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Correlation expansion methods: the idea
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which is a basis-independent function of the energy.
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⦿ The goal is always to solve

⦿ Idea: write the exact ground-state wave function as

reference statewave operator / correlation operator

then expand and truncate Ω0

⦿ Reference state

○ Must be simple enough (such that it can be computed easily and exactly)
○ Must be rich enough (such that it is a suitable starting point for the expansion)
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➪ Before truncation, the expansion is exact

➪ After truncation, cost reduced from N! to Nα with α ≥ 4

➪ Expansion in terms of particle-hole excitations



Concept of mean field
1

H0|�ki = ✏k|�ki

� ⌘ ↵�1/4 [fm�1]

V↵(k, k
0) ⇡ V↵=0(k, k

0) e�↵(k2
�k

02)2

dV↵(k, k0)

d↵
= �(k2 � k02)2V↵(k, k

0) +
2

⇡

Z
1

0
q2dq(k2 + k02 � 2q2)V↵(k, q)V↵(q, k

0)

H↵ = Tint + V↵

H↵ = Tint + V↵ + V 3N
↵

Hm =

2

6666664

↵1 �2

�2 ↵2 �3

�3 ↵3
. . .

. . .
. . . �m

�m ↵m

3

7777775

Hint = T � Tcm + VNN + V3N + · · ·

Hint| inti = Eint| inti

[Hcm, Hint] = 0

| i = | cmi ⌦ | inti

~x ⌘ ~x1 � ~x2

x̄ ⌘ ~x

|~x|

Ok =

8
>>>>>>><

>>>>>>>:

1

~L · ~S
Sr

12 ⌘ 3(~�1 · r̄)(~�2 · r̄)� (~�1 · ~�2)

Sp

12 ⌘ 3(~�1 · p̄)(~�2 · p̄)� (~�1 · ~�2)

Q12 ⌘ 1
2

h
(~�1 · ~L)(~�2 · ~L) + (~�2 · ~L)(~�1 · ~L)

i

V i =
5X

k=1

ci
k
f i

k
(~r 2, ~p 2, ~L 2)Ok

VNN = V (1, 2) = V (~r1, ~p1,~�1,~⌧1;~r2, ~p2,~�2,~⌧2)

○ One-body potential:

Turns out that it does

✓ Large mean free path λ

○  Inter-particle distance in nuclei ~ 2 fm

○ Range of nuclear interaction ~ 2 fm

⦿ Does an independent-particle picture make any sense at all?

➝   Quantum liquid
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[Rios & Somà 2012; Lopez et al. 2014]
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A-body problem A one-body problems
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○ Build Slater
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○ Independent particles: nucleons move inside a (one-body) potential well or mean field

✓ Fermi statistics helps out

➝

⦿ Slater determinant as reference state
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Liquid drop model & semi-empirical mass formula

⦿ Picture the nucleus as a (suspended) drop of (incompressible) liquid with surface tension

Competing processes give rise to nuclear binding

✓ Successful in explaining binding energy global trend

✗ Unsuccessful in explaining fine features, excitation spectra, …
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[Gamow, Bohr, Wheeler]Liquid drop model



○ 1. Start with 3D spherical HO potential
○ 2. Add term proportional to ℓ2 (centrifugal)
○ 3. Add a spin-orbit term ℓ∙s

Magic numbers reproduced!

1949

➪ Idea: devise an effective one-body potential  

[Göppert-Mayer, Jensen]
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Notation

Measured binding energies
vs.

Liquid drop model predictions

○Nucleon shells? (cf. electrons in the atom)

Systematic deviations

⦿ What creates regular patterns?

○ Yet, no obvious common potential

…

Non-interacting shell model



Introduction Hartree-Fock Symmetry breaking Hartree Fock Bogoliubov Bibliography

Independent-particle picture

Independent-particle picture

■ Cornerstone of any nuclear model

■ Nucleons orbit independently in
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N
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p2
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+ V (⃗ri)

)

■ Justified by mean free path ∼ 15fm

■ Justified by nucleon transfer exp.

Nuclear shells

■ Nucleon orbitals ψα = ψnljmτ

hψnljmτ = enljτ ψnljmτ

■ Nucleon shell-structure enljτ

■ A shell is 2j+1-fold degenerate

■ Fill shells for given (N,Z)

Average one-nucleon potential V (ri)

■ Analogy with atomic case

■ Self-created

■ One for neutrons/protons

■ Coulomb effect for protons

■ Includes a spin-orbit component

Mean-field approximations

⦿ Empirical one-body potentials provide a reasonable description at a reduced numerical cost 

✓ Coulomb shifts proton potentials

✓ Nucleons placed in single-particle energy levels

Empirical mean-field potentials
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Dynamical vs. static correlations

⦿ Dynamical/short-range/weak/single-particle correlations

⦿ Static/long-range/strong/collective correlations

○ Dynamical: characterised by short time scales & high excitation energies

○ Static: characterised by long time scales & low excitation energies

○ Long-range: governed by long-distance dynamics

○ Strong: strongly non-perturbative

○ Short-range: governed by short-distance dynamics

○ Weak: perturbative (at least with low-resolution interactions)

➪ Associated with short-range repulsion of NN interactions

➪ Associated with presence of bound np and virtual nn pairs (at least pairing correlations)

○ Single-particle: can be described in terms of excitations of a few nucleons

○ Collective: description involves coherent excitations of many particles 

➪ Short-range correlations

➪ E.g. pairing or quadrupole correlations



Closed- vs. open-shell systems
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⦿ Mean-field configurations have different features as N and Z vary

Nucleons entirely fill levels 
below a magic number

Closed-shell systems Open-shell systems

Nucleons partially fill levels 
below a magic number

Larger energy gap,
excitations hindered,

enhanced stability

Smaller (➝ 0) energy gap,
excitations enabled,

lesser stability

Dynamical correlations 
drive bulk properties*

Both static & dynamical 
correlations are important

*Each observables is impacted differently



Correlations via particle-hole excitations

⦿ In configuration-space methods, correlations are accounted for by means of ph excitations

○ Recall:

Tichai et al. MBPT for Finite Nuclei

both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
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Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
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body HF Hamiltonian.

Frontiers in Physics | www.frontiersin.org 9 June 2020 | Volume 8 | Article 164

Ref. Slater ➝   expand on

⦿ Configuration-interaction techniques (e.g. no-core shell model)
○ Few-p-few-h and many-p-many-h excitations treated on an equal footing

⦿ Expansion techniques

○ Expansion in the rank k of kp-kh excitations

○ Efficient treatment of both dynamical and static correlations

○ Efficient treatment of dynamical correlations, difficult to treat static correlations

Correlations as particle-hole excitationsCorrelations as particle-hole excitationsCorrelations as particle-hole excitations

+  …  ++ +  …  + +  …

Ref 1p1h 2p2h 3p3h

Correlations as particle-hole excitations



⦿ The two different strategies reflect into two different truncations of the Hilbert space

⦿ Configuration-interaction techniques 

⦿ Expansion techniques

○ Truncation in terms of the energy of the states included in the one-body basis

○ Truncation in terms of the total number of HO excitation quanta Nmax of the many-body states

E.g. Nmax = 6 calculation
No-core shell model

○ (On top of this there’s the truncation on the rank k of kp-kh excitations that are included)

E.g. emax = 6 calculation
2p2h truncation

Correlations as particle-hole excitations

Correlations as particle-hole excitations

Correlations via particle-hole excitations



Closed vs. open shells

at N=8 far from stability, fifteen years before the mass measurements at CERN by C. Thibault and
what would later be the Orsay group of the ISOLDE collaboration [6], in the N=20 region. Soon
after, the experimental studies of the excitation spectrum of doubly magic 16O [7, 8] discovered the
presence at very low excitation energy of 0+ states, which were interpreted as 4p-4h (four particles
four holes) and 8p-8h states [9, 10, 11, 12, 13]. Indeed to have a first excited state of 4p-4h nature
in a doubly magic nucleus is seriously at odds with the predictions of the IPM.

Jumping ahead half a century, we shall review the experimental methods that make it possible to
discover new manifestations of the many-body nuclear dynamics, the facilities where these experi-
ments can be performed, and the observables which convey the relevant information. As the field
has grown enormously and we cannot cover all the sectors of the Segré chart, we have chosen to
concentrate in the exotic very neutron-rich regions, mainly those depicted in Fig. 1, although we
shall touch upon as well the physics of the very neutron rich nuclei beyond N=82.
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Figure 1: Landscape of the light and mid-mass part of the Segré chart. Classical doubly magic
nuclei (black), new doubly magic isotopes (grey), expected semi-magic turned deformed (red), new
local doubly magic (green) and very neutron-rich nuclei whose structure is under debate (yellow) are
highlighted. Most cases are discussed in the review.

Medium-mass and heavy neutron-rich nuclei play as well an important role in the synthesis of elements
in the cosmos. In particular, violent events of the universe such as supernovae explosions and merging
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concentrate in the exotic very neutron-rich regions, mainly those depicted in Fig. 1, although we
shall touch upon as well the physics of the very neutron rich nuclei beyond N=82.

68 Ni

16 O

14 C

48 Ni 56 Ni

36 S

34 Si

32 Mg

48 Ca40 Ca

22 O

90 Zr80 Zr

60 Ca

52 Ca 54 Ca

96 Zr

28 O

24 O

78 Ni

8 8

20

28

32

40Z

28

2820

N

8

2014

40

64

20
50

100Sn

50

Zr
110

40

132

82

28

Sn

12

Mg

Si42

Cr

20

Be

C

Figure 1: Landscape of the light and mid-mass part of the Segré chart. Classical doubly magic
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concentrate in the exotic very neutron-rich regions, mainly those depicted in Fig. 1, although we
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Medium-mass and heavy neutron-rich nuclei play as well an important role in the synthesis of elements
in the cosmos. In particular, violent events of the universe such as supernovae explosions and merging
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Formal perturbation theory

⦿ Very popular in description of many-electron systems (since early days)

⦿ Starting point: splitting of the many-body Hamiltonian (“partitioning”)

○ Coulomb interaction sufficiently weak to allow perturbative treatment

⦿ Applications in many-nucleon systems traditionally hindered by strong short-range repulsion

○ SRG techniques have completely changed this view  ➝  renaissance of MBPT  in nuclear physics

unperturbed perturbation

Tichai et al. MBPT for Finite Nuclei

In many-body applications SRG-evolved operators display
highly improved model-space convergence, thus facilitating
studies of mid-mass nuclei. The impact on the convergence
properties of the MBPT series will be illustrated in section 5.6.2.
However, the numerical improvements come at the price of
induced many-body operators, i.e., the unitary transformation
shifts information to operators with higher particle ranks. For
instance, employing an initial two-body operator O2B leads to

O2B SRG
−−−−−−→ O2B(α)+ O3B(α)+ O4B(α)+ .... (7)

In practice, Equation (7) must be truncated at a given operator
rank, thus discarding higher-body operators. This approximation
formally violates the unitarity of the transformation in Fock space
and eventually induces a dependence of many-body observables
on the SRG parameter α. A reasonable trade-off must be found
for the value of α employed, i.e., it must improve the model-
space convergence while keeping the effect of induced many-
body operators at a minimum. The optimal parameter range may
vary depending on the operator one starts from.

For the evaluation of nuclear properties, it is crucial to
consistently transform all other operator representations to the
same resolution scale as the Hamiltonian in order to provide a
meaningful comparison in terms of a consistent operator basis
smoothly connected in terms of the RG flow.

3.3. The “Standard” Hamiltonian
All many-body applications discussed below, except for the
novel ones presented in section 10, employ a chiral Hamiltonian
containing a 2N interaction at next-to-next-to-next-to-leading-
order (N3LO) with a cutoff value of "2N = 500MeV/c [77, 78].
Three-body forces are included up to next-to-next-to-leading
order (N2LO) with a local regulator [78] based on a cutoff
value of "3N = 400MeV [79]. This constitutes a “standard”
Hamiltonian used in many recent ab initio studies of light and
medium-mass nuclei.

