the neutron-star structure. A less
compact cold star (e.g., a white dwarf) would be described by the
following structure equations:

dP

dr
= −

Gm(r)ϵ(r)

r2
,

dm

dr
= 4πϵ(r)r2 , (1)

where P is the pressure, G is the gravitational constant, m is the
mass, ϵ is the energy density, and r is the radial coordinate. The
first equation describes hydrostatic equilibrium and states that
the pressure exerted outwards has tomatch the gravitational force
acting inwards. The second equation is the conservation of mass.
These equations are derived within Newtonian gravity, but since
neutron stars are very compact, the structure equations need to
be modified by general-relativistic extensions of Equation (1).
These are the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [31, 32]:

dP

dr
= −G

m(r)ϵ(r)

r2

(

1+
4πr3P

m(r)c2

) (

1+
P

ϵ(r)c2

)

×
(

1−
2Gm(r)

rc2

)−1

(2)

dm

dr
= 4πϵ(r)r2 ,

where c is the speed of light. In the following, we will write all
equations in natural units and set c = 1. The energy density for
non-relativistic nucleonic matter is given by

ϵ = n ·
(

mN +
E

A
(n, x)

)

. (3)

Here, n is the baryon number density and mN the nucleon mass.
The first term of the energy density reflects the rest-mass density,
while the second term is the specific internal energy.

To solve the TOV equations, the only required input is a
relation between the pressure P and the energy density ϵ. This
relation is the EOS, P = P(ϵ). With the EOS as input, the
TOV equations can be solved by integrating from the stars center
at r = 0 (where P = Pc and m = 0) to the stars edge at
radius R (where P = 0 and m(R) = M). Hereby, the central
pressure Pc is an input parameter, that determines the mass M
and the radius R for the given EOS. Solving the TOV equations
for many different values for Pc maps out the mass-radius (MR)
relation, that describes the radius of a NS for a given mass, see
Figure 1 for an example EOS. The EOS and the resulting MR
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stars. I will also discuss how the combination of these methods
with systematic interactions from chiral EFT allows us to
extract information on the nuclear EOS in a reliable fashion.
This contribution is organized as follows. In section 2, I will
review neutron stars and the most important recent neutron-star
observations. In section 3, I will address how to study the nuclear
matter in neutron stars using Quantum Monte Carlo methods
and modern nuclear interactions. In section 4, I will then show
results and explain how to use these results to study neutron stars.
Finally, I will summarize in section 5.

2. NEUTRON STARS AND THEIR
PROPERTIES

In this section, I will review neutron stars and their
relevant equations, as well as the most important recent
neutron-star observations.

2.1. Describing Neutron Stars
Neutron stars are one of the final stages of stellar evolution.
While low-mass stars like our sun end their life as white dwarfs,
neutron stars are remnants of core-collapse supernova explosions
of medium-mass stars in the range of 8–20 solar masses (heavier
stars will collapse to black holes; see, e.g., Fryer [22]). Hence,
neutron stars are the most compact stars in the Universe.

While stars in their burning stages are supported against
gravitational collapse by the thermal energy released in nuclear
fusion, these processes have stopped in white dwarfs and neutron
stars. White dwarfs are the remaining cores of lighter stars that
have shed their outer layers. They typically consist of Carbon
and/or Oxygen, and have masses of the order of the mass of
our sun compressed to the size of a typical planet, with radii
of the order of several 1, 000 km. Due to the resulting densities
and the fermionic nature of electrons, the electrons in white
dwarfs form a degenerate gas. It costs energy to compress this
electron gas, leading to a degeneracy pressure exerted outwards
that balances the gravitational force that otherwise would collapse
the star. Such a degenerate electron gas can typically support
a white dwarf with a maximum mass of ∼ 1.4M⊙, the so-
called Chandrasekhar mass [23]. If a white dwarf accretes mass
and surpasses this limit, the electron pressure does not suffice
anymore to stabilize the star against gravitational collapse. This is
what happens in core-collapse supernovae of heavier stars, where
the white-dwarf-like core collapses due to continued accretion
of fusion products. This collapse then triggers the supernova
explosion of the star.

As a consequence of the core collapse, the densities of
the electrons and nuclei increase dramatically, leading to an
increasing Fermi energy for the electrons. At some point, it
becomes energetically favorable for protons in the core to absorb
electrons and form neutrons, lowering the proton fraction. As the
collapse continues, at the largest densities in the core neutron-
rich nuclei begin to dissolve into free nucleons, mostly neutrons.
The collapse is halted when the core reaches radii of the order
O(10) km. The abrupt stop of the contraction causes a so-
called bounce that ultimately leads to a supernova explosion and

ejects the remaining outer layers of the star, leaving a dense
remnant. Due to their small proton fraction of the order of 5–
10%, these young stars are called proto-neutron stars. They will
cool over time and form cold neutron stars. Similar to white
dwarfs, neutron stars are stabilized against gravitational collapse
by the degeneracy pressure of their fermionic constituents, the
neutrons. The discovery of the neutron by Chadwick [24] led to
the postulation of neutron stars [25] long before their discovery
in the 1960s [26, 27].

To investigate how the degeneracy pressure exerted by the
neutron gas stabilizes neutron stars, one needs to start from
the equations that describe the neutron-star structure. A less
compact cold star (e.g., a white dwarf) would be described by the
following structure equations:

dP

dr
= −

Gm(r)ϵ(r)

r2
,

dm

dr
= 4πϵ(r)r2 , (1)

where P is the pressure, G is the gravitational constant, m is the
mass, ϵ is the energy density, and r is the radial coordinate. The
first equation describes hydrostatic equilibrium and states that
the pressure exerted outwards has tomatch the gravitational force
acting inwards. The second equation is the conservation of mass.
These equations are derived within Newtonian gravity, but since
neutron stars are very compact, the structure equations need to
be modified by general-relativistic extensions of Equation (1).
These are the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [31, 32]:

dP

dr
= −G

m(r)ϵ(r)

r2

(

1+
4πr3P

m(r)c2

) (

1+
P

ϵ(r)c2

)

×
(

1−
2Gm(r)

rc2

)−1

(2)

dm

dr
= 4πϵ(r)r2 ,

where c is the speed of light. In the following, we will write all
equations in natural units and set c = 1. The energy density for
non-relativistic nucleonic matter is given by

ϵ = n ·
(

mN +
E

A
(n, x)

)

. (3)

Here, n is the baryon number density and mN the nucleon mass.
The first term of the energy density reflects the rest-mass density,
while the second term is the specific internal energy.

To solve the TOV equations, the only required input is a
relation between the pressure P and the energy density ϵ. This
relation is the EOS, P = P(ϵ). With the EOS as input, the
TOV equations can be solved by integrating from the stars center
at r = 0 (where P = Pc and m = 0) to the stars edge at
radius R (where P = 0 and m(R) = M). Hereby, the central
pressure Pc is an input parameter, that determines the mass M
and the radius R for the given EOS. Solving the TOV equations
for many different values for Pc maps out the mass-radius (MR)
relation, that describes the radius of a NS for a given mass, see
Figure 1 for an example EOS. The EOS and the resulting MR
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stars. I will also discuss how the combination of these methods
with systematic interactions from chiral EFT allows us to
extract information on the nuclear EOS in a reliable fashion.
This contribution is organized as follows. In section 2, I will
review neutron stars and the most important recent neutron-star
observations. In section 3, I will address how to study the nuclear
matter in neutron stars using Quantum Monte Carlo methods
and modern nuclear interactions. In section 4, I will then show
results and explain how to use these results to study neutron stars.
Finally, I will summarize in section 5.

2. NEUTRON STARS AND THEIR
PROPERTIES

In this section, I will review neutron stars and their
relevant equations, as well as the most important recent
neutron-star observations.

2.1. Describing Neutron Stars
Neutron stars are one of the final stages of stellar evolution.
While low-mass stars like our sun end their life as white dwarfs,
neutron stars are remnants of core-collapse supernova explosions
of medium-mass stars in the range of 8–20 solar masses (heavier
stars will collapse to black holes; see, e.g., Fryer [22]). Hence,
neutron stars are the most compact stars in the Universe.

While stars in their burning stages are supported against
gravitational collapse by the thermal energy released in nuclear
fusion, these processes have stopped in white dwarfs and neutron
stars. White dwarfs are the remaining cores of lighter stars that
have shed their outer layers. They typically consist of Carbon
and/or Oxygen, and have masses of the order of the mass of
our sun compressed to the size of a typical planet, with radii
of the order of several 1, 000 km. Due to the resulting densities
and the fermionic nature of electrons, the electrons in white
dwarfs form a degenerate gas. It costs energy to compress this
electron gas, leading to a degeneracy pressure exerted outwards
that balances the gravitational force that otherwise would collapse
the star. Such a degenerate electron gas can typically support
a white dwarf with a maximum mass of ∼ 1.4M⊙, the so-
called Chandrasekhar mass [23]. If a white dwarf accretes mass
and surpasses this limit, the electron pressure does not suffice
anymore to stabilize the star against gravitational collapse. This is
what happens in core-collapse supernovae of heavier stars, where
the white-dwarf-like core collapses due to continued accretion
of fusion products. This collapse then triggers the supernova
explosion of the star.

As a consequence of the core collapse, the densities of
the electrons and nuclei increase dramatically, leading to an
increasing Fermi energy for the electrons. At some point, it
becomes energetically favorable for protons in the core to absorb
electrons and form neutrons, lowering the proton fraction. As the
collapse continues, at the largest densities in the core neutron-
rich nuclei begin to dissolve into free nucleons, mostly neutrons.
The collapse is halted when the core reaches radii of the order
O(10) km. The abrupt stop of the contraction causes a so-
called bounce that ultimately leads to a supernova explosion and

ejects the remaining outer layers of the star, leaving a dense
remnant. Due to their small proton fraction of the order of 5–
10%, these young stars are called proto-neutron stars. They will
cool over time and form cold neutron stars. Similar to white
dwarfs, neutron stars are stabilized against gravitational collapse
by the degeneracy pressure of their fermionic constituents, the
neutrons. The discovery of the neutron by Chadwick [24] led to
the postulation of neutron stars [25] long before their discovery
in the 1960s [26, 27].