Additionally, the intrinsic Hamiltonian is consistently SRG-
evolved in the two- and three-body sectors [80, 81]. The
particular value of the SRG parameter is specified in each
individual application. To avoid the complication of dealing
with genuine three-body operators various forms of so-
called normal-ordered two-body approximations (NO2B) are
employed, depending on the particular nature of the A-body
reference state [79, 82, 83].

4. FORMAL PERTURBATION THEORY

The presentation of perturbation theory can be separated
into formal perturbation theory and many-body perturbation
theory [69]. Formal perturbation theory allows one to understand
the general rationale and most relevant properties of the
formalism. This is done by employing abstract Dirac notations
and by specifying the initial assumptions via the action of Hilbert
or Fock space operators on basis vectors. In particular, many
key results can be obtained without specifying the content of
the Hamiltonian (e.g., the rank of the operators it contains), the

nature of the partitioning (e.g., the symmetries characterizing
each contribution) and the associated reference state.

4.1. Partitioning
The starting point of perturbation theory relates to a partitioning
of the Hamiltonian

H ≡ H0 +H1, (8)

into an unperturbed part H0 and a perturbation H1 ≡ H −
H0. The main assumption relies on the fact that the eigenvalue
equation for H0 is numerically accessible, i.e.,

H0|#k⟩ = E(0)k |#k⟩, (9)

delivering the set of unperturbed eigenstates and eigenergies
{|#k⟩,E

(0)
k ; k ∈ N}making up an orthonormal, i.e.,

⟨#k|#l⟩ = δkl, (10)

basis of the many-body Hilbert space.
Remark: A large part of this document is dedicated to the
description of nuclear ground states, i.e., k = 0. Consequently,
the corresponding index is dropped in the following whenever
targeting the ground state, e.g., |%A

0 ⟩ = |%A⟩, |#0⟩ = |#⟩ or

E(0)0 = E(0).
One typically employs intermediate normalization, i.e., the

ground state |%A⟩ ofH is connected2 to the unperturbed ground-
state |#⟩ of H0 such that

1 = ⟨#|%A⟩. (11)

Associated with the above partitioning are the
projection operators

P ≡ |#⟩⟨#|, (12a)

Q ≡ 1− P, (12b)

where P|#⟩ = |#⟩ and Q|#⟩ = 0 by orthonormality. It can
be shown that P and Q do meet the requirements of projection
operators, i.e., Hermiticity and idempotency [69]. The operator
Q can be explicitly written as

Q ≡
∑′

k

|#k⟩⟨#k| ≡
∑

|#k⟩≠|#⟩

|#k⟩⟨#k|, (13)

where the primed sum indicates the exclusion of the reference
state from the summation. With these operators at hand, the
exact ground-state can be written as

|%A⟩ = P|%A⟩+ Q|%A⟩

= |#⟩+ |χ⟩, (14)

where the correlated part |χ⟩ ≡ Q|%A⟩, which is the unknown to
be solved for, denotes the orthogonal complement of |#⟩.

2Both states are supposed to be adiabatically connected when the perturbation H1

is switched on.
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form orthonormal basis of Hilbert space
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|#k⟩≠|#⟩

|#k⟩⟨#k|, (13)

where the primed sum indicates the exclusion of the reference
state from the summation. With these operators at hand, the
exact ground-state can be written as

|%A⟩ = P|%A⟩+ Q|%A⟩

= |#⟩+ |χ⟩, (14)

where the correlated part |χ⟩ ≡ Q|%A⟩, which is the unknown to
be solved for, denotes the orthogonal complement of |#⟩.

2Both states are supposed to be adiabatically connected when the perturbation H1

is switched on.

Frontiers in Physics | www.frontiersin.org 6 June 2020 | Volume 8 | Article 164

Tichai et al. MBPT for Finite Nuclei

In many-body applications SRG-evolved operators display
highly improved model-space convergence, thus facilitating
studies of mid-mass nuclei. The impact on the convergence
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the Hamiltonian (e.g., the rank of the operators it contains), the

nature of the partitioning (e.g., the symmetries characterizing
each contribution) and the associated reference state.

4.1. Partitioning
The starting point of perturbation theory relates to a partitioning
of the Hamiltonian

H ≡ H0 +H1, (8)

into an unperturbed part H0 and a perturbation H1 ≡ H −
H0. The main assumption relies on the fact that the eigenvalue
equation for H0 is numerically accessible, i.e.,

H0|#k⟩ = E(0)k |#k⟩, (9)

delivering the set of unperturbed eigenstates and eigenergies
{|#k⟩,E

(0)
k ; k ∈ N}making up an orthonormal, i.e.,

⟨#k|#l⟩ = δkl, (10)

basis of the many-body Hilbert space.
Remark: A large part of this document is dedicated to the
description of nuclear ground states, i.e., k = 0. Consequently,
the corresponding index is dropped in the following whenever
targeting the ground state, e.g., |%A

0 ⟩ = |%A⟩, |#0⟩ = |#⟩ or

E(0)0 = E(0).
One typically employs intermediate normalization, i.e., the

ground state |%A⟩ ofH is connected2 to the unperturbed ground-
state |#⟩ of H0 such that

1 = ⟨#|%A⟩. (11)

Associated with the above partitioning are the
projection operators

P ≡ |#⟩⟨#|, (12a)

Q ≡ 1− P, (12b)

where P|#⟩ = |#⟩ and Q|#⟩ = 0 by orthonormality. It can
be shown that P and Q do meet the requirements of projection
operators, i.e., Hermiticity and idempotency [69]. The operator
Q can be explicitly written as

Q ≡
∑′

k

|#k⟩⟨#k| ≡
∑

|#k⟩≠|#⟩

|#k⟩⟨#k|, (13)

where the primed sum indicates the exclusion of the reference
state from the summation. With these operators at hand, the
exact ground-state can be written as

|%A⟩ = P|%A⟩+ Q|%A⟩

= |#⟩+ |χ⟩, (14)

where the correlated part |χ⟩ ≡ Q|%A⟩, which is the unknown to
be solved for, denotes the orthogonal complement of |#⟩.

2Both states are supposed to be adiabatically connected when the perturbation H1

is switched on.
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In many-body applications SRG-evolved operators display
highly improved model-space convergence, thus facilitating
studies of mid-mass nuclei. The impact on the convergence
properties of the MBPT series will be illustrated in section 5.6.2.
However, the numerical improvements come at the price of
induced many-body operators, i.e., the unitary transformation
shifts information to operators with higher particle ranks. For
instance, employing an initial two-body operator O2B leads to

O2B SRG
−−−−−−→ O2B(α)+ O3B(α)+ O4B(α)+ .... (7)

In practice, Equation (7) must be truncated at a given operator
rank, thus discarding higher-body operators. This approximation
formally violates the unitarity of the transformation in Fock space
and eventually induces a dependence of many-body observables
on the SRG parameter α. A reasonable trade-off must be found
for the value of α employed, i.e., it must improve the model-
space convergence while keeping the effect of induced many-
body operators at a minimum. The optimal parameter range may
vary depending on the operator one starts from.

For the evaluation of nuclear properties, it is crucial to
consistently transform all other operator representations to the
same resolution scale as the Hamiltonian in order to provide a
meaningful comparison in terms of a consistent operator basis
smoothly connected in terms of the RG flow.

3.3. The “Standard” Hamiltonian
All many-body applications discussed below, except for the
novel ones presented in section 10, employ a chiral Hamiltonian
containing a 2N interaction at next-to-next-to-next-to-leading-
order (N3LO) with a cutoff value of "2N = 500MeV/c [77, 78].
Three-body forces are included up to next-to-next-to-leading
order (N2LO) with a local regulator [78] based on a cutoff
value of "3N = 400MeV [79]. This constitutes a “standard”
Hamiltonian used in many recent ab initio studies of light and
medium-mass nuclei.

Additionally, the intrinsic Hamiltonian is consistently SRG-
evolved in the two- and three-body sectors [80, 81]. The
particular value of the SRG parameter is specified in each
individual application. To avoid the complication of dealing
with genuine three-body operators various forms of so-
called normal-ordered two-body approximations (NO2B) are
employed, depending on the particular nature of the A-body
reference state [79, 82, 83].

4. FORMAL PERTURBATION THEORY

The presentation of perturbation theory can be separated
into formal perturbation theory and many-body perturbation
theory [69]. Formal perturbation theory allows one to understand
the general rationale and most relevant properties of the
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and by specifying the initial assumptions via the action of Hilbert
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state from the summation. With these operators at hand, the
exact ground-state can be written as
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be solved for, denotes the orthogonal complement of |#⟩.
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state from the summation. With these operators at hand, the
exact ground-state can be written as
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2Both states are supposed to be adiabatically connected when the perturbation H1

is switched on.

Frontiers in Physics | www.frontiersin.org 6 June 2020 | Volume 8 | Article 164

correlated wave functionunperturbed wave function

⦿ It follows that the exact energy can be written as

Tichai et al.

explicitly written as

Q ⌘
X0

k

|�kih�k| ⌘
X

|�ki6=|�i
|�kih�k| , (13)

where the primed sum indicates the exclusion of the reference state from the summation. With these
operators at hand, the exact ground-state can be written as

| Ai = P | Ai+Q| Ai
= |�i+ |�i , (14)

where the correlated part |�i ⌘ Q| Ai, which is the unknown to be solved for, denotes the orthogonal

complement of |�i.

Eventually, the exact ground-state energy is typically accessed in a projective way3 by left-multiplying
Eq. (1) with the reference state h�| such that

EA = h�|H| Ai
= h�|H0|�i+ h�|H1|�i| {z }

⌘ Eref

+ h�|H1|�i| {z }
⌘ �E

(15)

where Eref ⌘ h�|H|�i = E(0) + h�|H1|�i and �E ⌘ EA � Eref = h�|H1|�i denote reference and
correlation energies, respectively. When using a reference state of product type, e.g. a Slater determinant,
�E accounts for correlations between the nucleons beyond the mean-field approximation.

4.2 Resolvent operator

The complete derivation of formal perturbation theory is best performed in terms of the (Rayleigh-
Schrödinger) many-body resolvent operator

RRS ⌘
X0

k

|�kih�k|
E(0) � E

(0)
k

, (16)

which, due to orthonormality of the employed many-body basis, annihilates the reference state

RRS|�i = 0 . (17)

It is possible to employ alternative choices, such as the Brillouin-Wigner resolvent

RBW ⌘
X0

k

|�kih�k|
EA � E

(0)
k

, (18)

which differs from RRS by the presence of the exact energy in the denominator instead of the unperturbed
energy E(0). In practice, Brillouin-Wigner perturbation theory requires an (computationally intensive)

3 The projective character of standard MBPT or CC is to be distinguished from an expectation value approach, where the correlated state appears both as the
bra and the ket in the evaluation of the energy.
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Eventually, the exact ground-state energy is typically accessed
in a projective way3 by left-multiplying Equation (1) with the
reference state ⟨!| such that

EA = ⟨!|H|"A⟩

= ⟨!|H0|!⟩+ ⟨!|H1|!⟩+ ⟨!|H1|χ⟩

= Eref + $E, (15)

where Eref ≡ ⟨!|H|!⟩ = E(0) + ⟨!|H1|!⟩ and $E ≡ EA −
Eref = ⟨!|H1|χ⟩ denote reference and correlation energies,
respectively. When using a reference state of product type, e.g.,
a Slater determinant, $E accounts for correlations between the
nucleons beyond the mean-field approximation.