To investigate how the degeneracy pressure exerted by the
neutron gas stabilizes neutron stars, one needs to start from
the equations that describe the neutron-star structure. A less
compact cold star (e.g., a white dwarf) would be described by the
following structure equations:

dP

dr
= −

Gm(r)ϵ(r)

r2
,

dm

dr
= 4πϵ(r)r2 , (1)

where P is the pressure, G is the gravitational constant, m is the
mass, ϵ is the energy density, and r is the radial coordinate. The
first equation describes hydrostatic equilibrium and states that
the pressure exerted outwards has tomatch the gravitational force
acting inwards. The second equation is the conservation of mass.
These equations are derived within Newtonian gravity, but since
neutron stars are very compact, the structure equations need to
be modified by general-relativistic extensions of Equation (1).
These are the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [31, 32]:

dP

dr
= −G

m(r)ϵ(r)

r2

(

1+
4πr3P

m(r)c2

) (

1+
P

ϵ(r)c2

)

×
(

1−
2Gm(r)

rc2

)−1

(2)

dm

dr
= 4πϵ(r)r2 ,

where c is the speed of light. In the following, we will write all
equations in natural units and set c = 1. The energy density for
non-relativistic nucleonic matter is given by

ϵ = n ·
(

mN +
E

A
(n, x)

)

. (3)

Here, n is the baryon number density and mN the nucleon mass.
The first term of the energy density reflects the rest-mass density,
while the second term is the specific internal energy.

To solve the TOV equations, the only required input is a
relation between the pressure P and the energy density ϵ. This
relation is the EOS, P = P(ϵ). With the EOS as input, the
TOV equations can be solved by integrating from the stars center
at r = 0 (where P = Pc and m = 0) to the stars edge at
radius R (where P = 0 and m(R) = M). Hereby, the central
pressure Pc is an input parameter, that determines the mass M
and the radius R for the given EOS. Solving the TOV equations
for many different values for Pc maps out the mass-radius (MR)
relation, that describes the radius of a NS for a given mass, see
Figure 1 for an example EOS. The EOS and the resulting MR
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Equation of state of neutron-star matter

○ Baryon density

○ Energy density

○ Pressure

⦿ In the minimal model, equation of state of neutron-proton-electron matter needed

○ Electrons produce negligible pressure   ➝   proton-neutron (“neutron-star”) matter

⦿ Equation of state of neutron-star matter

○ Neutron stars have temperatures T ~ 107-108 K; Eth = 8 keV ≪ EF   ➝   T = 0 good approximation1
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Equation of state of neutron-star matter

Figure 2: (left) Nuclear EOS at T = 0 as a function of density n for a representative

set of isospin asymmetries � as obtained in Ref. (53). Key observables that character-

ize E(n ⇡ n0, �)/A are illustrated. (right) Saturation points of numerous chiral inter-

actions from fourth- (circles) and third-order (squares) MBPT calculations, as well as

CC theory (triangles). The ellipses show the 2� regions of order-by-order calculations

up to N3LO in MBPT with EFT truncation errors fully quantified (59). The white

box in each panel depicts the empirical saturation point, E0 = �15.86 ± 0.57 MeV with

n0 = 0.164 ± 0.007 fm�3 (53). The right panel has been modified from Ref. (24).

are simplified since the LEC c4 does not contribute. This allows for tight low-density

constraints on the neutron-rich matter EOS from PNM calculations and systematic high-

density extrapolations (see Section 4).

PNM: pure neutron
matter (� = 1)

ANM: asymmetric
nuclear matter
(0 < � < 1)

SNM: symmetric
nuclear matter
(� = 0)

FFG: free Fermi gas

Nuclear matter represents an ideal system for testing nuclear interactions at the densities

accessible to laboratory experiments and their implementation in many-body methods. As

illustrated in Fig. 2 (left), the nuclear EOS in the vicinity of n0 is (to good approximation)

characterized by only a few experimentally accessible quantities. That is, the EOS of

SNM can be expanded about its minimum n0 as E(n, � = 0)/A ⇡ E0 + (K/2) ⌘
2, with

the saturation energy E0 = E(n0, 0)/A, incompressibility K, and ⌘ = (n � n0)/(3n0).

Further, explicit ANM calculations with chiral NN and 3N interactions (53, 62, 63) have

shown that the asymmetry dependence of the nuclear EOS is reasonably well reproduced

by the standard quadratic approximation E(n, �)/A = E(n, 0)/A + Esym(n) �
2, where the

symmetry energy expanded in density reads Esym(n) ⇡ Sv + L ⌘. In this approximation
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FIG. 2. (Color online) Interaction energy per particle from NN (a) and 3N (b) contributions for pure neutron matter (blue bands) and
asymmetric nuclear matter with proton fraction x = 0.1 (red bands) as a function of density.

percentage number is relative to [Ennn + Ennp]/A. This shows
that the neglected contributions from two or more proton
lines are small. Furthermore, the NN and 3N contributions are
opposite and, to a large extent, cancel in the total energy per
particle. This confirms that approximation (4) works well for
the neutron-rich conditions considered in this work. However,
when we compare to constraints for the symmetry energy
based on experiments around symmetric nuclei (see Fig. 4),
we decided to include the small contributions from two or
more proton lines. The corresponding changes in the symmetry
energy are smaller than the theoretical uncertainties.

B. Quadratic expansion and symmetry energy

The technical difficulties of asymmetric matter calculations
have triggered approximate or phenomenological expansions
for the nuclear equation of state. Starting from the saturation
point of symmetric matter, the quadratic expansion expresses
the energy of asymmetric matter in terms of the asymmetry
parameter β = (nn − np)/n = 1 − 2x as

E(n,β)
A

= E(n,β = 0)
A

+ Sv(n) β2 + O(β4), (14)

where Sv is the symmetry energy. Provided that the equation of
state of symmetric matter is known, Sv is the only input needed
to extrapolate to asymmetric matter at order β2. Originally
designed for small values of β, the quadratic expansion has
proven to be successful over a large range of asymmetries.
Microscopic calculations have validated the β2 truncation,
with only small deviations away from symmetric matter [3,5].

We use our ab initio calculations to test the quadratic
expansion for neutron-rich conditions. To this end, we define
the energy difference from pure neutron matter "E:

"E(n,x)
A

= E(n,x)
A

− E(n,x = 0)
A

. (15)

In terms of "E, the quadratic approximation (14) reads

− "E(n,β)
A

= E(n,β = 1)
A

−E(n,β)
A

= Esym(n) (1 − β2),

(16)

where Esym coincides with the symmetry energy Sv , if O(β4)
terms vanish. Equation (16) allows us to extract Esym for a
given density and to verify the linearity in (1 − β2). In Fig. 3,
we show our results for −"E/A as a function of (1 − β2)
for three representative densities. For each value of β (or
x), the vertical error bars reflect the energy range in Fig. 1.
The colored bands in Fig. 3 are linear fits to the points with
the corresponding errors. This demonstrates that the quadratic
expansion is a very good approximation even for neutron-rich
conditions.

From the slope of the linear fits in Fig. 3 one can
extract Esym for a given density. The resulting values for
the three representative densities are listed in Table II. At
saturation density, we find Esym = 30.8 ± 0.8 MeV. Note that
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FIG. 3. (Color online) Energy per particle relative to pure neu-
tron matter −"E/A as a function of (1 − β2) for three densities; the
upper axis gives the proton fraction x. The points correspond to our
calculations, with error bars reflecting the uncertainty bands in Fig. 1.
The colored bands are linear fits to the points with the corresponding
errors.
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Pure neutron matter

two-body potential from any partial-wave decomposed 3N interaction in an improved P

angle-averaging approximation has been developed (53). The latter approach is especially

advantageous for studying 3N forces at N3LO (53), bare and SRG-evolved, and in di↵erent

regularization schemes. Semi-analytic expressions along the lines of Ref. (50) have been

derived up to N3LO and also partially to N4LO (54).

The three-body term in the normal-ordered Hamiltonian cannot be implemented using

e↵ective two-body potentials. In nuclear matter such residual 3N contributions have been

studied in CC (55) and MBPT calculations (56, 57, 58, 24). Explicit calculations of the

residual 3N diagram in MBPT at second order (see the margin note) showed for a range of

chiral interactions that its contribution is typically much smaller than both the overall EFT

truncation error and the individual contributions from the other MBPT diagrams up to this

order (24). While these findings give some justification for the commonly used approxima-

tion where residual 3N contributions are neglected, the automated approach introduced in

Ref. (24) implements chiral NN, 3N, and 4N interactions exactly in nuclear matter calcula-

tions using a single-particle spin-isospin basis. Combined with high-performance computing,

this method sets the stage for systematic studies of ChEFT interactions in MBPT up to

high orders and without the mentioned approximations.

Residual 3N diagram
at second order:

3. Nuclear equation of state at zero and finite temperature

In this Section we survey recent nuclear matter calculations up to n ⇡ 2n0 in MBPT with

chiral NN and 3N interactions. We discuss advances in the quantification and propagation

of EFT truncation errors, confront di↵erent microscopic constraints on the nuclear sym-

metry energy with experiment, and examine contributions beyond the standard quadratic

expansion of the EOS in the isospin asymmetry. We conclude the Section with results for

the nuclear liquid-gas phase transition at finite temperature.

3.1. Confronting nuclear forces with empirical constraints

Figure 2 (left) illustrates the nuclear EOS at zero temperature as a function of density n

for a representative set of isospin asymmetries � = (nn � np)/n, where nn (np) is the

neutron (proton) number density. The uncertainty bands in the energy per particle E/A

were obtained in Ref. (53) by second-order MBPT calculations based on the Hebeler et al.

interactions (23). Several general observations can be gleaned. Nuclear interactions are

much stronger in SNM compared to PNM, which is closer to the free Fermi gas (FFG,

solid lines). Consequently, the uncertainties are larger in SNM, especially for densities

n & n0. In PNM they are well controlled for n . n0, and a wide range of chiral NN and

3N interactions leads to similar results for PNM (see, e.g., Refs. (60, 46, 61)). Increasing

uncertainties toward higher densities are predominantly due to 3N interactions. Although

the complexity of 3N interactions is much reduced in PNM (51), they provide at all values

of � important repulsive contributions that grow stronger with the density than those of NN

interactions. The 3N interactions are therefore crucial for understanding the high-density

EOS and the structure of neutron stars. In PNM all chiral interactions up to N3LO are

completely determined by the ⇡N and NN system. The intermediate- and short-range 3N

interactions at N2LO that are proportional to the LECs cD and cE , respectively, vanish

(for regulators symmetric in the particle labels) due to the coupling of pions to spin and

the Pauli principle, respectively. Also the long-range two-pion exchange 3N forces at N2LO
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Figure 2: (left) Nuclear EOS at T = 0 as a function of density n for a representative

set of isospin asymmetries � as obtained in Ref. (53). Key observables that character-

ize E(n ⇡ n0, �)/A are illustrated. (right) Saturation points of numerous chiral inter-

actions from fourth- (circles) and third-order (squares) MBPT calculations, as well as

CC theory (triangles). The ellipses show the 2� regions of order-by-order calculations

up to N3LO in MBPT with EFT truncation errors fully quantified (59). The white

box in each panel depicts the empirical saturation point, E0 = �15.86 ± 0.57 MeV with

n0 = 0.164 ± 0.007 fm�3 (53). The right panel has been modified from Ref. (24).

are simplified since the LEC c4 does not contribute. This allows for tight low-density

constraints on the neutron-rich matter EOS from PNM calculations and systematic high-

density extrapolations (see Section 4).
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Figure 4: (left) Constraints on Esym(n) based on chiral interactions (bands) and phe-

nomenological potentials (symbols). The vertical band depicts the empirical saturation

density. (right) Theoretical and experimental constraints for (Sv, L) as well as the con-

jectured UG bounds in comparison (see annotations). Gray ellipses (59) show the allowed

regions from PNM and SNM calculations at N3LO with truncation errors quantified (light:

1�, dark: 2�). The white area shows the joint experimental constraint without “IAS+�R”.

Figure 4 (left) summarizes theoretical constraints for Esym(n 6 2 n0) from a wide range

of chiral NN and 3N forces as well as di↵erent many-body methods. Specifically, we show

the results for Esym(n) = E(n, � = 1)/A � E(n, 0)/A as obtained in the calculations by

Lim et al. (74) and Drischler et al. (59, 24) [“GP–B 500”] in MBPT, Carbone et al. (75)

in the SCGF method, and Lonardoni et al. (76) using QMC methods. The latter were

conducted with two di↵erent parameterizations of the N2LO 3N contact interaction (i.e.,

distinct bands for E1 and E⌧ ) to demonstrate the significant regulator artifacts present in

local chiral 3N potentials. Di↵erent uncertainty estimates were used in these calculations.

The uncertainty bands by Carbone et al. probe parameter variations in the nuclear interac-

tions, while those by Lonardoni et al. and Drischler et al. quantify truncation errors using

the standard EFT uncertainty (up to N2LO) and BUQEYE’s new Bayesian framework (up

to N3LO), respectively. Also many-body (or statistical Monte Carlo) uncertainties are in-

cluded in the bands. Lim et al. performed a statistical analysis of MBPT calculations based

on a range of chiral potentials at di↵erent orders and two single-particle spectra to probe

the chiral and many-body convergence. Only the results by Lim et al. and Drischler et al.

(both MBPT) have a clear statistical interpretation, each at the 1� and 2� confidence level

(di↵erent shadings). Overall, the constraints from ChEFT are consistent with each other,

even at the highest densities shown, but the uncertainties in Esym(n) are generally sizable,

e.g., 20.7 ± 1.1, 31.5 ± 3.0, and 49.0 ± 12.0 MeV at n0/2, n0, and 2 n0, respectively, for

Lim et al. at the 1� confidence level. Drawing general conclusions from comparing the sizes

of these bands can be misleading since the underlying methods for estimating uncertainties
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Simulating nuclear matter

⦿ Modelling of nuclear matter

○ Pure neutron matter is simpler (weaker 3N forces, tensor components, …)

○Homogeneous system of nucleons interacting via strong interactions (Coulomb switched off)

○ Thermodynamic limit (A➝ ∞, 𝒱➝ ∞, n=A/𝒱 constant)

⦿ Nuclear matter as a theoretical laboratory to test interactions & many-body methods

○ Interactions: schematic interactions, OBE potentials, forces from chiral EFT, SRG evolution, …

○Many-body approaches: exact, correlation-expansion (both non-perturbative and perturbative)

○ Calculations easier than for finite nuclei (no surface, symmetry breaking often negligible, …)

○ Basis: plane waves well suited (translational invariance)

⦿ Long history of ab initio nuclear matter calculations

Frequent benchmarks between different calculations



First generation of ab initio results

data base. At a density of one nucleon per fm3 the CD-Bonn
model @17# gives the largest xp of 0.15, while the Nijmegen
I model @15# gives the smallest value of 0.10. The spread in
these values is comparable with the difference between VCS
and LOB results for A18 of xp5 0.09 and 0.14 at this den-
sity.
The dv term and the three-nucleon interaction increase

the symmetry energy, and push the xp barely above the Urca
limit at high densities. For the A181dv1UIX* model the
threshold is at a density of r50.78 fm23, and, as discussed
in the next section, stars must have a mass .2.0M( to
achieve such a density. However, this density is at the limit
of our calculations and of the input physics. For example,
admixtures of quark matter with hadronic matter, considered
in the next section, may affect the Urca process in matter at
such densities.
The U14-DDI ~FPS! model predicts values for xp that are

much smaller than those predicted by all other models con-
sidered here, and in fact go to zero for r;1 fm23. It is
based on the U14 NN interaction, also used in the U14
1UVII model. However, instead of adding the UVII three
nucleon interaction to obtain the empirical saturation density
of nuclear matter, it uses a density dependent modification
~U14-DDI! of the U14 NN interaction @9# chosen to repro-
duce the energy, density and compressibility of equilibrium
nuclear matter. Unlike the UVII interaction, this modification
reduces the symmetry energy, and thus the xp , at high den-
sity. The main advantage of using three-nucleon interactions,
instead of density dependent modifications of the two-
nucleon interaction, is that the former can be tested via ac-
curate calculations of the light nuclei. Unfortunately, the
available results @30# indicate that the UIX model may be
overestimating the repulsion between three neutrons, thus
overestimating the xp ; an improved version of the UIX
model is currently being developed.

V. NEUTRON STARS

Using the methods just described we obtain for each
model the EOS for cold, catalyzed beta-stable matter. At a
baryon number density of 0.1 fm23 they are joined onto an
earlier EOS in which properties of the crust material has
been treated more accurately @11#. The Oppenheimer-
Volkoff general relativistic equations for a spherically sym-
metric ~nonrotating! neutron star @1# are

dP
dr 52

~ r̃1P/c2!G„m~r !14pr3P/c2…L~r !

r2
,

m~r !5E
0

r
4pr2r̃dr , ~5.1!

where L(r)5@122Gm(r)/rc2#21. The corresponding
equations for obtaining the moment of inertia, for a slowly
rotating star, are given in Appendix B. Starting from some
central mass-energy density r̃c , or equivalently from a cen-
tral number density rc , these equations are integrated out-
wards to a radius r5R , at which P is zero, thus yielding
the stellar radius, R , the gravitational mass of the star,
M5m(R), and the moment of inertia I .

The dependence of the neutron star mass on central
baryon density rc for the four models is shown in Fig. 11. In
order to estimate the effect of beta-stability on these results,
we show also the trajectories obtained by using the pure
neutron matter EOS for densities greater than 0.1 fm23,
joined to the crust results of Ref. @11#. Earlier results with the
FPS EOS @11# are included for comparison. For the same set
of results, the neutron star mass is plotted against the star
radius in Fig. 12.
The maximum masses for the five models illustrated in

Figs. 11 and 12 are listed in Table XI. While the models
based on only two-nucleon interactions have maximum
masses at or below 1.8M( , those for the two models con-
taining three-nucleon interactions have maximum masses
well above 2M( . The model that we believe includes most
of the necessary physics is A181dv1UIX*, which yields a
maximum mass of 2.2M( . This model achieves its maxi-
mum mass for a central baryon density rc51.14 fm23,

FIG. 11. Neutron star gravitational mass, in solar masses, vs
central baryon density, for the four models described in the text.
The full curves are for beta-stable matter, and the dotted lines are
for pure neutron matter. The vertical lines show the density above
which the matter is superluminal. The dashed curve, FPS, is from
@11#.

FIG. 12. Neutron star gravitational mass, in solar masses, vs
radius, in kilometers, for the four models described in the text. The
full curves are for beta-stable matter, and the dotted ones are for
pure neutron matter. The dashed curve, FPS, is from @11#.
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power dependence on r of customary Skyrme interactions.
The effective interaction FPS obtained in this manner from
the SNM and PNM energies calculated with the U14-DDI
interaction has been described and used elsewhere
@44,43,11#.
In the present work, we have studied the matter energies

only at zero temperature, and cannot therefore make a new
determination of the momentum-dependent (t-containing!
terms in Hef f . Rather than omitting them, we have kept
intact the t-dependent terms from the earlier determination
@44#, and have modified only the potential energy term
g(r ,xp). To facilitate handling of the two different phases,
we make separate fits to the normal low density phase ~LDP!
and the high density phase ~HDP! with pion condensation.
The analytic forms used for the fitting are given in Appendix
A. They are chosen solely to provide an economical fit to the
calculated energies.
The interpolation between xp50.5 and xp50 is carried

out assuming a (122xp)2 dependence of the energy at a
given density. It is well known that matter energies, as a
function of xp , can be expanded in powers of (122xp)
about xp50.5. Previous studies @46#, using cluster expansion
techniques @6#, have found that the quartic terms are small,
and that the quadratic terms determined from results at xp
50 and 0.5 are sufficient to obtain few percent accuracy in
the interpolation. The potential energy terms g in the effec-
tive interaction Eq. ~4.5! obtained by fitting to PNM and
SNM are therefore interpolated by means of the expression

g~r ,xp!5g~r ,xp50.5!„12~122xp!2…
1g~r ,xp50 !~122xp!2. ~4.8!