4.2. Resolvent Operator
The complete derivation of formal perturbation theory is best
performed in terms of the (Rayleigh-Schrödinger) many-body
resolvent operator

RRS ≡
∑′

k

|!k⟩⟨!k|

E(0) − E(0)k

, (16)

which, due to orthonormality of the employed many-body basis,
annihilates the reference state

RRS|!⟩ = 0. (17)

It is possible to employ alternative choices, such as the Brillouin-
Wigner resolvent

RBW ≡
∑′

k

|!k⟩⟨!k|

EA − E(0)k

, (18)

which differs from RRS by the presence of the exact energy
in the denominator instead of the unperturbed energy E(0).
In practice, Brillouin-Wigner perturbation theory requires an
(computationally intensive) iterative solution and, additionally,
suffers from a lack of size-extensivity4. Therefore, this choice
is only scarcely used in many-body applications. All of the
subsequent results are obtained using a Rayleigh-Schrödinger
resolvent. Consequently, the upper-case label “RS” is dropped to
avoid notational clutter.

4.3. Power-Series Expansion
After a long but straightforward derivation [69], one obtains the
correlated part of many-body ground-state and associated energy
under the form [84–86]

|χ⟩ =
∞
∑

k=1

(RH1)k|!⟩c, (19a)

3The projective character of standard MBPT or CC is to be distinguished from an
expectation value approach, where the correlated state appears both as the bra and
the ket in the evaluation of the energy.
4A quantum-mechanical method is coined as size-extensive if the energy of a
systems computed with this method scales linearly in the number of particles.

$E = ⟨!|H1

∞
∑

k=1

(RH1)k|!⟩c. (19b)

The lower index “c” stipulates the connected character of
the expansion ensuring its size-extensivity, i.e., proper scaling
of observables with system size5. Combining Equations (15)
and (19b), one obtains the total ground-state wave-function and
energy as power series in H1

|"A⟩ ≡
∞
∑

p=0

|"(p)⟩, (20)

EA ≡
∞
∑

p=0

E(p), (21)

such that |"(0)⟩ = |!⟩ and Eref = E(0) + E(1), i.e., the first non-
trivial correction contributing to the ground-state correlation
energy corresponds to the second-order term of the power series.
It reads as

E(2) = ⟨!|H1RH1|!⟩c, (22)

and can be re-written more explicitly by expanding the
resolvent as

E(2) =
∑′

k

⟨!|H1|!k⟩⟨!k|H1|!⟩

E(0) − E(0)k

. (23)

Equation (23) provides a prototypical example of a PT expression
associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)

5The first disconnected contribution originally appears at fourth order. It can be
shown that the renormalization terms cancel such disconnected contributions at
every order [69, 85, 86], thus providing the final connected form.
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Eventually, the exact ground-state energy is typically accessed
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associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)
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the expansion ensuring its size-extensivity, i.e., proper scaling
of observables with system size5. Combining Equations (15)
and (19b), one obtains the total ground-state wave-function and
energy as power series in H1

|"A⟩ ≡
∞
∑

p=0

|"(p)⟩, (20)

EA ≡
∞
∑

p=0

E(p), (21)

such that |"(0)⟩ = |!⟩ and Eref = E(0) + E(1), i.e., the first non-
trivial correction contributing to the ground-state correlation
energy corresponds to the second-order term of the power series.
It reads as

E(2) = ⟨!|H1RH1|!⟩c, (22)

and can be re-written more explicitly by expanding the
resolvent as

E(2) =
∑′

k

⟨!|H1|!k⟩⟨!k|H1|!⟩

E(0) − E(0)k

. (23)

Equation (23) provides a prototypical example of a PT expression
associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)

5The first disconnected contribution originally appears at fourth order. It can be
shown that the renormalization terms cancel such disconnected contributions at
every order [69, 85, 86], thus providing the final connected form.
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Eventually, the exact ground-state energy is typically accessed
in a projective way3 by left-multiplying Equation (1) with the
reference state ⟨!| such that

EA = ⟨!|H|"A⟩

= ⟨!|H0|!⟩+ ⟨!|H1|!⟩+ ⟨!|H1|χ⟩

= Eref + $E, (15)

where Eref ≡ ⟨!|H|!⟩ = E(0) + ⟨!|H1|!⟩ and $E ≡ EA −
Eref = ⟨!|H1|χ⟩ denote reference and correlation energies,
respectively. When using a reference state of product type, e.g.,
a Slater determinant, $E accounts for correlations between the
nucleons beyond the mean-field approximation.

4.2. Resolvent Operator
The complete derivation of formal perturbation theory is best
performed in terms of the (Rayleigh-Schrödinger) many-body
resolvent operator

RRS ≡
∑′

k

|!k⟩⟨!k|

E(0) − E(0)k

, (16)

which, due to orthonormality of the employed many-body basis,
annihilates the reference state

RRS|!⟩ = 0. (17)

It is possible to employ alternative choices, such as the Brillouin-
Wigner resolvent

RBW ≡
∑′

k

|!k⟩⟨!k|

EA − E(0)k

, (18)

which differs from RRS by the presence of the exact energy
in the denominator instead of the unperturbed energy E(0).
In practice, Brillouin-Wigner perturbation theory requires an
(computationally intensive) iterative solution and, additionally,
suffers from a lack of size-extensivity4. Therefore, this choice
is only scarcely used in many-body applications. All of the
subsequent results are obtained using a Rayleigh-Schrödinger
resolvent. Consequently, the upper-case label “RS” is dropped to
avoid notational clutter.

4.3. Power-Series Expansion
After a long but straightforward derivation [69], one obtains the
correlated part of many-body ground-state and associated energy
under the form [84–86]

|χ⟩ =
∞
∑

k=1

(RH1)k|!⟩c, (19a)

3The projective character of standard MBPT or CC is to be distinguished from an
expectation value approach, where the correlated state appears both as the bra and
the ket in the evaluation of the energy.
4A quantum-mechanical method is coined as size-extensive if the energy of a
systems computed with this method scales linearly in the number of particles.

$E = ⟨!|H1

∞
∑

k=1

(RH1)k|!⟩c. (19b)

The lower index “c” stipulates the connected character of
the expansion ensuring its size-extensivity, i.e., proper scaling
of observables with system size5. Combining Equations (15)
and (19b), one obtains the total ground-state wave-function and
energy as power series in H1

|"A⟩ ≡
∞
∑

p=0

|"(p)⟩, (20)

EA ≡
∞
∑

p=0

E(p), (21)

such that |"(0)⟩ = |!⟩ and Eref = E(0) + E(1), i.e., the first non-
trivial correction contributing to the ground-state correlation
energy corresponds to the second-order term of the power series.
It reads as

E(2) = ⟨!|H1RH1|!⟩c, (22)

and can be re-written more explicitly by expanding the
resolvent as

E(2) =
∑′

k

⟨!|H1|!k⟩⟨!k|H1|!⟩

E(0) − E(0)k

. (23)

Equation (23) provides a prototypical example of a PT expression
associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)

5The first disconnected contribution originally appears at fourth order. It can be
shown that the renormalization terms cancel such disconnected contributions at
every order [69, 85, 86], thus providing the final connected form.
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Eventually, the exact ground-state energy is typically accessed
in a projective way3 by left-multiplying Equation (1) with the
reference state ⟨!| such that

EA = ⟨!|H|"A⟩

= ⟨!|H0|!⟩+ ⟨!|H1|!⟩+ ⟨!|H1|χ⟩

= Eref + $E, (15)

where Eref ≡ ⟨!|H|!⟩ = E(0) + ⟨!|H1|!⟩ and $E ≡ EA −
Eref = ⟨!|H1|χ⟩ denote reference and correlation energies,
respectively. When using a reference state of product type, e.g.,
a Slater determinant, $E accounts for correlations between the
nucleons beyond the mean-field approximation.

4.2. Resolvent Operator
The complete derivation of formal perturbation theory is best
performed in terms of the (Rayleigh-Schrödinger) many-body
resolvent operator

RRS ≡
∑′

k

|!k⟩⟨!k|

E(0) − E(0)k

, (16)

which, due to orthonormality of the employed many-body basis,
annihilates the reference state

RRS|!⟩ = 0. (17)

It is possible to employ alternative choices, such as the Brillouin-
Wigner resolvent

RBW ≡
∑′

k

|!k⟩⟨!k|

EA − E(0)k

, (18)

which differs from RRS by the presence of the exact energy
in the denominator instead of the unperturbed energy E(0).
In practice, Brillouin-Wigner perturbation theory requires an
(computationally intensive) iterative solution and, additionally,
suffers from a lack of size-extensivity4. Therefore, this choice
is only scarcely used in many-body applications. All of the
subsequent results are obtained using a Rayleigh-Schrödinger
resolvent. Consequently, the upper-case label “RS” is dropped to
avoid notational clutter.

4.3. Power-Series Expansion
After a long but straightforward derivation [69], one obtains the
correlated part of many-body ground-state and associated energy
under the form [84–86]

|χ⟩ =
∞
∑

k=1

(RH1)k|!⟩c, (19a)

3The projective character of standard MBPT or CC is to be distinguished from an
expectation value approach, where the correlated state appears both as the bra and
the ket in the evaluation of the energy.
4A quantum-mechanical method is coined as size-extensive if the energy of a
systems computed with this method scales linearly in the number of particles.

$E = ⟨!|H1

∞
∑

k=1

(RH1)k|!⟩c. (19b)

The lower index “c” stipulates the connected character of
the expansion ensuring its size-extensivity, i.e., proper scaling
of observables with system size5. Combining Equations (15)
and (19b), one obtains the total ground-state wave-function and
energy as power series in H1

|"A⟩ ≡
∞
∑

p=0

|"(p)⟩, (20)

EA ≡
∞
∑

p=0

E(p), (21)

such that |"(0)⟩ = |!⟩ and Eref = E(0) + E(1), i.e., the first non-
trivial correction contributing to the ground-state correlation
energy corresponds to the second-order term of the power series.
It reads as

E(2) = ⟨!|H1RH1|!⟩c, (22)

and can be re-written more explicitly by expanding the
resolvent as

E(2) =
∑′

k

⟨!|H1|!k⟩⟨!k|H1|!⟩

E(0) − E(0)k

. (23)

Equation (23) provides a prototypical example of a PT expression
associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)

5The first disconnected contribution originally appears at fourth order. It can be
shown that the renormalization terms cancel such disconnected contributions at
every order [69, 85, 86], thus providing the final connected form.
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Eventually, the exact ground-state energy is typically accessed
in a projective way3 by left-multiplying Equation (1) with the
reference state ⟨!| such that

EA = ⟨!|H|"A⟩

= ⟨!|H0|!⟩+ ⟨!|H1|!⟩+ ⟨!|H1|χ⟩

= Eref + $E, (15)

where Eref ≡ ⟨!|H|!⟩ = E(0) + ⟨!|H1|!⟩ and $E ≡ EA −
Eref = ⟨!|H1|χ⟩ denote reference and correlation energies,
respectively. When using a reference state of product type, e.g.,
a Slater determinant, $E accounts for correlations between the
nucleons beyond the mean-field approximation.

4.2. Resolvent Operator
The complete derivation of formal perturbation theory is best
performed in terms of the (Rayleigh-Schrödinger) many-body
resolvent operator

RRS ≡
∑′

k

|!k⟩⟨!k|

E(0) − E(0)k

, (16)

which, due to orthonormality of the employed many-body basis,
annihilates the reference state

RRS|!⟩ = 0. (17)

It is possible to employ alternative choices, such as the Brillouin-
Wigner resolvent

RBW ≡
∑′

k

|!k⟩⟨!k|

EA − E(0)k

, (18)

which differs from RRS by the presence of the exact energy
in the denominator instead of the unperturbed energy E(0).
In practice, Brillouin-Wigner perturbation theory requires an
(computationally intensive) iterative solution and, additionally,
suffers from a lack of size-extensivity4. Therefore, this choice
is only scarcely used in many-body applications. All of the
subsequent results are obtained using a Rayleigh-Schrödinger
resolvent. Consequently, the upper-case label “RS” is dropped to
avoid notational clutter.