A. The phase transition

In fitting the results of the calculations described in Secs.
I–III, we find that the SNM and PNM energies coming from
the models that include a three-nucleon interaction have a
clear discontinuity in slope, associated with the phase transi-
tion, so that different analytic forms are needed above and
below the critical densities, r t50.20 fm23 for PNM,
0.32 fm23 for SNM. In Fig. 6 the energies and the fits are
shown for the A181dv1UIX* model. ~Here, and for the
rest of the paper, we use for the SNM energies of this model
the ‘‘corrected’’ values given in the last column of Table
VI.! The A181dv and A18 models do not show such a
discontinuity in any marked way.
An important assumption of our treatment of the two

phases of nuclear matter and the phase transition, as exhib-
ited in Fig. 6, is that the analytic forms fitted to the PNM and
SNM energies of each phase may be extrapolated beyond the
density region in which they are determined. Since the equi-
librium is a two-dimensional phenomenon, the energy as a
function of r and xp can be represented by a surface above
the r ,xp plane. The interpolation described in the last sub-
section makes the energy surface of the LDP a valley para-
bolic in the xp dimension extending from xp50 to xp51,
with its minimum at xp50.5. A similar interpolation be-
tween the energies of the HDP produces another parabola.
Note that because of the charge symmetry breaking terms in
the A18 interaction only the xp<0.5 side of the parabolas is

useful, and that the parabolic shape approximation has been
tested only in the LDP @46#.
A transition to a neutral pion condensed phase of PNM

was obtained earlier with the older Argonne v14 ~A14! NNI
and Urbana VII ~UVII! TNI interactions by WFF @12#. How-
ever, with those interactions SNM has a normal ground state.
WFF estimated the properties of the A141UVII model of
cold catalyzed matter by interpolating between the normal
SNM and the pion condensed PNM. For the A181dv
1UIX* interaction, we find that such a procedure overesti-
mates the symmetry energy of the HDP by ;10 to 20% in
the density range 0.2 to 0.5 fm23. Fortunately we see the
transition for both PNM and SNM, and can avoid that prob-
lem.
In Fig. 7 we show for the A181dv1UIX* model the

density at which the LDP and HDP E(r ,xp) surfaces inter-
sect, i.e., where the interpolated phases have the same en-
ergy. The curve obtained is not necessarily a parabola in xp ,

FIG. 6. The PNM and SNM energies for the A181dv1UIX*
model, and the fits to them using an effective interaction. The full
lines represent the stable phases, and the dotted lines are their ex-
trapolations.

FIG. 7. On a plot of proton fraction xp vs baryon density, for the
A181dv1UIX* model, the boundary between the LDP and HDP,
obtained in the manner described in the text. The dashed curve is
the proton fraction of beta-stable matter, and the dotted lines mark
the boundary of the mixed phase region.

PRC 58 1817EQUATION OF STATE OF NUCLEON MATTER AND . . .○ “Milestone” calculation with AV18 + three-body forces (+ relativistic correction)

⦿ Akmal-Pandharipande-Ravenhall (APR) equation of state [Akmal et al. 1998]

○Not many constraining data on the mass-radius relation at the time

○ Is a description in terms of only nucleons realistic at such high densities?
Hyperons?

Quarks?



Hyperons

⦿ Hyperon: a baryon containing one, two or three s quarks in addition to u and d quarks

○Hyperons decay weakly (strangeness conserved by strong and EM interactions)

○New quantum number: strangeness

usd baryon octet usd baryon decuplet
938 MeV

1115 MeV

1672 MeV



Hyperon puzzle

⦿ Hyperon production

seen from Fig. 11. Therefore replacing superluminal matter
with maximally incompressible matter has little effect on the
stellar properties.
It is also possible that due to neglect of four-body and

higher forces, and relativistic corrections of order (velocity)4
and higher, the present work underestimates the sound veloc-
ity at lower densities. The effects of this possibility can be
studied by assuming that the EOS of the A181dv1UIX*
model is valid up to a chosen density r I , beyond which it is
maximally incompressible. The results obtained for r I52, 3,
and 4r0 are shown in Figs. 13 and 14, and Table XI. The
difference between the E(r) of the matter obtained by as-
suming that r I52r0 and the E(r) of the A181dv1UIX*
model is several times the contribution of the UIX* interac-
tion ~see Fig. 14!. It therefore appears unrealistic to assume
that r I can be as small as 2r0 . Results obtained with r I
53r0 provide a better indication of what we can expect
from the hardest EOS consistent with realistic models of
nuclear forces.

B. Transition to quark matter

It is also possible that the present EOS is too hard due to
the assumption that neutron star matter contains only nucle-
ons and leptons. Should it also contain other hyperons such
as L , S2 ,0,1 and D2 ,0,1 ,11, the EOS may be softer than
that obtained with nucleons only @4#. The forces between
hyperons and nucleons and between hyperons are not as well
known as nuclear forces, and it is therefore difficult to esti-
mate whether such exotic species are present in neutron star
matter.
The chemical equilibrium in matter containing nucleons,

lambdas, sigmas, deltas, and leptons is governed by the
equations

mS25mD25mn1me , ~5.5!

mL5mS05mD05mn , ~5.6!

mS15mD15mp5mn2me , ~5.7!

mD115mn22me . ~5.8!

If we neglect the interaction between nucleons and these hy-
perons, then the chemical potential of a hyperon at threshold
density is given by its mass. Under such an assumption, the
negatively charged hyperons appear in the ground state of
dense matter when mn1me reaches their mass, while the
neutral hyperons appear when mn equals their mass. Since
me in dense matter is larger than the mass differences be-
tween lambdas, sigmas, and deltas, the S2 and D2 will ap-
pear at lower densities than the neutral L , provided the in-
teraction effects are small. The chemical potentials of
electons, and of neutrons in beta-stable matter, are shown in
Fig. 15 for the A181dv1UIX* and A181dv models. The
threshold densities for noninteracting S2, D2, and L are
indicated by horizontal line segments. Given their relatively
low values, it is clear that in the absence of interactions these
particles would be present in most neutron stars. Results ob-
tained using crude models of the interactions between hyper-
ons and nucleons, and between hyperons @4# indicate that the
S2 and D2 have the largest effect of all hyperons on the
EOS; however the magnitude of the effect is very sensitive
to the interaction model.
The available hyperon-nucleon scattering data has been

reviewed recently by de Swart, Maessen, and Rijken @54,55#
along with the status of one-boson exchange models of the
interactions between hyperons. Additional information on
L-nucleon interactions can be obtained from the measured
L-nucleus binding energies. These indicate the presence of
LNN three-body forces that are as strong as the three-
nucleon interaction @56,57#. In view of these uncertainties,
particularly concerning the important S2 and D2 interac-
tions, we do not attempt to estimate the effect of these hy-
perons on the EOS of neutron star matter.
A transition from hadronic to quark matter is expected at

high densities. Knowledge of the EOS of both hadronic and
quark matter is necessary to estimate the possible effects of
this transition on neutron stars. Here, we use the present
models of the EOS of hadronic matter, containing only
nucleons and leptons, and the quark bag model with u ,d , and

FIG. 14. Neutron star gravitational mass, in solar masses, vs
radius for the A181dv1UIX* model ~upper full curve!, for the
maximally incompressible modifications of this model at densities
beyond chosen values of r I ~dashed curves!, and for the A181dv
model ~lower full curve!.

FIG. 15. The neutron and electron chemical potentials in beta
stable matter according to models A181dv1UIX* ~full line! and
A181dv ~dashed line!. Threshold densities for the appearance of
noninteracting hyperons are marked by horizontal line segments.
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○ Becomes energetically favourable at n ~ 2-3 n0

Hyperons are expected to appear in the core of neutron stars at ρ ~ 
(2-3)ρ0 when µN is large enough to make the conversion of N into Y 
energetically favorable. 

€ 
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p + e− → Λ + ν e −
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○ β-equilibrium equations get modified
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○New degrees of freedom

[Akmal et al. 1998]

○ Softening of the EoS

○ Lower maximum mass

○ In 2010, 2M⊙ star observed!



Hypernuclei & hyperon interactions

⦿ Hypernuclei: nuclei with at least one hyperon in addition to protons and neutrons

⦿ Hyperon-nucleon scattering

○ Difficult experiments, scarce data

○ Study of correlations between strange baryonic products

➪ Possible game changer: interactions from lattice QCD

About 40 hypernuclei produced
+ various experiments planned

Idea: deduce YN interaction from 
reverse-engineering NCSM results

⦿ Relativistic pp collisions



Hyperons in neutron stars

⦿ Possible solutions:

○ Poor knowledge of YN, YY, YN, YYN, YYY interactions

○ Critical density not reached

○ Transition to quark matter in the neutron star interior

3

⇤ particles. Such formulation is suggested by the fact
that in the Hamiltonian of Eq. (1) there is no ⇤⇤ poten-
tial. The reason for parametrizing the energy per particle
of hyperneutron matter as in Eq. (2) lies in the fact that,
within AFDMC, EHNM(⇢, x) can be easily evaluated only
for a discrete set of x values. They correspond to dif-
ferent number of neutrons (Nn = 66, 54, 38) and hyper-
ons (N⇤ = 1, 2, 14) in the simulation box giving momen-
tum closed shells. Hence, the function f(⇢, x) provides
an analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (⇢, x) domain that we have con-
sidered. Corrections for the finite-size effects due to the
interaction are included as described in Ref. [45] for both
nucleon-nucleon and hyperon-nucleon forces. Finite-size
effects on the neutron kinetic energy arising when using
different number of neutrons have been corrected adopt-
ing the same technique described in Ref. [46]. Possible
additional finite-size effects for the hypernuclear systems
have been reduced by considering energy differences be-
tween HNM and PNM calculated in the same simulation
box, and by correcting for the (small) change of neutron
density.

As can be inferred by Eq. (2), both hyperon-nucleon
potential and correlations contribute to f(⇢, x), whose
dependence on ⇢ and x can be conveniently exploited
within a cluster expansion scheme. Our parametriza-
tion is

f(⇢, x) = c1
x(1� x)⇢

⇢0
+ c2

x(1� x)2⇢2

⇢
2
0

. (4)

Because the ⇤⇤ potential has not been included in the
model, we have only considered clusters with at most one
⇤. We checked that contributions coming from clusters
of two or more hyperons and three or more neutrons give
negligible contributions in the fitting procedure. We have
also tried other functional forms for f(x, ⇢), including
polytropes inspired by those of Ref. [20]. Moreover, we
have fitted the Monte Carlo results using different x data
sets. The final results weakly depend on the choice of
the parametrization and on the fit range, in particular
for the hyperon threshold density. The resulting EoSs
and mass-radius relations are represented by the shaded
bands in Fig. 1 and Fig. 2. The parameters c1 and c2

corresponding to the centroids of the figures are listed in
Tab. II.

Table II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

hyperon-nucleon potential c1 [MeV] c2 [MeV]

⇤N �71.0(5) 23(2)

⇤N + ⇤NN (I) �77(2) 196(5)

⇤N + ⇤NN (II) �70(2) 283(5)

Once f(⇢, x) has been fitted, the chemical potentials
for neutrons and lambdas can be evaluated via

µn(⇢, x) =
@EHNM

@⇢n
, µ⇤(⇢, x) =

@EHNM

@⇢⇤
, (5)

where EHNM = ⇢EHNM is the energy density. The hy-
peron fraction as a function of the baryon density, x(⇢),
is obtained by imposing the condition µ⇤ = µn. The
⇤ threshold density ⇢

th
⇤ is determined where x(⇢) starts

being different from zero.
In Fig. 1 the EoS for PNM (green solid curve) and

HNM using the the two-body ⇤N interaction alone (red
dotted curve) and two- plus three-body hyperon-nucleon
force in the original parametrization (I) (blue dashed
curve) are displayed. As expected, the presence of hy-
perons makes the EoS softer. In particular, ⇢

th
⇤ =

0.24(1) fm�3 if hyperons only interact via the two-body
⇤N potential. As a matter of fact, within the AFDMC
framework hypernuclei turn out to be strongly overbound
when only the ⇤N interaction is employed [24, 25]. The
inclusion of the repulsive three-body force (model (I)),
stiffens the EoS and pushes the threshold density to
0.34(1) fm�3. In the inset of Fig. 1 the neutron and
lambda fractions are shown for the two HNM EoSs.
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Figure 1. (Color online) Equations of state. Green solid curve
refers to the PNM EoS calculated with the AV8’+UIX poten-
tial. The red dotted curve represents the EoS of hypermatter
with hyperons interacting via the two-body ⇤N force alone.
The blue dashed curve is obtained including the three-body
hyperon-nucleon potential in the parametrization (I). Shaded
regions represent the uncertainties on the results as reported
in the text. The vertical dotted lines indicate the ⇤ thresh-
old densities ⇢th⇤ . In the inset, neutron and lambdas fractions
corresponding to the two HNM EoSs.

Remarkably, we find that using the model (II) for
⇤NN the appearance of ⇤ particles in neutron matter is
energetically unfavored at least up to ⇢ = 0.56 fm�3, the
largest density for which Monte Carlo calculations have

4

been performed. In this case the additional repulsion
provided by the model (II) pushes ⇢

th
⇤ towards a density

region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [47] with the EoS of Fig. 1 are shown in Fig. 2.
The onset of ⇤ particles in neutron matter sizably reduces
the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body ⇤N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive ⇤NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).
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Figure 2. (Color online) Mass-radius relations. The key is
the same of Fig. 1. Full dots represent the predicted max-
imum masses. Horizontal bands at ⇠ 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
⇤ threshold density. In particular, when model (II) for
the ⇤NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (⇢  0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to ⇢ = 3.5⇢0 already predicts a NS mass
of 2.09(1)M� (black dot-dashed curve in Fig. 2). Even
if ⇤ particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present

astrophysical observations.

In this Letter we have reported on the first Quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and ⇤ particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
⇤NN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until ⇢ = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the ⇤N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the ⇤NN interaction cannot be completely
determined by fitting the available experimental energies
in ⇤ hypernuclei. In other words, the ⇤-neutron-neutron
component of the ⇤NN will need additional theoret-
ical investigation and a substantial additional amount
of experimental data. In particular, there are some
features of the hyperon-nucleon interaction (⇤-neutron-
neutron channels, spin-orbit contributions) which might
be efficiently constrained only by experiments involving
highly asymmetric hypernuclei and/or excitation of the
hyperon. We believe that our conclusions will not change
qualitatively if other hyperons and/or a v⇤⇤ are included
in the calculation.
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⦿ Modern calculations leave the problem open

○ Strong sensitivity on (poorly known) YNN interactions [Lonardoni et al. 2015]



Quark stars

Strange quark matter hypothesis
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nn0

930.4

u,d,s
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Fe

Schematically  

⦿ Hybrid stars  ➝  outer hadronic layers, deconfined quarks in the interior

⦿ Stars made purely of quarks ➝ “Strange stars”

○ Also leads to a softening of the equation of state

[Bodmer 1971, Terazawa 1979, Witten 1984]

3-flavour u,s,d quark matter 
could be the true ground state 
of strongly interacting matter

Why nuclei don’t decay into 
droplets of strange quark matter?

Probability for direct decay very small

Stability of Nuclei with respect to SQM 

(   Direct decay of 56Fe to a SQM droplet 

€ 

56Fe→56 (SQM) ~  5 6  s i m u l t a n e o u s 
strangeness changing weak 
process 

€ 

u→ s+ e+ + ν e

€ 

d + u→ s+ u

€ 

⇒

The probability for the direct decay is P ~ (GF
2)56 ~ 0 

and the mean-life time of 56Fe with respect to the 
direct decay to a drop of SQM is  



                                          τ >> age of the Universe  

Sequential decay energetically forbidden(   Step by step decay of 56Fe to a SQM droplet 

  

€ 

56Fe→ XΛ
56 →YΛΛ

56 →…→56 (SQM)

€ 

56Fe→ FeΛ
56

€ 

56Fe→ MnΛ
56

These processes are not energetically 
possible since 

€ 

Q = M(56Fe) −M(XΛ
56) < 0

Thus, according with the Bodmer-Terezawa-Witten 
hypothesis, nuclei are metastable states of strong 

interacting matter with a mean-life time 
 
                     τ >> age of the Universe  



Proliferation of EoS
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The equation of state

Credit: N. Wex

Large number of neutron-star equations of state 
available in the literature, but which ones are “good”?

• They do not provide any theoretical uncertainty 
estimates.

• They are not constructed based on some 
fundamental guiding principle; hence, it is not 
clear how to improve them systematically.

?
Sketch! Constraints:

• At low densities from nuclear theory and 
experiment.

• At very high density from pQCD.

• No robust constraints at intermediate densities 
from nuclear physics!

see, e.g., Kurkela, Vuorinen et al.
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Figure 1: Hierarchy of chiral nuclear interactions up to fifth order (or N4LO) in the chiral

expansion without delta isobars (12). Nucleons (pions) are depicted by solid (dashed) lines.

The annotation gives the number of short-range contact LECs. See the main text for details.

of these so-called regulator artifacts on the ChEFT convergence depending on the specific

regularization scheme and computational framework. These issues have resulted in the

development of a flurry of chiral potentials with nonlocal, local as well as semilocal regulators

for a range of cuto↵ values; see, e.g., Table I of Ref. (18). Moreover, as discussed in

Section 2.2, RG methods allow one to modify a given set of two- and multi-nucleon potentials

such that observables are left invariant (up to RG truncations) but the convergence of many-

body calculations is optimized. These RG transformations are most suitably formulated

at the operator (i.e., Hamiltonian) level. The nuclear Hamiltonian constructed at a given

order in the ChEFT expansion reads H = Tkin + VNN(⇤, ci) + V3N(⇤, ci) + V4N(⇤, ci) + . . . ,

where ⇤ stands for the (initial) cuto↵ or resolution scale, and ci for the set of LECs inferred

from fits to experimental data. The nuclear Hamiltonian is not an observable, and the basic

idea of the RG is to exploit this feature to generate more perturbative Hamiltonians.

2.2. Perturbative chiral nuclear interactions

The strong short-range repulsion (“hard core”) and tensor force found in nuclear potentials

constructed at cuto↵ scales ⇤ & 500 MeV question the applicability of perturbation theory

for many-body calculations. In fact, nuclear many-body calculations were historically con-

sidered a nonperturbative problem (see also Section 2.3). Both features give rise to strong

couplings between high- and low-momentum states, i.e., large o↵-diagonal matrix elements,

which enhance the intermediate-state summations in perturbation theory. RG methods

allow one to amend this feature while preserving nonperturbative few-body results.

The initial application (19) of RG methods to study the scale dependence of nuclear

forces was based on T -matrix equivalence, but in recent years the similarity renormalization

www.annualreviews.org • Chiral EFT and the High-Density Nuclear EOS 5

➪ No new 3N and 4N LECs in neutron matter until N4LO 



Equation of state of neutron matter

Neutron Matter at Next-to-Next-to-Next-to-Leading Order in Chiral Effective Field Theory
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Neutron matter presents a unique system for chiral effective field theory because all many-body forces

among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present the first

complete N3LO calculation of the neutron matter energy. This includes the subleading three-nucleon

forces for the first time and all leading four-nucleon forces. We find relatively large contributions from

N3LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with

controlled theoretical uncertainties.

DOI: 10.1103/PhysRevLett.110.032504 PACS numbers: 21.65.Cd, 12.39.Fe, 21.30.!x, 26.60.Kp

The physics of neutron matter ranges from universal
properties at low densities to the structure of extreme
neutron-rich nuclei and the densest matter we know to
exist in neutron stars. For these extreme conditions, con-
trolled calculations with theoretical error estimates are
essential. Chiral effective field theory (EFT) provides
such a systematic expansion for nuclear forces [1]. This
is particularly exciting for neutron matter and neutron-rich
systems, because all three- (3N) and four-neutron (4N)
forces are predicted to next-to-next-to-next-to-leading
order (N3LO) [2].

Neutron matter based on chiral EFT has been studied
using lattice simulations [3] at low densities, n & n 0=10
(with saturation density n 0 ¼ 0:16 fm!3), and following
an in-medium chiral perturbation theory approach [4,5],
where low-energy couplings are adjusted to empirical nu-
clear matter properties. In addition, the renormalization
group (RG) has been used to evolve chiral EFT interactions
to low momenta [6], which has enabled perturbative cal-
culations for nucleonic matter [2,7]. While these constrain
the properties of neutron-rich matter to a much higher
degree than is reflected in neutron star modeling [8], the
dominant uncertainties are due to 3N forces, which were
included only to N2LO. A consistent inclusion of higher-
order many-body forces is therefore key.