4.3. Power-Series Expansion
After a long but straightforward derivation [69], one obtains the
correlated part of many-body ground-state and associated energy
under the form [84–86]

|χ⟩ =
∞
∑

k=1

(RH1)k|!⟩c, (19a)

3The projective character of standard MBPT or CC is to be distinguished from an
expectation value approach, where the correlated state appears both as the bra and
the ket in the evaluation of the energy.
4A quantum-mechanical method is coined as size-extensive if the energy of a
systems computed with this method scales linearly in the number of particles.

$E = ⟨!|H1

∞
∑

k=1

(RH1)k|!⟩c. (19b)

The lower index “c” stipulates the connected character of
the expansion ensuring its size-extensivity, i.e., proper scaling
of observables with system size5. Combining Equations (15)
and (19b), one obtains the total ground-state wave-function and
energy as power series in H1

|"A⟩ ≡
∞
∑

p=0

|"(p)⟩, (20)

EA ≡
∞
∑

p=0

E(p), (21)

such that |"(0)⟩ = |!⟩ and Eref = E(0) + E(1), i.e., the first non-
trivial correction contributing to the ground-state correlation
energy corresponds to the second-order term of the power series.
It reads as

E(2) = ⟨!|H1RH1|!⟩c, (22)

and can be re-written more explicitly by expanding the
resolvent as

E(2) =
∑′

k

⟨!|H1|!k⟩⟨!k|H1|!⟩

E(0) − E(0)k

. (23)

Equation (23) provides a prototypical example of a PT expression
associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)

5The first disconnected contribution originally appears at fourth order. It can be
shown that the renormalization terms cancel such disconnected contributions at
every order [69, 85, 86], thus providing the final connected form.
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Eventually, the exact ground-state energy is typically accessed
in a projective way3 by left-multiplying Equation (1) with the
reference state ⟨!| such that

EA = ⟨!|H|"A⟩

= ⟨!|H0|!⟩+ ⟨!|H1|!⟩+ ⟨!|H1|χ⟩

= Eref + $E, (15)

where Eref ≡ ⟨!|H|!⟩ = E(0) + ⟨!|H1|!⟩ and $E ≡ EA −
Eref = ⟨!|H1|χ⟩ denote reference and correlation energies,
respectively. When using a reference state of product type, e.g.,
a Slater determinant, $E accounts for correlations between the
nucleons beyond the mean-field approximation.

4.2. Resolvent Operator
The complete derivation of formal perturbation theory is best
performed in terms of the (Rayleigh-Schrödinger) many-body
resolvent operator

RRS ≡
∑′

k

|!k⟩⟨!k|

E(0) − E(0)k

, (16)

which, due to orthonormality of the employed many-body basis,
annihilates the reference state

RRS|!⟩ = 0. (17)

It is possible to employ alternative choices, such as the Brillouin-
Wigner resolvent

RBW ≡
∑′

k

|!k⟩⟨!k|

EA − E(0)k

, (18)

which differs from RRS by the presence of the exact energy
in the denominator instead of the unperturbed energy E(0).
In practice, Brillouin-Wigner perturbation theory requires an
(computationally intensive) iterative solution and, additionally,
suffers from a lack of size-extensivity4. Therefore, this choice
is only scarcely used in many-body applications. All of the
subsequent results are obtained using a Rayleigh-Schrödinger
resolvent. Consequently, the upper-case label “RS” is dropped to
avoid notational clutter.

4.3. Power-Series Expansion
After a long but straightforward derivation [69], one obtains the
correlated part of many-body ground-state and associated energy
under the form [84–86]

|χ⟩ =
∞
∑

k=1

(RH1)k|!⟩c, (19a)

3The projective character of standard MBPT or CC is to be distinguished from an
expectation value approach, where the correlated state appears both as the bra and
the ket in the evaluation of the energy.
4A quantum-mechanical method is coined as size-extensive if the energy of a
systems computed with this method scales linearly in the number of particles.

$E = ⟨!|H1

∞
∑

k=1

(RH1)k|!⟩c. (19b)

The lower index “c” stipulates the connected character of
the expansion ensuring its size-extensivity, i.e., proper scaling
of observables with system size5. Combining Equations (15)
and (19b), one obtains the total ground-state wave-function and
energy as power series in H1

|"A⟩ ≡
∞
∑

p=0

|"(p)⟩, (20)

EA ≡
∞
∑

p=0

E(p), (21)

such that |"(0)⟩ = |!⟩ and Eref = E(0) + E(1), i.e., the first non-
trivial correction contributing to the ground-state correlation
energy corresponds to the second-order term of the power series.
It reads as

E(2) = ⟨!|H1RH1|!⟩c, (22)

and can be re-written more explicitly by expanding the
resolvent as

E(2) =
∑′

k

⟨!|H1|!k⟩⟨!k|H1|!⟩

E(0) − E(0)k

. (23)

Equation (23) provides a prototypical example of a PT expression
associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)

5The first disconnected contribution originally appears at fourth order. It can be
shown that the renormalization terms cancel such disconnected contributions at
every order [69, 85, 86], thus providing the final connected form.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
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where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑
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ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p
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H
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ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
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where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.

Frontiers in Physics | www.frontiersin.org 9 June 2020 | Volume 8 | Article 164

Tichai et al. MBPT for Finite Nuclei

both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏
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c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions
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where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑
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ep : c†pcp :, (37a)
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with
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one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑
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where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑
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ep : c†pcp : (36)

such that

H0 = H[0] +
∑
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ep : c†pcp :, (37a)
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states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2
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+
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mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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difficulty consists of an automatized generation and evaluation
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where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
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annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]
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pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).
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Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting
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where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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appropriate to closed-shell systems. This first version relies on the
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∏
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where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
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H in |!⟩ whereas H[2]
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pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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○ Add and subtract a diagonal (NO) one-body operator

where

○ Convention: one-body states occupied (unoccupied) in the reference determinant are labeled 
by i,j,k, … (a,b,c, …) and are referred to as hole (particle) states

Many-body perturbation theory



⦿ Choice of partitioning

⦿ Resolvent operator
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5.4. Perturbative Expansion
Given the eigenbasis of H0 characterized by Equations (34), (39),
and (41), the many-body resolvent (Equation 16) takes the form

R = −
∑

ai

|!a
i ⟩⟨!

a
i |

ϵai
−

(

1
2!

)2 ∑

abij

|!ab
ij ⟩⟨!

ab
ij |

ϵabij
(44)

−

(

1
3!

)2 ∑

abcijk

|!abc
ijk ⟩⟨!

abc
ijk |

ϵabcijk

+ ...,

and is to be fed into Equation (19b) that, once truncated at
a given power in H1, provides the correlation energy at the
corresponding perturbative order.

5.5. Low-Order Formulas
As alluded to above, the evaluation of low-order corrections
is facilitated by representing the MBPT expansion
diagrammatically. This is typically done using either Hugenholtz
or (anti-)symmetrized Goldstone diagrams, i.e., the time-ordered
counterpart of Feynman diagrams that are used to compute
matrix elements in quantum field theory. The interested reader
is referred to the literature, e.g., Shavitt and Bartlett [69], for an
elaborate discussion of the diagrammatic rules and their relation
to Wick’s theorem.

Focusing on the first non-trivial correction to the reference
energy (Equation 23), the second-order correction takes the
algebraic form

E(2) = −
∑

ai

H[2]
ai H

[2]
ia

ϵai
−

1
4

∑

abij

H[4]
abijH

[4]
ijab

ϵabij
, (45)

and is, thus, expressed in terms of the tensors defining the
residual interaction H1 (Equation 37b) in normal-ordered form.
The first contribution in Equation (45) relates to a so-called non-
canonical diagram that vanishes if the reference state is taken to
be the HF Slater determinant. The second term constitutes the
genuine and dominant second-order correction that contributes
for any Slater determinant reference state. Using the HF Slater
determinant reference state has the practical benefit of lowering
the number of many-body diagrams to be considered. While
this feature is not relevant at second-order, the proliferation of
non-canonical diagrams at higher order [95] makes the writing
of numerical codes more cumbersome. Still, at a given order
non-canonical diagrams are always of sub-leading complexity
from a computational point of view, i.e., they involve fewer
single-particle summations, such that they do not drive the
computational cost.

Since E(2) provides the leading contribution to the
perturbative expansion, one observes that dynamical correlations
are dominated by low-lying 2p2h-contributions. Most
importantly, it is clear from Equation (45) that the second-
order correction is manifestly negative, i.e., it increases the
binding energy. This stems from the fact that the numerators
are squared norms of matrix elements contributing to H1
and that the denominators are positive as long as the Slater

determinant reference state displays a non-zero shell gap
between occupied and unoccupied states, i.e., as long as one deals
with a closed-shell nucleus.

5.6. Results
The first goal of the present analysis is to study the convergence
characteristics of the perturbative expansion. In absence of
analytical knowledge, this study must be based on empirical
observations of high-order corrections, which is achieved
through the recursive formulation of section 4.4 in small model
spaces. Following this analysis, results of low-order MBPT
calculations in realistic model spaces are presented to illustrate
state-of-the-art ab initio applications to doubly closed-shell
nuclei [34].

5.6.1. Impact of Partitioning
While perturbation theory defines a general framework to access
nuclear observables, the performance strongly depends on the
choice of the partitioning H = H0 + H1 or, equivalently, on the
underlying vacuum fixing the starting point for the expansion.
Subsequently, two choices for H0 are presently compared in the
calculation of the ground-state energy of 16O, i.e., the one-body
(i) spherical harmonic oscillator (HO) and (ii) self-consistent
HF6 Hamiltonians (cf. section 5.3). The model space is truncated
employing the Nmax-truncation similar to the NCSM. Figure 3A
shows the sequence of partials sums using a HO partitioning
for a set of model spaces. The partial sums are divergent in all
cases, which can equally be seen from the exponential divergence
of high-order energy corrections in Figure 3C. On the other
hand, using a HF reference state yields a rapidly converging
perturbation series (Figure 3B) and the energy corrections are
exponentially suppressed as a function of the perturbative order
(Figure 3D), indicating robust convergence. In all cases the
converged results agree up to numerical accuracy with the exact
CI diagonalization.

Obviously, the reference state heavily affects the performance
of MBPT. In the above case, this can be understood by the poor
quality of the HO reference, e.g., the wrong asymptotic radial
dependence of single-particle HO eigenstates (Gaussian instead
of exponential suppression). Consequently, in the following a HF
determinant is used as a reference state when results are reported
for closed-shell nuclei.

5.6.2. SRG Dependence
Using a HF partitioning, the impact of the SRG transformation
of the Hamiltonian on the perturbative series is now illustrated.
In Figure 4, the ground-state energy of 4He, 16O, and 24O
is displayed while varying the value of the flow parameter α

defining the SRG transformation. The left-hand panels show that
the perturbative series converge in all cases thus demonstrating
the reliability of HF-MBPT. For the light 4He, the results are
independent of the flow parameter and the MBPT expansion
converges rapidly in all cases. For 16O and 24O, the rate of
convergence is slower for harder interactions, i.e., for lower
values of α. Furthermore, the partial sums admit a damped

6The HF problem is solved in a symmetry-restricted way, enforcing rotational
invariance of the resulting single-particle basis.

Frontiers in Physics | www.frontiersin.org 10 June 2020 | Volume 8 | Article 164

Tichai et al. MBPT for Finite Nuclei

5.4. Perturbative Expansion
Given the eigenbasis of H0 characterized by Equations (34), (39),
and (41), the many-body resolvent (Equation 16) takes the form
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i |

ϵai
−

(

1
2!