Here we present the first calculations at nuclear densities
based directly on chiral EFT interactions without RG
evolution. To this end, we have studied the perturbative
convergence of chiral two-nucleon (NN) potentials for
neutron matter in detail, and found that the available
N2LO and N3LO potentials with lower cutoffs ! ¼
450– 500 MeV are perturbative. This is supported by small
Weinberg eigenvalues at low energies indicating the per-
turbative convergence in the particle-particle channel [6].
In neutron matter, it comes as a result of effective-range
effects [9], which weaken NN interactions at higher
momenta, combined with weaker tensor forces among
neutrons, and with limited phase space at finite density
due to Pauli blocking [10].

At the NN level we use the N2LO and N3LO potentials
developed by Epelbaum, Glöckle and Meißner (EGM)
[11] with !=~! ¼ 450=500 and 450=700 MeV (!=~!
denotes the cutoff in the Lippmann-Schwinger equation
and in the two-pion-exchange spectral-function regulari-
zation, respectively). We also use the ! ¼ 500 MeV
N3LO NN potential of Entem and Machleidt (EM)
[12], which is most commonly used in nuclear structure
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FIG. 1 (color online). Neutron matter energy per particle as a
function of density including NN, 3N, and 4N forces at N3LO.
The three overlapping bands are labeled by the different NN
potentials and include uncertainty estimates due to the many-
body calculation, the low-energy ci constants, and by varying the
3N=4N cutoffs (see text for details). For comparison, results are
shown at low densities (see also the inset) from NLO lattice [3]
and quantum Monte Carlo (QMC) simulations [22], and at
nuclear densities from variational (APR, the different points
are with or without boost corrections) [23] and auxiliary field
diffusion MC calculations (GCR) [24] based on adjusted nuclear
force models.
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Figure 10
(a) Energy per particle (E/N) of neutron matter as a function of density n based on different chiral EFT interactions and using different
many-body methods. The uncertainty bands show the energy range based on the 500 MeV N3LO NN potential from Reference 20
and including N2LO 3N forces in MBPT (red lines) (103) or in the SCGF approach (104), and including all 3N and 4N interactions to
N3LO (magenta band ) (105, 106). The blue band shows the results after RG evolution of the NN potential (17, 103). Also shown are
results obtained with CC theory (107) and with the MBPT of Coraggio et al. (108). The bands are dominated by the uncertainties in
the c i couplings in 3N forces. (b) E/N including NN, 3N and 4N forces at N3LO based on different N3LO potentials (cyan, magenta,
and shaded blue bands) (105). The bands include uncertainty estimates due to the many-body calculation, the c i couplings, and by varying
the 3N/4N cutoffs. For details, see References 105 and 106. For comparison, results are shown at low densities (inset) from NLO lattice
(109) and QMC simulations (110), and at nuclear densities from variational calculations of APR (circles) (111) and auxiliary field
diffusion Monte Carlo GCR (dashed line) (112) based on 3N potentials adjusted to nuclear matter properties. Abbreviations: CC,
coupled cluster; MBPT, many-body perturbation theory; QMC, quantum Monte Carlo; RG, renormalization group; SCGF,
self-consistent Green’s functions. EM and EGM denote the N3LO NN potentials of References 20 and 113.

which determine the long-range two-pion exchange parts of 3N forces, and not by truncations
in the many-body calculation. The red lines and blue band show results including contributions
from N2LO 3N forces, whereas the cyan band includes all 3N and 4N interactions to N3LO.
In addition, for the blue band the NN potential has been RG evolved to a low-momentum scale
! = 2.0 fm−1. We also show CC (107), MBPT (108), and SCGF (104) results, including N2LO
3N forces. All of these results lie within the overlap of the magenta and cyan bands (except for
the lowest density SCGF point, where the zero-temperature extrapolation may be difficult). The
determination of the c i couplings from πN scattering is consistent with the extraction from NN
scattering (see, e.g., the discussion in Reference 13), albeit with large uncertainties. Therefore,
the c i range for the bands in Figure 10 is taken conservatively: at N2LO, c 1 = (0.7 − 1.4) GeV−1

and c 3 = (2.2 − 4.8) GeV−1 (103, 114) [with a similar c i range for SCGF (104)], and at N3LO,
c 1 = −(0.75 − 1.13) GeV−1 and c 3 = −(4.77 − 5.51) GeV−1 (115).

Figure 10 shows that chiral EFT interactions provide strong constraints on the EOS of neutron
matter, which are consistent among different many-body methods and considering variations of
the Hamiltonian. The remarkable overlap of the red lines and the blue band indicates that neutron
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⦿ Benchmarks between several calculations (perturbative & non-perturbative)

⦿ Low-density part constrained by exact results

⦿ Uncertainties grow with density  ➝  breakdown of chiral expansion
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FIG. 6. Energy per particle in PNM with truncation errors
using the ⇤ = 500MeV interactions in Table I. From left
to right, top to bottom, the panels show the order-by-order
progression of EFT uncertainties as the �EFT order increases.
The bands indicate 68% credible intervals.

useful to leave c3(kF) (N2
LO) out of our inductive model

for higher-order terms.

Additionally, the diagnostics point to the possibility
that the NN-only coefficients c0(kF) (LO) and c2(kF)

(NLO) may have a different correlation structure than
higher orders. As noted above, this is suggested by a vi-
sual inspection of Figs. 2 and 3, where c0(kF) and c2(kF)

appear much flatter than c3(kF) (N2
LO) and c4(kF)

(N3
LO). An investigation in this direction is presented

in Appendix A. There we have attempted to isolate the
strongly repulsive 3N contributions that change the cor-
relation structure by splitting the coefficients into NN-
only and residual 3N coefficients with each having differ-
ent kF dependence in yref(x). This succeeds in making
the coefficients more uniform and improves the diagnos-
tics for PNM, but does not improve SNM significantly.
Crucially, the order-by-order uncertainty bands for PNM
and SNM presented in the next section are almost un-
changed when this alternative model is used; the sat-
uration ellipses do become slightly larger though. We
provide these details, along with annotated Jupyter note-
books [50] that generate them, to promote further inves-
tigation, possibly with other EFT implementations, into
the systematic convergence of infinite matter.

FIG. 7. Similar to Fig. 6 but for SNM. The gray box depicts
the empirical saturation point, n0 = 0.164± 0.007 fm�3 with
E/A(n0) = �15.86±0.57MeV, obtained from a set of energy-
density functionals [18, 51] (see the main text for details).

FIG. 8. Credible-interval diagnostics for the E/N(n) (left-
hand side) and E/A(n) uncertainty bands (right-hand side)
for the ⇤ = 500MeV interactions in Table I; for details see
Ref. [25]. At each order we construct an uncertainty band for
the upcoming correction (not the full truncation error) and
test whether the next order is contained within it at a specific
credible interval. The expected size of fluctuations due to the
finite effective sample size of the curves is depicted using dark
(light) gray bands for the 68% (95%) interval. Both bands are
quite large, which shows that correlations are crucial to assess
whether truncation errors have been properly assigned.

C. Quantified uncertainties for PNM and SNM

The GP truncation error model described in Sec. II
combined with the hyperparameter estimates now permit
the first statistically rigorous �EFT uncertainty bands

8
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The bands indicate 68% credible intervals.
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and SNM presented in the next section are almost un-
changed when this alternative model is used; the sat-
uration ellipses do become slightly larger though. We
provide these details, along with annotated Jupyter note-
books [50] that generate them, to promote further inves-
tigation, possibly with other EFT implementations, into
the systematic convergence of infinite matter.

FIG. 7. Similar to Fig. 6 but for SNM. The gray box depicts
the empirical saturation point, n0 = 0.164± 0.007 fm�3 with
E/A(n0) = �15.86±0.57MeV, obtained from a set of energy-
density functionals [18, 51] (see the main text for details).

FIG. 8. Credible-interval diagnostics for the E/N(n) (left-
hand side) and E/A(n) uncertainty bands (right-hand side)
for the ⇤ = 500MeV interactions in Table I; for details see
Ref. [25]. At each order we construct an uncertainty band for
the upcoming correction (not the full truncation error) and
test whether the next order is contained within it at a specific
credible interval. The expected size of fluctuations due to the
finite effective sample size of the curves is depicted using dark
(light) gray bands for the 68% (95%) interval. Both bands are
quite large, which shows that correlations are crucial to assess
whether truncation errors have been properly assigned.

C. Quantified uncertainties for PNM and SNM

The GP truncation error model described in Sec. II
combined with the hyperparameter estimates now permit
the first statistically rigorous �EFT uncertainty bands

[Drischler et al. 2021]

⦿ Order-by-order convergence of chiral interactions 

⦿ Going beyond N3LO currently problematic



Limited applicability of chiral EoS
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Figure 2: (left) Nuclear EOS at T = 0 as a function of density n for a representative

set of isospin asymmetries � as obtained in Ref. (53). Key observables that character-

ize E(n ⇡ n0, �)/A are illustrated. (right) Saturation points of numerous chiral inter-

actions from fourth- (circles) and third-order (squares) MBPT calculations, as well as

CC theory (triangles). The ellipses show the 2� regions of order-by-order calculations

up to N3LO in MBPT with EFT truncation errors fully quantified (59). The white

box in each panel depicts the empirical saturation point, E0 = �15.86 ± 0.57 MeV with

n0 = 0.164 ± 0.007 fm�3 (53). The right panel has been modified from Ref. (24).

are simplified since the LEC c4 does not contribute. This allows for tight low-density

constraints on the neutron-rich matter EOS from PNM calculations and systematic high-

density extrapolations (see Section 4).

PNM: pure neutron
matter (� = 1)

ANM: asymmetric
nuclear matter
(0 < � < 1)

SNM: symmetric
nuclear matter
(� = 0)

FFG: free Fermi gas

Nuclear matter represents an ideal system for testing nuclear interactions at the densities

accessible to laboratory experiments and their implementation in many-body methods. As

illustrated in Fig. 2 (left), the nuclear EOS in the vicinity of n0 is (to good approximation)

characterized by only a few experimentally accessible quantities. That is, the EOS of

SNM can be expanded about its minimum n0 as E(n, � = 0)/A ⇡ E0 + (K/2) ⌘
2, with

the saturation energy E0 = E(n0, 0)/A, incompressibility K, and ⌘ = (n � n0)/(3n0).