)2 ∑

abij

|!ab
ij ⟩⟨!

ab
ij |

ϵabij
(44)

−

(

1
3!

)2 ∑

abcijk

|!abc
ijk ⟩⟨!

abc
ijk |

ϵabcijk

+ ...,

and is to be fed into Equation (19b) that, once truncated at
a given power in H1, provides the correlation energy at the
corresponding perturbative order.

5.5. Low-Order Formulas
As alluded to above, the evaluation of low-order corrections
is facilitated by representing the MBPT expansion
diagrammatically. This is typically done using either Hugenholtz
or (anti-)symmetrized Goldstone diagrams, i.e., the time-ordered
counterpart of Feynman diagrams that are used to compute
matrix elements in quantum field theory. The interested reader
is referred to the literature, e.g., Shavitt and Bartlett [69], for an
elaborate discussion of the diagrammatic rules and their relation
to Wick’s theorem.

Focusing on the first non-trivial correction to the reference
energy (Equation 23), the second-order correction takes the
algebraic form

E(2) = −
∑

ai

H[2]
ai H

[2]
ia

ϵai
−

1
4

∑

abij

H[4]
abijH

[4]
ijab

ϵabij
, (45)

and is, thus, expressed in terms of the tensors defining the
residual interaction H1 (Equation 37b) in normal-ordered form.
The first contribution in Equation (45) relates to a so-called non-
canonical diagram that vanishes if the reference state is taken to
be the HF Slater determinant. The second term constitutes the
genuine and dominant second-order correction that contributes
for any Slater determinant reference state. Using the HF Slater
determinant reference state has the practical benefit of lowering
the number of many-body diagrams to be considered. While
this feature is not relevant at second-order, the proliferation of
non-canonical diagrams at higher order [95] makes the writing
of numerical codes more cumbersome. Still, at a given order
non-canonical diagrams are always of sub-leading complexity
from a computational point of view, i.e., they involve fewer
single-particle summations, such that they do not drive the
computational cost.

Since E(2) provides the leading contribution to the
perturbative expansion, one observes that dynamical correlations
are dominated by low-lying 2p2h-contributions. Most
importantly, it is clear from Equation (45) that the second-
order correction is manifestly negative, i.e., it increases the
binding energy. This stems from the fact that the numerators
are squared norms of matrix elements contributing to H1
and that the denominators are positive as long as the Slater

determinant reference state displays a non-zero shell gap
between occupied and unoccupied states, i.e., as long as one deals
with a closed-shell nucleus.

5.6. Results
The first goal of the present analysis is to study the convergence
characteristics of the perturbative expansion. In absence of
analytical knowledge, this study must be based on empirical
observations of high-order corrections, which is achieved
through the recursive formulation of section 4.4 in small model
spaces. Following this analysis, results of low-order MBPT
calculations in realistic model spaces are presented to illustrate
state-of-the-art ab initio applications to doubly closed-shell
nuclei [34].

5.6.1. Impact of Partitioning
While perturbation theory defines a general framework to access
nuclear observables, the performance strongly depends on the
choice of the partitioning H = H0 + H1 or, equivalently, on the
underlying vacuum fixing the starting point for the expansion.
Subsequently, two choices for H0 are presently compared in the
calculation of the ground-state energy of 16O, i.e., the one-body
(i) spherical harmonic oscillator (HO) and (ii) self-consistent
HF6 Hamiltonians (cf. section 5.3). The model space is truncated
employing the Nmax-truncation similar to the NCSM. Figure 3A
shows the sequence of partials sums using a HO partitioning
for a set of model spaces. The partial sums are divergent in all
cases, which can equally be seen from the exponential divergence
of high-order energy corrections in Figure 3C. On the other
hand, using a HF reference state yields a rapidly converging
perturbation series (Figure 3B) and the energy corrections are
exponentially suppressed as a function of the perturbative order
(Figure 3D), indicating robust convergence. In all cases the
converged results agree up to numerical accuracy with the exact
CI diagonalization.

Obviously, the reference state heavily affects the performance
of MBPT. In the above case, this can be understood by the poor
quality of the HO reference, e.g., the wrong asymptotic radial
dependence of single-particle HO eigenstates (Gaussian instead
of exponential suppression). Consequently, in the following a HF
determinant is used as a reference state when results are reported
for closed-shell nuclei.

5.6.2. SRG Dependence
Using a HF partitioning, the impact of the SRG transformation
of the Hamiltonian on the perturbative series is now illustrated.
In Figure 4, the ground-state energy of 4He, 16O, and 24O
is displayed while varying the value of the flow parameter α

defining the SRG transformation. The left-hand panels show that
the perturbative series converge in all cases thus demonstrating
the reliability of HF-MBPT. For the light 4He, the results are
independent of the flow parameter and the MBPT expansion
converges rapidly in all cases. For 16O and 24O, the rate of
convergence is slower for harder interactions, i.e., for lower
values of α. Furthermore, the partial sums admit a damped

6The HF problem is solved in a symmetry-restricted way, enforcing rotational
invariance of the resulting single-particle basis.
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5.4. Perturbative Expansion
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and is to be fed into Equation (19b) that, once truncated at
a given power in H1, provides the correlation energy at the
corresponding perturbative order.

5.5. Low-Order Formulas
As alluded to above, the evaluation of low-order corrections
is facilitated by representing the MBPT expansion
diagrammatically. This is typically done using either Hugenholtz
or (anti-)symmetrized Goldstone diagrams, i.e., the time-ordered
counterpart of Feynman diagrams that are used to compute
matrix elements in quantum field theory. The interested reader
is referred to the literature, e.g., Shavitt and Bartlett [69], for an
elaborate discussion of the diagrammatic rules and their relation
to Wick’s theorem.

Focusing on the first non-trivial correction to the reference
energy (Equation 23), the second-order correction takes the
algebraic form

E(2) = −
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and is, thus, expressed in terms of the tensors defining the
residual interaction H1 (Equation 37b) in normal-ordered form.
The first contribution in Equation (45) relates to a so-called non-
canonical diagram that vanishes if the reference state is taken to
be the HF Slater determinant. The second term constitutes the
genuine and dominant second-order correction that contributes
for any Slater determinant reference state. Using the HF Slater
determinant reference state has the practical benefit of lowering
the number of many-body diagrams to be considered. While
this feature is not relevant at second-order, the proliferation of
non-canonical diagrams at higher order [95] makes the writing
of numerical codes more cumbersome. Still, at a given order
non-canonical diagrams are always of sub-leading complexity
from a computational point of view, i.e., they involve fewer
single-particle summations, such that they do not drive the
computational cost.

Since E(2) provides the leading contribution to the
perturbative expansion, one observes that dynamical correlations
are dominated by low-lying 2p2h-contributions. Most
importantly, it is clear from Equation (45) that the second-
order correction is manifestly negative, i.e., it increases the
binding energy. This stems from the fact that the numerators
are squared norms of matrix elements contributing to H1
and that the denominators are positive as long as the Slater

determinant reference state displays a non-zero shell gap
between occupied and unoccupied states, i.e., as long as one deals
with a closed-shell nucleus.

5.6. Results
The first goal of the present analysis is to study the convergence
characteristics of the perturbative expansion. In absence of
analytical knowledge, this study must be based on empirical
observations of high-order corrections, which is achieved
through the recursive formulation of section 4.4 in small model
spaces. Following this analysis, results of low-order MBPT
calculations in realistic model spaces are presented to illustrate
state-of-the-art ab initio applications to doubly closed-shell
nuclei [34].

5.6.1. Impact of Partitioning
While perturbation theory defines a general framework to access
nuclear observables, the performance strongly depends on the
choice of the partitioning H = H0 + H1 or, equivalently, on the
underlying vacuum fixing the starting point for the expansion.
Subsequently, two choices for H0 are presently compared in the
calculation of the ground-state energy of 16O, i.e., the one-body
(i) spherical harmonic oscillator (HO) and (ii) self-consistent
HF6 Hamiltonians (cf. section 5.3). The model space is truncated
employing the Nmax-truncation similar to the NCSM. Figure 3A
shows the sequence of partials sums using a HO partitioning
for a set of model spaces. The partial sums are divergent in all
cases, which can equally be seen from the exponential divergence
of high-order energy corrections in Figure 3C. On the other
hand, using a HF reference state yields a rapidly converging
perturbation series (Figure 3B) and the energy corrections are
exponentially suppressed as a function of the perturbative order
(Figure 3D), indicating robust convergence. In all cases the
converged results agree up to numerical accuracy with the exact
CI diagonalization.

Obviously, the reference state heavily affects the performance
of MBPT. In the above case, this can be understood by the poor
quality of the HO reference, e.g., the wrong asymptotic radial
dependence of single-particle HO eigenstates (Gaussian instead
of exponential suppression). Consequently, in the following a HF
determinant is used as a reference state when results are reported
for closed-shell nuclei.

5.6.2. SRG Dependence
Using a HF partitioning, the impact of the SRG transformation
of the Hamiltonian on the perturbative series is now illustrated.
In Figure 4, the ground-state energy of 4He, 16O, and 24O
is displayed while varying the value of the flow parameter α

defining the SRG transformation. The left-hand panels show that
the perturbative series converge in all cases thus demonstrating
the reliability of HF-MBPT. For the light 4He, the results are
independent of the flow parameter and the MBPT expansion
converges rapidly in all cases. For 16O and 24O, the rate of
convergence is slower for harder interactions, i.e., for lower
values of α. Furthermore, the partial sums admit a damped

6The HF problem is solved in a symmetry-restricted way, enforcing rotational
invariance of the resulting single-particle basis.
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○ No computation of Hamiltonian matrix

○ Non-iterative calculation

○ Polynomial scaling O(N4)

○ Simplest choice in nuclear physics: HO Hamiltonian
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑
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where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
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Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac
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one obtains an orthonormal basis of the A-body Hilbert space

H
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which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
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can be rewritten in terms of normal-ordered contributions
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where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑
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ep : c†pcp : (36)

such that

H0 = H[0] +
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with
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Introducing the set of Slater determinants obtained from |!⟩ via
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|!ab···
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one obtains an orthonormal basis of the A-body Hilbert space
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which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)
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ab···
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ab···
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where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
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|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
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(Equation 8), one adds and subtracts a diagonal normal-ordered
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H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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⦿ Convergence of MBPT series

○ Convergence of the series can be tested up to high orders in small basis (recursive scheme)

○ Importance of using the right reference
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FIG. 1. Partial sums of 16O in HO basis (a) and HF basis (b) for the
NN+3N-full interaction with ↵ = 0.08fm4 and truncation parameters
Nmax = 2 (l), 4 ( H) and 6 (F). The corresponding energy correc-
tions for each order are displayed in (c) and (d), respectively. All
calculations are performed at oscillator frequency ~⌦ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.

16O

○ Resummation schemes possible (e.g. Padé, eigenvector continuation, …)

HO reference

HF reference
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Nmax = 2 (l), 4 ( H) and 6 (F). The corresponding energy correc-
tions for each order are displayed in (c) and (d), respectively. All
calculations are performed at oscillator frequency ~⌦ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.
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cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.
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cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.
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FIG. 1. Partial sums of 16O in HO basis (a) and HF basis (b) for the
NN+3N-full interaction with ↵ = 0.08fm4 and truncation parameters
Nmax = 2 (l), 4 ( H) and 6 (F). The corresponding energy correc-
tions for each order are displayed in (c) and (d), respectively. All
calculations are performed at oscillator frequency ~⌦ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.
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NN+3N-full interaction with ↵ = 0.08fm4 and truncation parameters
Nmax = 2 (l), 4 ( H) and 6 (F). The corresponding energy correc-
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calculations are performed at oscillator frequency ~⌦ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.

⦿ Choice of SRG parameter

○ Convergence rate depends on α
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NN+3N-full interaction with ↵ = 0.08fm4 and truncation parameters
Nmax = 2 (l), 4 ( H) and 6 (F). The corresponding energy correc-
tions for each order are displayed in (c) and (d), respectively. All
calculations are performed at oscillator frequency ~⌦ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.
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FIG. 1. Partial sums of 16O in HO basis (a) and HF basis (b) for the
NN+3N-full interaction with ↵ = 0.08fm4 and truncation parameters
Nmax = 2 (l), 4 ( H) and 6 (F). The corresponding energy correc-
tions for each order are displayed in (c) and (d), respectively. All
calculations are performed at oscillator frequency ~⌦ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.
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NN+3N-full interaction with ↵ = 0.08fm4 and truncation parameters
Nmax = 2 (l), 4 ( H) and 6 (F). The corresponding energy correc-
tions for each order are displayed in (c) and (d), respectively. All
calculations are performed at oscillator frequency ~⌦ = 24 MeV.

cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of ↵ and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the di↵erent flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investiga-
tion of third-order partial sums for selected medium-mass and
heavy closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
e�ciently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, coupled-cluster
calculations with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter ↵ = 0.08 fm4, which was used extensively in previ-
ous calculations and showed favorable order-by-order conver-
gence in our high-order studies. We cannot perform CI cal-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
4He (a), 16O (b) and 24O (c). The corresponding energy corrections
are given in (d), (e) and (f), respectively. The model space for the first
and second panel are truncated at Nmax = 6. The truncation for the
third panel is given by Nmax = 4. The flow parameters for the di↵er-
ent data sets are ↵ = 0.02 fm4 (l), 0.04 fm4 ( H) and 0.08 fm4(F). All
calculations use a NN+3N-full interaction with oscillator frequency
~⌦ = 24 MeV.

culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state this approach provides a complete inclusion of singly and
doubly excited clusters on top of the reference state and, in the
case of CR-CC(2, 3) an approximate non-iterative inclusion of
triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energy Ecorr = E � EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contribution are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative di↵erences are
in most cases much smaller than 1%. The same observation
holds for the correlation energy, i.e., the corrections to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, non negligible even though the third-order
energy corrections in HF-MBPT are one order of magnitude
smaller than the second-order correction.

○ Additional Nmax dependence

Many-body perturbation theory

[Tichai et al. 2016]
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disentangles their individual contributions to the overall third-
order energy correction. The contribution of the pp and hh
corrections are almost constant over the entire mass range,
whereas the energy correction arising from the ph term scales
with increasing mass number in the case of a NN+3N-full
interaction. For the tin isotopes the third-order energy cor-
rection contributes 3% of the overall binding energy in third-
order HF-MBPT and is not negligible. In particular we see
that most of the third-order energy correction arises from the
ph diagram. In the case of a NN+3N-induced interaction
we see that all three terms are suppressed with increasing
mass number. These systematic dependencies of the individ-

ual third-order contributions on the input Hamiltonian show
that a partial inclusion of selected third-order terms may lead
to wrong estimates.

Conclusions. We have discussed Rayleigh-Schrödinger
MBPT as an e�cient approach to compute ground-state en-
ergies for closed-shell nuclei up to the heavy-mass region.
The use of a HF basis has enabled us to overcome conver-
gence problems that generally arise in HO-MBPT. Investigat-
ing 16O in di↵erent model spaces showed convergent partial
sums when using HF-MBPT and the limit of the perturba-
tion series coincides with the results from explicit CI calcu-
lations. Additionally, we found systematic dependencies of
the convergence rate on the SRG parameter in the case of
16O and 24O. Thus, in HF-MBPT we can improve the conver-
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interaction. For the tin isotopes the third-order energy cor-
rection contributes 3% of the overall binding energy in third-
order HF-MBPT and is not negligible. In particular we see
that most of the third-order energy correction arises from the
ph diagram. In the case of a NN+3N-induced interaction
we see that all three terms are suppressed with increasing
mass number. These systematic dependencies of the individ-

ual third-order contributions on the input Hamiltonian show
that a partial inclusion of selected third-order terms may lead
to wrong estimates.
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ing 16O in di↵erent model spaces showed convergent partial
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order HF-MBPT and is not negligible. In particular we see
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we see that all three terms are suppressed with increasing
mass number. These systematic dependencies of the individ-
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that a partial inclusion of selected third-order terms may lead
to wrong estimates.
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corrections are almost constant over the entire mass range,
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with increasing mass number in the case of a NN+3N-full
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rection contributes 3% of the overall binding energy in third-
order HF-MBPT and is not negligible. In particular we see
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ph diagram. In the case of a NN+3N-induced interaction
we see that all three terms are suppressed with increasing
mass number. These systematic dependencies of the individ-

ual third-order contributions on the input Hamiltonian show
that a partial inclusion of selected third-order terms may lead
to wrong estimates.

Conclusions. We have discussed Rayleigh-Schrödinger
MBPT as an e�cient approach to compute ground-state en-
ergies for closed-shell nuclei up to the heavy-mass region.
The use of a HF basis has enabled us to overcome conver-
gence problems that generally arise in HO-MBPT. Investigat-
ing 16O in di↵erent model spaces showed convergent partial
sums when using HF-MBPT and the limit of the perturba-
tion series coincides with the results from explicit CI calcu-
lations. Additionally, we found systematic dependencies of
the convergence rate on the SRG parameter in the case of
16O and 24O. Thus, in HF-MBPT we can improve the conver-

○ Calculations currently possible up to mass A ~ 100 (and beyond)

MBPT Coupled cluster

⦿ Benchmark

○ Accuracy competitive to coupled cluster calculations (non-perturbative and more costly)

Many-body perturbation theory

[Tichai et al. 2016]
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Correlations as particle-hole excitations

⦿ Expansion of the exact wave function
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➪ Perturbative methods: expansion coefficients computed independently

⦿ Examples of non-perturbative approaches

○ Coupled-cluster theory (CC)

➪ Exponential ansatz for the wave function

Hergert Ab initio Nuclear Many-Body Theory

FIGURE 4 | Schematic view of correlations in nuclei. Solid circles indicate

nucleons, transparent circles hole states, and dashed ellipses indicate

correlations between nucleons. Certain 2p2h, 3p3h and higher correlations

(indicated in blue) are built into a correlated wave function that then serves as

the reference state for an MR-IMSRG(2) calculation (capturing correlations

indicated in red), while up to an IMSRG(A) calculation would be needed for an

equivalent description in the conventional framework.

irreducible k-body density matrices λ(k):

λpq ≡ ρpq , (25)

λpqrs ≡ ρpqrs − ρprρqs + ρqrρps , (26)

etc. The irreducible densities matrices encode the correlation
content of an arbitrary reference state |#⟩, hence they vanish
for Slater determinants. While the basis of normal-ordered
operators superficially is the same as in the conventional
IMSRG, shown in Equation (22), the inclusion of the irreducible
densities (cf. Equations 12 and 13) equips the basis with the
capability to describe the correlations that are present in the
reference state, which in turn should help to reduce MR-IMSRG
truncation errors. To understand this, let us assume that we
know the ground state of our system, and we normal order the
Hamiltonian with respect to this correlated state. Then the zero-
body part of the normal ordered Hamiltonian already is the
exact ground-state energy, and the normal-ordered one-, two-,
and higher-body parts do not matter at all for our result, and
neither does their evolution under an exact or truncated MR-
IMSRG flow. Thus, the better the reference state matches the
ground state, the less work the MR-IMSRG evolution and any
subsequent many-body method have to do to obtain the correct
ground-state energy.
Computational scaling and Magnus expansion. The
computational scaling of all three IMSRG flavors discussed
here—traditional, VS-IMSRG, and MR-IMSRG—is governed
by the truncation scheme. If we truncate operators and
commutators at the two-body level, as briefly mentioned
above, the number of flow equations scales as O(N4) with the
single-particle basis size N, and the computational effort for
evaluating the right-hand sides as O(N6). This holds despite
the greater complexity of the MR-IMSRG flow equations, which
contain terms containing irreducible two- and higher-body
density matrices.

Any observables of interest must, in principle, be evolved
alongside the Hamiltonian for consistency, which would create

a significant overhead. In practice, we can address this issue by
using the so-called Magnus formulation of the IMSRG [58, 76,
83, 96]: Assuming that the IMSRG transformation can be written
as an explicit exponential, U(s) = exp$(s), we can solve a single
set of flow equations for the anti-Hermitian operator$(s) instead
of evolving observables separately. All operators of interest can
then be computed by applying the Baker-Campbell-Hausdorff
expansion to O(s) = exp[$(s)]O exp[−$(s)].
IMSRG hybrid methods. As noted earlier in this section, the
conventional IMSRG evolution makes the matrix representation
of the Hamiltonian more diagonal by suppressing couplings
between the npnh excitations of the reference state. This implies a
decoupling of energy scales of the many-body system, analogous
to the decoupling of momentum scales by the free-space SRG,
although there are differences in detail that are associated with
the operator bases in which the flow is expressed (cf. Equations 10
and 22).

From this realization, it is not a big step to consider using the
IMSRG to construct RG-improved Hamiltonians for applications
in other methods, defining novel hybrid approaches. In fact, even
the original IMSRG formulation can be understood from this
perspective: The evolution generates a Hamiltonian that yields
the exact ground-state energy (up to truncations) in a Hartree-
Fock calculation, except the HF equations are automatically
satisfied for the evolved H, and we can read off the ground-state
energy directly. The same Hamiltonian can then be used as input
for EOM methods to compute excitation spectra [83]. Likewise,
the VS-IMSRG produces an RG-improved Hamiltonian that
serves as input for a Shell Model diagonalization.

Applying the same logic as in the VS-IMSRG case, the
IMSRG has been merged with the No-Core Shell Model
(NCSM, see section 2.3.6) into the In-Medium NCSM [84,
97]. In this approach, the IMSRG improves the Hamiltonian
with dynamical correlations from high-energy few-nucleon
excitations that would require enormously large model spaces
in the conventional NCSM, and the exact diagonalization in
a small model space describes the dynamics of many-nucleon
excitations. The NCSM as the “host” method is rooted in the
same particle-hole expansion picture as the IMSRG itself, but
this is not a requirement. Another new hybrid method is the In-
Medium Generator Coordinate Method (IM-GCM), which relies
on the GCM as a host method to capture collective correlations
[29, 85, 86]. In this approach, a many-body basis is generated
by restoring the symmetries of mean field solutions with various
types of shape and gauge configuration constraints, which is very
different from the particle-hole excitation basis discussed so far.

2.3.4. Coupled Cluster Methods
The Coupled Cluster (CC) method [12, 63] is an older cousin of
the IMSRG approach. It can also be understood as a decoupling
transformation of the Hamiltonian, but in contrast to the
IMSRG, it relies on a non-unitary similarity transformation
(see Figure 3). Traditionally, CC is motivated by an exponential
ansatz for the exact wave function of a system,

|%CC⟩ = eT |#⟩ , (27)
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○ In-medium similarity renormalisation group (IMSRG)

➪ SRG evolution for H normal-ordered w.r.t. to a reference Slater determinant

➪ Non-perturbative methods: expansion coefficients computed self-consistently

➪ Truncated CI: expansion coefficients computed via a diagonalisation



Green’s function techniques

⦿ The goal is to solve the A-body Schrödinger equation

⦿ Instead of working with the full A-body wave function            , rewrite the Schrödinger equation 
in terms of 1-, 2-, …. A-body objects G1=G, G2, … GA (Green’s functions)

⦿ 1-, 2-, …. A-body Green’s functions yield expectation values of 1-, 2-, …. A-body operators

⦿ One-body Green’s function obtained by solving Dyson equation (derived from Schrödinger eq.)