Further, explicit ANM calculations with chiral NN and 3N interactions (53, 62, 63) have

shown that the asymmetry dependence of the nuclear EOS is reasonably well reproduced

by the standard quadratic approximation E(n, �)/A = E(n, 0)/A + Esym(n) �
2, where the

symmetry energy expanded in density reads Esym(n) ⇡ Sv + L ⌘. In this approximation

one finds E(n, 1)/A ⇡ (E0 + Sv) + L ⌘ for PNM. Microscopic predictions and empirical

constraints for (n0, E0, , K) and (Sv, L) can then be confronted with one another.

CC: coupled cluster
(see Sec. 2.4)

Nuclear saturation emerges from a delicate cancellation between kinetic and interaction

contributions to the EOS. Reproducing empirical constraints on (n0, E0, K) is therefore an

important benchmark of nuclear interactions, especially 3N forces (providing the necessary

repulsion). Figure 2 (right) depicts the saturation points of numerous chiral potentials as

12 Drischler, Holt, and Wellenhofer

What about here?

⦿ Asymmetric matter can be computed as well…

[Drischler et al. 2021]



High-density extrapolations

⦿ Agnostic approach: series of piecewise polytropes
The Astrophysical Journal, 773:11 (14pp), 2013 August 10 Hebeler et al.

Figure 6. Pressure P of neutron star matter as a function of mass density ρ. The left part compares the pressure band predicted from the neutron matter results of
Figure 2 and incorporating beta equilibrium following Section 3 to the BPS outer crust EOS (Baym et al. 1971b; Negele & Vautherin 1973). The right part illustrates
the general piecewise polytropic extension of the neutron star EOS to higher densities. We take ρcrust = ρ0/2, ρ1 = 1.1 ρ0, and vary the polytrope parameters over the
ranges 1 ! Γ1 ! 4.5, 1.5 ρ0 ! ρ12 ! 8 ρ0, 0 ! Γ2 ! 8, ρ12 ! ρ23 ! 8.5 ρ0, and 0.5 ! Γ23 ! 8 (see the text for details).
(A color version of this figure is available in the online journal.)

to n̄ = 0.475–0.55. These transition densities are somewhat
smaller than those predicted by the FPS and FPS21 interactions
in Pethick et al. (1995), and consequently neutron star models
with the interactions used in this paper will have lower crustal
masses and lower crustal moments of inertia.

5. GENERAL EXTENSION

We investigate the structure of nonrotating neutron stars by
solving the Tolman–Oppenheimer–Volkov equations. Since the
central densities of neutron stars can significantly exceed the
regime of our neutron matter calculations, we need to extend
the EOS beyond this density. To this end, we employ a general
polytropic extension, where the pressure of neutron star matter
is piecewise given by P (ρ) = κ ρΓ, with mass density ρ = mn
(Read et al. 2009; Hebeler et al. 2010). This is illustrated in
Figure 6. At low densities we use the BPS crust EOS (Baym
et al. 1971b; Negele & Vautherin 1973) up to the transition
density ρcrust. Figure 6 shows that for densities ρ0/10 to ρ0/2
the BPS crust EOS lies within the band predicted for the pressure
of neutron star matter based on the neutron matter results and
incorporating beta equilibrium following Section 3 (see also
Hebeler et al. 2010). Therefore, our results are insensitive to the
particular choice of ρcrust within this region. In the following,
we use ρcrust = ρ0/2, based on our results for the crust-
core boundary given by Figure 5. The pressure from ρcrust to
ρ1 = 1.1 ρ0 is given by the band predicted by chiral EFT
interactions. Our results are insensitive to the precise value of
ρ1 in the vicinity of saturation density ρ0, so we have taken
a conservative value for which the uncertainty band of the
microscopic neutron matter calculations is reasonable.

For the extension beyond ρ1, we use three polytropes with
exponents Γ1, Γ2 and Γ3, which make it possible to vary the
softness or stiffness of the EOS in the density regions 1:
ρ1 ! ρ ! ρ12; 2: ρ12 ! ρ ! ρ23, and 3: ρ " ρ23, respectively
(see Figure 6). For densities just above ρ1, the EOS is still
rather well constrained by the neutron matter calculations. The
band predicted for the pressure of neutron star matter at ρ1
corresponds to values of Γ in the range 2.25–2.5. Therefore,
we take a restricted range for the first polytropic exponent

1.0 ! Γ1 ! 4.5. We vary the value of all Γi in steps of 0.5.
At intermediate densities we allow for the possibility of a phase
transition and take a broad range 0 ! Γ2 ! 8. Finally, for
densities beyond ρ23 we allow for 0.5 ! Γ3 ! 8. We exclude
the value 0 for this density region in order to avoid artifacts
connected with a phase transition up to arbitrarily high density.
For the densities between polytropes, ρ12 and ρ23, we take
1.5 ρ0 ! ρ12 < ρ23 < ρmax with a step size of ρ0/2. We
will show in the next section that the maximal density for our
suite of EOSs of neutron stars is ρmax ≈ 8.3 ρ0.

The general polytropic extension leads to a very large number
of EOSs, which cover all possible pressures in the gray region
in Figure 7. Furthermore, we emphasize that this strategy is
very general. It is based on a well defined uncertainty band
at nuclear densities and does not rely on assumptions about
the nature of the constituents of neutron star matter and their
interactions at higher densities. The values of Γi and ρij are
limited by nuclear physics and observation. In the following, we
will demonstrate that the recent observation of a 1.97±0.04 M⊙
neutron star (Demorest et al. 2010) puts rather tight constraints
on the EOS at high densities and the radii of neutron stars. We
note that our results agree with those of our first study (Hebeler
et al. 2010), which used only two polytropes. This shows that
the general extension is robust and the conclusions would not
change significantly if additional polytropes were introduced to
characterize the pressure at high densities.

6. CONSTRAINTS ON THE NUCLEAR EQUATION
OF STATE AND NEUTRON STARS

The piecewise polytropic extension described in the previous
section is used to generate a very large number of equations of
state that cover the pressure-density plane at higher densities.
We solve the Tolman–Oppenheimer–Volkov equations for each
of these EOSs and retain only those that fulfill the following
two constraints.

1. The speed of sound remains smaller than the speed of
light for all densities relevant in neutron stars: vs(ρ) =√

dP/dE c ! c, where E is the energy density.

6
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Figure 12. Left panel: pressure P of neutron star matter as a function of energy density E for three representative EOSs in comparison with the uncertainty bands of
Figure 7. Right panel: the corresponding neutron star mass–radius results for the three EOSs and the uncertainty bands of Figure 11.
(A color version of this figure is available in the online journal.)

Table 5
Numerical Data for the Three Representative EOSs of Section 7 as a Function of Number Density n/n0 or Mass Density ρ

n/n0 ρc2 Soft Intermediate Stiff

P E ϵ R M P E ϵ R M P E ϵ R M

0.5792 87.07 0.4470 87.90 8.920 3260 0.53 0.4470 87.90 8.920 3260 0.53 0.6960 87.99 9.937 77.04 0.10
0.7124 107.1 0.7162 108.2 10.06 248.8 0.10 0.7162 108.2 10.06 248.8 0.10 1.150 108.4 11.75 29.32 0.13
0.7861 118.1 0.9094 119.5 10.73 85.17 0.10 0.9094 119.5 10.73 85.17 0.10 1.473 119.7 12.82 23.22 0.15
0.8646 129.9 1.154 131.5 11.47 47.29 0.10 1.154 131.5 11.47 47.29 0.10 1.880 131.9 14.03 19.72 0.18
0.9483 142.5 1.464 144.4 12.31 32.05 0.12 1.464 144.4 12.31 32.05 0.12 2.392 144.8 15.38 17.50 0.20
1.0371 155.9 1.851 158.0 13.24 24.36 0.13 1.851 158.0 13.24 24.36 0.13 3.028 158.7 16.91 16.02 0.23
1.1 165.3 2.163 167.8 13.94 21.15 0.14 2.163 167.8 13.94 21.15 0.14 3.542 168.5 18.04 15.29 0.26

1.2 180.4 2.465 183.3 14.99 19.26 0.15 3.064 183.3 15.12 16.57 0.17 5.240 184.2 20.05 13.98 0.34
1.3 195.4 2.780 198.8 16.04 18.00 0.16 4.220 198.9 16.57 14.23 0.22 7.512 200.1 22.57 13.33 0.45
1.4 210.5 3.106 214.3 17.05 17.08 0.17 5.677 214.6 18.25 13.01 0.28 10.48 216.2 25.63 13.09 0.58
1.5 225.5 3.445 229.8 18.03 16.36 0.17 7.481 230.3 20.19 12.37 0.34 14.30 232.5 29.28 13.07 0.73
1.6 240.5 3.795 245.4 18.97 15.80 0.18 9.684 246.3 22.41 12.04 0.42 20.39 249.2 33.74 13.22 0.96
1.7 255.6 4.157 261.0 19.88 15.32 0.18 12.34 262.3 24.93 11.89 0.51 28.47 266.3 39.30 13.47 1.22
1.8 270.6 4.529 276.6 20.77 14.92 0.19 15.51 278.6 27.76 11.85 0.61 38.98 283.9 46.12 13.75 1.50
1.9 285.6 4.911 292.2 21.63 14.57 0.19 19.25 295.0 30.92 11.87 0.71 52.49 302.2 54.41 14.01 1.79
2.0 300.7 5.304 307.9 22.47 14.26 0.20 23.64 311.7 34.43 11.93 0.82 69.59 321.3 64.37 14.23 2.07
2.1 315.7 5.707 323.5 23.28 13.99 0.20 28.73 328.6 38.31 12.00 0.94 80.56 341.1 75.52 14.32 2.21
2.2 330.7 6.119 339.2 24.08 13.74 0.21 34.61 345.7 42.58 12.09 1.05 92.63 361.4 87.21 14.38 2.33
2.3 345.8 6.541 354.9 24.87 13.52 0.21 41.35 363.2 47.26 12.17 1.17 105.8 382.4 99.44 14.41 2.44
2.4 360.8 6.972 370.6 25.63 13.31 0.21 49.02 380.9 52.36 12.25 1.29 120.2 403.9 112.2 14.42 2.53
2.5 375.8 7.413 386.4 26.38 13.12 0.22 57.72 399.0 57.91 12.32 1.41 135.9 426.0 125.5 14.41 2.61
2.6 390.9 9.379 402.2 27.18 12.33 0.23 67.52 417.4 63.91 12.37 1.53 152.9 448.9 139.4 14.38 2.68
2.7 405.9 11.76 418.0 28.12 11.52 0.26 78.53 436.3 70.40 12.42 1.64 171.2 472.3 153.8 14.33 2.74
2.8 420.9 14.63 434.0 29.20 10.83 0.29 90.82 455.6 77.38 12.45 1.74 190.9 496.5 168.7 14.28 2.79
2.9 436.0 18.06 450.1 30.46 10.31 0.33 104.5 475.3 84.89 12.48 1.84 212.1 521.5 184.2 14.22 2.83
3.0 451.0 22.13 466.3 31.90 9.95 0.39 119.6 495.6 92.92 12.49 1.94 234.8 547.1 200.3 14.15 2.86
3.1 466.0 26.94 482.7 33.54 9.73 0.45 132.0 516.3 101.3 12.49 2.00 259.1 573.6 216.8 14.07 2.89
3.2 481.1 32.60 499.2 35.41 9.60 0.52 145.2 537.4 110.1 12.48 2.06 285.0 600.9 234.0 14.00 2.92
3.3 496.1 39.21 515.9 37.53 9.54 0.61 159.3 559.0 119.1 12.47 2.12 312.6 629.0 251.6 13.91 2.94