⦿ Bonus: one-body Green’s function contains information about A±1 excitation energy spectra

➟ Spectral or Lehmann representation of the Green’s function

➟ In practice, one usually needs 1- and/or 2-body GFs (~ 1- & 2-body density matrices)
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unperturbed Green’s function many-body effects contained in the self-energy Σ
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➟ A-1 coupled equations



Benchmarks

Oxygen binding energies

2N

2N+3N

[Hebeler et al. 2015]

○ Different strategies to solve HΨ=EΨ

⦿ Convergence of many-body results

○ Same input Hamiltonian (except lattice EFT)

○ All methods agree within 5%

○ Energy trend reproduced by 2N+3N results

⦿ Physics of oxygen isotopes

○ Correct drip line only with 3N forces
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Degeneracy of open-shell systems

⦿ Configuration-space methods expand the solution in ph excitations on top of a reference state

○ Standard formulation: reference state has the same symmetries of the exact wave function

○ Very efficient to account for dynamical (weak) correlations   ➝   closed-shell nuclei

○ What about static (strong) correlations?   ➝   open-shell nuclei

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations
Tichai et al. MBPT for Finite Nuclei

FIGURE 2 | (Top) Schematic representation of neutron or proton energy shells and associated occupations corresponding to a two-particle/two-hole excitation on

top of the reference Slater determinant, i.e., the ground state of H0, appropriate to a 16O-like nucleus (N = Z = 8). The last occupied shell in the reference state is the

Fermi level and its energy separation to the first empty level is denoted as !EF. Left: closed-shell nucleus for which the number of nucleons is such that (i) the Fermi

level is fully occupied and (ii) !EF ≫ 0. Center: sub-closed shell nucleus for which the number of nucleons is such that (i) the Fermi level is fully occupied and (ii) !EF is

small. Right: open-shell nucleus for which the number of nucleons is such that the Fermi level is only partly occupied such that !EF = 0. (Bottom) Emergence of an

infra-red divergence in the MBPT expansion of the ground-state energy of 16O induced by a step-wise reduction (going from blue, to yellow, to green, to purple, and

to red) of the size of the particle-hole gap in the spectrum of H0.
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The Hamiltonian is, thus, represented via a set of one-, two-, and
three-body matrix elements tpq, v̄pqrs and w̄pqrstu, respectively.
In a modern language the above matrix elements define tensors
of mode n = 2, 4, 6, respectively, where the mode specifies the
number of indices.

3.2. Similarity Renormalization Group
While the tensors defining the Hamiltonian built within χEFT
may display large low-to-high momentum couplings, pre-
processing tools can be used to tame them. During the past
decade the (free-space) similarity renormalization group (SRG)
approach has become the standard technique to generate a
“softened” basis representation of an operator more amenable to
many-body calculations [76].

The SRG approach is based on a unitary transformation of
the initial operator O parameterized by a continuous parameter

α ∈ R, i.e.,

O(α) = U†(α)OU(α). (4)

Equation (4) can be re-cast into a first-order differential equation

d

dα
O(α) = [η(α),O(α)] (5)

involving an anti-Hermitian generator η(α) that can be chosen
freely to achieve a desired decoupling pattern in the transformed
operator. A convenient choice employed in many calculations is
given by

η(α) ≡ [T,O(α)], (6)

such that the SRG evolution can be interpreted as a pre-
diagonalization of the operator in momentum space, thus
suppressing the coupling between high- and low-momentum
modes. This procedure thus drives the Hamiltonian toward a
band-diagonal form. Writing H(α) ≡ T + V(α) + W(α) + . . .

in the same single-particle basis as the starting Hamiltonian,
the SRG transformation corresponds to generating α-dependent
tensors v̄pqrs(α), w̄pqrstu(α) . . .whose UV elements linking single-
particle states corresponding to low and high momenta are
strongly suppressed.
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○ Gap at the Fermi surface decreases ( ➝ 0 in the limit)

○ ph hierarchy becomes ill-defined



Breakdown of ph expansion

Vacuum
Gap to first excited state

Vacuum No gap

Open-shellClosed-shell
⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

⦿ Solution: multi-determinantal or symmetry-breaking reference state 

Doubly open-shell nuclei

Pairing correlations
↕ 

Superfluidity
↕

Breaking of U(1)

Quadrupole correlations
↕

Deformation
↕

Breaking of SU(2)

○ Symmetry-breaking solution allows to lift the degeneracy

Singly open-shells Doubly open-shells

To be developed and implementedDeveloped and implemented
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Pairing correlations
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Quadrupole correlations
↕

Deformation
↕

Breaking of SU(2)

○ Symmetry-breaking solution allows to lift the degeneracy

Singly open-shells Doubly open-shells

To be developed and implementedDeveloped and implemented

○ Breakdown of ph expansion evident 
already in MBPT(2) expressions

No gap

Gap to first excited state

Tichai et al. MBPT for Finite Nuclei

FIGURE 2 | (Top) Schematic representation of neutron or proton energy shells and associated occupations corresponding to a two-particle/two-hole excitation on

top of the reference Slater determinant, i.e., the ground state of H0, appropriate to a 16O-like nucleus (N = Z = 8). The last occupied shell in the reference state is the

Fermi level and its energy separation to the first empty level is denoted as !EF. Left: closed-shell nucleus for which the number of nucleons is such that (i) the Fermi

level is fully occupied and (ii) !EF ≫ 0. Center: sub-closed shell nucleus for which the number of nucleons is such that (i) the Fermi level is fully occupied and (ii) !EF is

small. Right: open-shell nucleus for which the number of nucleons is such that the Fermi level is only partly occupied such that !EF = 0. (Bottom) Emergence of an

infra-red divergence in the MBPT expansion of the ground-state energy of 16O induced by a step-wise reduction (going from blue, to yellow, to green, to purple, and

to red) of the size of the particle-hole gap in the spectrum of H0.
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The Hamiltonian is, thus, represented via a set of one-, two-, and
three-body matrix elements tpq, v̄pqrs and w̄pqrstu, respectively.
In a modern language the above matrix elements define tensors
of mode n = 2, 4, 6, respectively, where the mode specifies the
number of indices.

3.2. Similarity Renormalization Group
While the tensors defining the Hamiltonian built within χEFT
may display large low-to-high momentum couplings, pre-
processing tools can be used to tame them. During the past
decade the (free-space) similarity renormalization group (SRG)
approach has become the standard technique to generate a
“softened” basis representation of an operator more amenable to
many-body calculations [76].

The SRG approach is based on a unitary transformation of
the initial operator O parameterized by a continuous parameter

α ∈ R, i.e.,

O(α) = U†(α)OU(α). (4)

Equation (4) can be re-cast into a first-order differential equation

d

dα
O(α) = [η(α),O(α)] (5)

involving an anti-Hermitian generator η(α) that can be chosen
freely to achieve a desired decoupling pattern in the transformed
operator. A convenient choice employed in many calculations is
given by

η(α) ≡ [T,O(α)], (6)

such that the SRG evolution can be interpreted as a pre-
diagonalization of the operator in momentum space, thus
suppressing the coupling between high- and low-momentum
modes. This procedure thus drives the Hamiltonian toward a
band-diagonal form. Writing H(α) ≡ T + V(α) + W(α) + . . .

in the same single-particle basis as the starting Hamiltonian,
the SRG transformation corresponds to generating α-dependent
tensors v̄pqrs(α), w̄pqrstu(α) . . .whose UV elements linking single-
particle states corresponding to low and high momenta are
strongly suppressed.
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○ Can be explicitly demonstrated by 
artificially decreasing the gap in 16O

gap

[Tichai et al. 2020]



Single- vs multi-reference strategy

⦿ Multi-reference strategy ⦿ Single-reference strategy

○ Reopens the gap via IR diagonalisation

○ Ref: linear combination of Slater dets.

○ UV correlations via ph excitations

○ Reopens the gap via symmetry breaking

○ Ref: single Slater determinant

○ UV correlations via ph excitations

Vacuum
Gap to first excited state

Vacuum No gap

UV space

IR space

✓ Symmetries are automatically preserved

✗ ph expansion: complicated formalism

✓ ph expansion: simpler formalism 

✗ Symmetries must be restored

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

⦿ Solution: multi-determinantal or symmetry-breaking reference state 

Doubly open-shell nuclei

Pairing correlations
↕ 

Superfluidity
↕

Breaking of U(1)

Quadrupole correlations
↕

Deformation
↕

Breaking of SU(2)

○ Symmetry-breaking solution allows to lift the degeneracy

Singly open-shells Doubly open-shells

To be developed and implementedDeveloped and implemented

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

Approximate ab initio methods

i j

a b



Symmetry breaking

⦿ Enlarge the variational space

○ Requiring the w.f. ansatz to have the same symmetries of H is too restrictive

○ In most cases, mean-field solution spontaneously breaks symmetries if allowed

⦿ Lift the degeneracy

○ Trade the ph degeneracy for one in the transformations of the associated symmetry group

Closed-shell systems Open-shell systems

Symmetry-conserving minimum
Symmetry-breaking minimum

○ Order parameter
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⦿ Symmetry restoration

○ Symmetry breaking is fictitious in finite systems

○ Symmetry breaking is an intermediate step  ➝  symmetries must be restored at the end



Symmetry breaking

Physical symmetry Group Casimir Correlations
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⦿ Which symmetries can be broken?

⦿ Which symmetries should be broken?

○ In practice, there are different formal & computational consequences

○ In principle, the more the better (provided calculations are feasible)

➪ Computationally, breaking U(1) is cheaper than breaking SU(2) (symmetry reduction)

➪ Breaking U(1) requires a modification of the (bases of the) formalism, breaking SU(2) doesn’t

U(1)-breaking methods were first developed

○ Ultimately, it depends on the system

○ Singly open-shell nuclei  ➪ Sufficient to break U(1)  

○ Doubly open-shell nuclei  ➪ Necessary to break SU(2)
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⦿ Application to isotopic chains (Z=18-24)

⦿ Binding energies

○ Above and below: doubly open shells

○ Z = 20 (calcium): magic number

[Somà et al. 2021]

○ First symmetry-breaking ab initio method

○ Normal + anomalous propagators
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Fig. 1 Total binding energies along Z = 18 − 24 isotopic chains
computed at the ADC(2) level with the NN+3N (lnl) interaction (sym-
bols joined by solid lines). For comparison, experimental data (mea-
sured [37,39,52– 54], full symbols and extrapolated [52], empty sym-
bols) are displayed. Both calculated and experimental values are shifted
by (20− Z)×20 MeV for a better readability. For closed-shell calcium
isotopes, available ADC(3) results [8] are displayed as horizontal lines

and titanium up to 19 MeV for chromium. This addition-
ally points to a possible specific deficiency (besides generic
third-order terms) related to a poor account of quadrupole
correlations, as elaborated on in the following.

3.2 One- and two-nucleon separation energies

Systematically accessing successive nuclides along isotopic
or isotonic chains allows to investigate some of the most
fundamental properties of atomic nuclei such as the limits of
their existence as bound states or the emergence (and evolu-
tion) of magic numbers. Such properties are best studied by
looking at total ground-state energy differences. Two-neutron
separation energies

S2n(N , Z) ≡ |E(N , Z)| − |E(N − 2, Z)| (2)

are first considered. Their values computed from the total
energies of Fig. 1 are shown in Fig. 2, together with available
and extrapolated experimental data. The overall agreement
with experiment is remarkable, with computed values fol-
lowing the main trends of measured data. R.m.s. deviations
amount to 2.9, 1.5, 2.0 and 2.2 MeV for argon, calcium,
titanium and chromium respectively. The two neutron magic
numbers N = 20 and N = 28, associated with sudden drops
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Fig. 2 Two-neutron separation energies along Z = 18−24 isotopic
chains computed with the NN+3N (lnl) interaction (symbols joined by
solid lines), compared to experimental (measured, full symbols and
extrapolated, empty symbols) data. Both calculated and experimental
values are shifted by (Z−20) × 5 MeV for a better readability

of S2n, are visible in all theoretical curves. The N = 28 gap
is very well reproduced across all isotopic chains, with the
good description carrying over to larger neutron numbers for
most chains. On the contrary, the gap at N = 20 turns out to
be overestimated, with the comparison to experiment wors-
ening when departing from proton magic number Z = 20.
The description deteriorates also in other regions, e.g. for
argon isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. The latter observation reflects in
the differences between the r.m.s. deviations reported above.
As discussed further below, it might originate in the poorer
description of the strong quadrupole correlations character-
ising doubly open-shell systems.