Notes. The mass density ρ times c2, pressure P, and energy density E are given in MeV fm−3. The energy per nucleon ϵ is given in MeV. We also list the
neutron star radius R in km and mass M in units of M⊙ at the central density ρ.

Detailed values of the pressure, energy density, and energy per
particle for these three EOSs as a function of number density
and mass density are listed in Tables 5 and 6, with the BPS
crust EOS used at low densities in Table 7. In addition, Tables 5
and 6 include values for the neutron star radius and mass at that
central density.

8. CONCLUSIONS AND OUTLOOK

Recent advances in nuclear theory combined with new
astrophysical observations have systematically tightened the
constraints on the EOS of neutron-rich matter over a wide range
of densities. In this paper, we have presented constraints for the
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Fig. 10.— A comparison of our EoSs with those of Hebeler et al.
(2013), labeled HLPS in the figure. As is clear from the sizes
of the green and light blue regions, corresponding respectively to
our bitropic EoSs and the HLPS results (with the two solar mass
constraint implemented in both), the high-density constraint sig-
nificantly shrinks the allowed range of EoSs.

in fact justified when searching for the least restrictive
bounds for the EoS.
For EoSs displaying a phase transition, one can also

estimate the amount of quark matter in the cores of the
stars. This is seen from Fig. 6, which shows the relation
between the maximal chemical potential reached at the
center of a maximally massive star µcenter and the critical
(matching) chemical potential µc. We see that all EoSs
that fulfill the mass constraint lie above the µcenter > µc

line, and are therefore able to support stars with quark
matter cores. However, the stronger the transition is,
the smaller the window for quark matter: for ∆Q =
(250GeV)4, there is practically no quark matter left in
the cores of the stars.
In Fig. 9, we finally show the effect of the third

monotrope and a nonzero latent heat on the obtained
M − R clouds. In particular, we see from here that
allowing for a tritropic interpolation does not have a
large impact on the M − R plot: the most important
change is simply the shift of the maximal mass star
to {Mmax, R} = {2.75M⊙, 14.6km}. A more complete
analysis of the case of a first-order phase transition has
been recently performed by Alford et al. (2013). In this
reference, the authors in particular consider all possi-
ble branching cases, including twin star configurations,
which we have completely omitted in our work.

4. CONCLUSIONS AND SUMMARY

In the paper at hand, we have constructed a novel
scheme for determining the EoS of compact star mat-
ter that involves an interpolation between the regimes of
low-energy chiral effective theory and high-density per-
turbative QCD. These two limiting results are truly ro-
bust within their ranges of applicability, as they represent
controlled calculations in the fundamental theory of the
strong interactions. Our work on the other hand con-
stitutes the first ever attempt to take constraints from
both sides on equal footing when determining the EoS
between these limits. We have demonstrated that this
leads to important new constraints on the properties of
compact star matter on a wide density range, and thus
even for stars containing only hadronic matter.
The strictness of the constraints placed on the stellar

EoS by its high-density limit can be understood through
the tension between the softness of the perturbative EoS
and the stiffness required by the confirmed existence of a
two solar mass compact star. For the two interpolating
monotropes we employ in our calculation, this translates
into a significant difference between the respective poly-
tropic indices: While the first one needs to be rather stiff,
with γ1 > 2.86, the latter must be considerably softer,
1 < γ2 < 1.5. Although the polytropes themselves of
course do not carry information about the underlying
microphysics, such a strong shift in the polytropic index
might be interpreted as a sign of the effective degrees of
freedom of the system changing from hadronic to den-
confined ones.
The effect of the high density constraint is perhaps best

illustrated in Fig. 10, which displays our EoS band in the
form of energy density vs. pressure, plotted together with
the previous prediction of Hebeler et al. (2013), dubbed
HLPS. The latter work applied the same low-density EoS
we did and took into account the two solar mass con-
straint, but did not require the result to approach the
pQCD EoS at large densities. As expected, the main
difference between the two results is seen in the HLPS
cloud containing somewhat softer EoSs at low density
and stiffer ones at high density.
The rather narrow EoS band that results from our in-

terpolation naturally corresponds to a well defined re-
gion in the mass-radius diagram of compact stars. For a
1.4M⊙ neutron star, the radii we obtain range between
11 and 14.5 km, while the radius of a 2M⊙ pulsar lies
within R ≈ 10−15 km. Interestingly, we do not find con-
figurations with masses above 2.75M⊙ (for bitropic inter-
polation the maximal mass is 2.5M⊙). This conclusion
is in contrast with what has been found before without
the high-density constraint; see e.g. Hebeler et al. (2013),
where stars with masses up to 3M⊙ were discovered.
For the convenience of the reader, we finally provide

three representative EoSs in a tabulated form at the end
of this paper. These EoSs are all subluminal, able to
sustain a two solar mass star, and maximally different
from each other. Of them, EoS I gives the minimal ra-
dius, EoS II the maximal mass and EoS III the maximal
radius for our compact stars.
In conclusion, we find it remarkable, how the proper-

ties of quark matter at asymptotically high densities can
be seen to have such a strong impact on the structure of
compact stars at much lower energies. As we have high-
lighted in Fig. 1, this fact appears to make it possible
to largely bridge the gap between the respective EoSs of
low-density nuclear matter and high-density (perturba-
tive) quark matter.
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One can further constrain the very 
high density region

 ➝  Perturbative QCD can be applied



Astrophysical constraints

⦿ Measurements of NS masses

⦿ Gravitational waves / multi messenger observations

⦿ Measurements of NS radii

○ Shapiro delay technique

○ Measurements of M > 2 M⊙

○ NICER experiment  ➝  rotation of hot spots

○ GW signal  ➝   tidal deformability (➝ radius)

○ Oscillation frequency of merger remnant  ➝  radius

○ Fate of merger remnant  ➝  maximum mass

335/3/21

Pulsar mass observations
Since 2010, three pulsar-timing observations of heavy 
pulsars with masses close to 2 Msol:

• PSR 1614-2230: 1.908(16) Msol

• PSR J0348+0432: 2.01(4) Msol

• MSP J0740+6620: 2.08(7) Msol

Demorest et al., Nature (2010), Arzoumanian et al., ApJS (2018)

Antoniadis et al., Science (2013)

Cromartie et al., Nat. Astron (2020), Fonseca et al., arXiv:2104.00880

Cromartie et al., Nat. Astron (2020)

○ Measurements of R ~ 12-13 km

365/3/21

Neutron-star mergers

Credit: Tim Dietrich

Gravitational waves from neutron-star merger offer possibility to “measure” the neutron-star radius!
LIGO/VIRGO: 

• During merger, neutron stars deform under gravitational field of partner.
• This deformation is measured as “tidal deformability” from gravitational waveform during 

inspiral phase of neutron-star merger, and probes radius.

Illustration: (Top) NASA; (Bottom), Alan Stonebreaker



Multi-step analysis
2

(A) Chiral effective field theory: 
EOS derived with the chiral EFT 
framework

(C) NICER:
PSR J0030+0451

(D) GW170817: 
reanalysis with
IMRPhenomPv2_NRTidalv2

(E) AT2017gfo: 
analysis of the observated lightcurves

Prior construction

(F) GW190425: 
reanalysis with
IMRPhenomPv2_NRTidalv2

(G) No EM detection for GW190425:

(B) Maximum Mass Constraints: 
PSR J0740+6620/ PSR J0348+4032/ PSR 
J1614-2230 and GW170817/AT2017gfo 
remnant classification

Parameter estimation

(H)

FIG. 1. Multi-step procedure to constrain the neutron-star EOS. In each panel, allowed (disallowed) EOSs are shown as blue (gray) lines.
Lower plots indicate the probability distribution function (PDF) for the radius of a 1.4 solar mass neutron star, with the 90% confidence range
indicated by dashed lines. (A) The set of EOSs from chiral EFT. (B) The EOS set restricted by incorporating information from mass measure-
ments of PSR J0740+6620, PSR J0348+4032, PSR J1614-2230, and the maximum-mass constraints obtained from GW170817/AT2017gfo.
The 90% confidence interval of the maximum mass posterior probability distribution is shown by a purple band. (C) The EOS set further
restricted by the NICER mass-radius measurement of PSR J0030+0451 (purple contours at 68% and 95% confidence). (D) Further restriction
of the EOS set using Bayesian inference from our reanalysis of the GW170817 waveform. Contours at 68% and 95% confidence show the
mass-radius measurements of the primary (red) and secondary (orange) neutron stars. (E) We use the chirp mass, mass ratio, and the EOSs
as Bayesian prior for our analysis of AT2017gfo. (F) Further restrictions by analysing GW190425. This is our fiducial result. (G) Additional
analysis assuming that GW190425 did not produce a detectable EM signal. (H) The radius constraint at each step of this analysis, with 90%
confidence ranges.
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