The neutron dripline, i.e. the position of the last bound
system in a given isotopic chain, can be also read from two-
neutron separation energies as unbound nuclei are charac-
terised by negative values of S2n. None of the computed
neutron rich isotopes shown in Fig. 2 results unbound, i.e.
the dripline is predicted to be located beyond N = 40 for
all considered chains3. The smallest S2n value are reached
for 56−57Ar and are as low as 100 keV. However, one must
remark that continuum coupling is likely to play an impor-
tant role when binding energies are so close to the neu-
tron emission threshold. Presently, the continuum is crudely

3 Present calculations could not be extended beyond N = 40 due to
convergence issues, see discussion in Ref. [8] for more details.
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and titanium up to 19 MeV for chromium. This addition-
ally points to a possible specific deficiency (besides generic
third-order terms) related to a poor account of quadrupole
correlations, as elaborated on in the following.

3.2 One- and two-nucleon separation energies

Systematically accessing successive nuclides along isotopic
or isotonic chains allows to investigate some of the most
fundamental properties of atomic nuclei such as the limits of
their existence as bound states or the emergence (and evolu-
tion) of magic numbers. Such properties are best studied by
looking at total ground-state energy differences. Two-neutron
separation energies

S2n(N , Z) ≡ |E(N , Z)| − |E(N − 2, Z)| (2)

are first considered. Their values computed from the total
energies of Fig. 1 are shown in Fig. 2, together with available
and extrapolated experimental data. The overall agreement
with experiment is remarkable, with computed values fol-
lowing the main trends of measured data. R.m.s. deviations
amount to 2.9, 1.5, 2.0 and 2.2 MeV for argon, calcium,
titanium and chromium respectively. The two neutron magic
numbers N = 20 and N = 28, associated with sudden drops
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of S2n, are visible in all theoretical curves. The N = 28 gap
is very well reproduced across all isotopic chains, with the
good description carrying over to larger neutron numbers for
most chains. On the contrary, the gap at N = 20 turns out to
be overestimated, with the comparison to experiment wors-
ening when departing from proton magic number Z = 20.
The description deteriorates also in other regions, e.g. for
argon isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. The latter observation reflects in
the differences between the r.m.s. deviations reported above.
As discussed further below, it might originate in the poorer
description of the strong quadrupole correlations character-
ising doubly open-shell systems.

The neutron dripline, i.e. the position of the last bound
system in a given isotopic chain, can be also read from two-
neutron separation energies as unbound nuclei are charac-
terised by negative values of S2n. None of the computed
neutron rich isotopes shown in Fig. 2 results unbound, i.e.
the dripline is predicted to be located beyond N = 40 for
all considered chains3. The smallest S2n value are reached
for 56−57Ar and are as low as 100 keV. However, one must
remark that continuum coupling is likely to play an impor-
tant role when binding energies are so close to the neu-
tron emission threshold. Presently, the continuum is crudely

3 Present calculations could not be extended beyond N = 40 due to
convergence issues, see discussion in Ref. [8] for more details.
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are first considered. Their values computed from the total
energies of Fig. 1 are shown in Fig. 2, together with available
and extrapolated experimental data. The overall agreement
with experiment is remarkable, with computed values fol-
lowing the main trends of measured data. R.m.s. deviations
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of S2n, are visible in all theoretical curves. The N = 28 gap
is very well reproduced across all isotopic chains, with the
good description carrying over to larger neutron numbers for
most chains. On the contrary, the gap at N = 20 turns out to
be overestimated, with the comparison to experiment wors-
ening when departing from proton magic number Z = 20.
The description deteriorates also in other regions, e.g. for
argon isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. The latter observation reflects in
the differences between the r.m.s. deviations reported above.
As discussed further below, it might originate in the poorer
description of the strong quadrupole correlations character-
ising doubly open-shell systems.

The neutron dripline, i.e. the position of the last bound
system in a given isotopic chain, can be also read from two-
neutron separation energies as unbound nuclei are charac-
terised by negative values of S2n. None of the computed
neutron rich isotopes shown in Fig. 2 results unbound, i.e.
the dripline is predicted to be located beyond N = 40 for
all considered chains3. The smallest S2n value are reached
for 56−57Ar and are as low as 100 keV. However, one must
remark that continuum coupling is likely to play an impor-
tant role when binding energies are so close to the neu-
tron emission threshold. Presently, the continuum is crudely

3 Present calculations could not be extended beyond N = 40 due to
convergence issues, see discussion in Ref. [8] for more details.
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V. Somà et al.: Moving away from singly-magic nuclei with Gorkov Green’s function theory 7

16 18 20 22 24 26 28 30 32 34 36 38

-20

-10

0

10

20

30

40

50

60

N

Δ
2n

 [M
eV

]

Ar

Sc

Ti

V

Ca

K

Cr

Full symbols: experimental data
Empty symbols: extrapolated data

Symbols + line: theory

Fig. 5. Two-neutron shell gaps, Eq. (5), along Z = 18� 24 iso-
topic chains computed with the NN+3N(lnl) interaction (sym-
bols joined by solid lines), compared to experimental (measured,
full symbols and extrapolated, empty symbols) data. Both the-
oretical and experimental values are shifted by (Z � 20)⇥ 10
MeV for a better readability.

certain ingredients (e.g. quadrupole correlations) that are
missing in the present theoretical framework.

In spite of these deficiencies, remarkably, all magic num-
bers as well as their qualitative evolution emerge “from
first principles”, i.e. starting solely from inter-nucleon in-
teractions whose coupling constants have been adjusted
only in few-body systems. Let us stress that, indeed, no
ad hoc information about the magic character of these
isotopes is inserted at any stage of the calculation. The
emergence of this feature can be better appreciated in
Fig. 6 where two-neutron gaps are compared to experimen-
tal (measured and extrapolated) data along N = 28, 30, 32
and 34 isotonic chains. While there is room for improve-
ment in Z = 22, 23, 24 isotones for reasons discussed above,
the overall description is very reasonable. In addition, cal-
culations of the N = 28 gaps were recently extended down
to chlorine and sulfur [39] where an excellent agreement
with novel precision mass measurement was also found.

3.4 Three-point mass di↵erences

One of the longstanding challenges in low-energy nuclear
physics relates to the microscopic description of nuclear
superfluidity [57]. The microscopic origin of nucleonic pair-
ing, i.e. how it originates in the context of a first-principle
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Fig. 6. Two-neutron shell gaps, Eq. (5), along four isotonic
chains computed with the NN+3N(lnl) interaction (circles),
compared to experimental (measured, full squares, and extrap-
olated, empty squares) data. Results for N = 28, 30, 32 and 34
are shown in panels (a), (b), (c) and (d) respectively.

calculation and the role played by di↵erent types of many-
body correlations, remains to be elucidated [58]. A fun-
damental, yet unresolved, question relates to how much
of the pairing gap in finite nuclei is accounted for at low-
est order [59, 60] and how much is due to higher-order
processes, i.e. to the induced interaction associated with
the exchange of collective medium fluctuations between
paired particles [61, 62, 63, 64]. By treating normal and
anomalous propagators consistently and at the same level
of approximation, GSCGF many-body scheme is in an ex-
cellent position to contribute to this quest. In finite nuclei,
the odd-even mass staggering is a good measure of nucle-
onic, e.g. neutron, pairing. In particular, the three-point
mass di↵erence formula

�(3)(N,Z) ⌘ (�1)N

2
[E(N�1, Z)�2E(N,Z)+E(N+1, Z)]

(6)
successively evaluated for even and odd N closely encom-
passes the pairing gap [55, 65] as long as N does not
correspond to a shell closure6. Calculated three-point mass
di↵erences for argon, calcium, titanium and chromium are
compared to available experimental data in Fig. 7. In spite
of a reasonable general trend, the pairing strength gener-
ated in the present ab initio calculations is too low com-

6 Note that �(3) corresponds to half of the energy di↵erence
between the lowest unoccupied quasiparticle and the highest
occupied quasihole states, that is the particle-hole neutron gap
at the Fermi surface. At subshell closures, this is dominated
by the gap among di↵erent nuclear orbits. However, for open
neutron shells only the pairing contribution remains.

○ Agreement deteriorates away from calcium

○ N = 20 gap too large 

○ Magic numbers emerge ab initio!

○ Measure of ph gap

⦿ Two-neutron shell gaps
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tant role when binding energies are so close to the neutron
emission threshold. Presently, the continuum is crudely in-
cluded via the discretised harmonic oscillator basis, which
does not ensure correct asymptotic properties. In future
studies, in order to reliably determine the position of the
neutron dripline, particular care will have to be devoted
to a more proper treatment of this aspect.

The coupling to the particle continuum plays a lesser
role around the proton dripline because of Coulomb repul-
sion. Given that present calculations span several neigh-
bouring chains, the proton dripline can be investigated
within this theoretical setting. Here, the key quantities are
one-proton and two-proton separation energies, defined
respectively as

S1p(N,Z) ⌘ |E(N,Z)|� |E(N,Z � 1)| (3)

and

S2p(N,Z) ⌘ |E(N,Z)|� |E(N,Z � 2)| . (4)

For a given element, the most proton-rich isotope for which
both S1p > 0 and S2p > 0 determines the position of the
proton dripline. In Fig. 3, measured and computed S1p

and S2p are displayed as a function of neutron number
for the isotopic chains considered in this study4. Experi-
mentally, for these elements, the proton dripline has been
determined5 up to vanadium, with the last bound isotopes

4 For potassium only S1p can be computed, while for argon
none of the two separation energies is available in the present
calculations.

5 Experimentally, the dripline is typically established by
means of a void observation of one or several isotopes rather
than by determining a negative value of S1p or S2p.

being 35K, 35Ca, 40Sc, 40Ti and 43V. For chromium, the last
known isotope is 43Cr. Theoretical curves generally follow
the experimental trends yielding an overall correct quali-
tative description of both S1p and S2p. Looking more in
detail, one observes that calculations tend to overestimate
the measured separation energies in potassium and calcium,
provide an excellent reproduction of scandium isotopes and
underestimate titanium, vanadium and chromium. As a
result, the position of the proton dripline is found at too
small N (with a di↵erence of two or three neutrons) for
the first two elements. In scandium, as well as vanadium,
the dripline is correctly determined at N = 19 and N = 20
respectively. In titanium and chromium, it is also found re-
spectively at N = 19 and N = 20, in this case one neutron
away from what observed experimentally.

The cause of this small discrepancy can be traced
back to the poor reproduction of the Z = 20 gap by
the NN+3N(lnl) Hamiltonian, as evident in Fig. 4. Here,
two-proton separation energies are plotted as a function of
proton number for di↵erent isotonic chains. One notices
that, similarly to what observed in Fig. 2 for N = 20,
the Z = 20 gap is overestimated by at least 5 MeV in
all considered isotones. The disagreement becomes more
severe for low neutron numbers, which impacts the de-
termination of the proton dripline in lighter isotopes. In
spite of these shortcomings, this detailed analysis confirms
the overall quality of present ab initio calculations, not
dissimilar from what emerges from the systematic study
reported in Ref. [56].

3.3 Neutron gaps

A finer insight regarding the magic character of specific
neutron numbers can be gained by looking at so-called
two-neutron shell gaps, defined as

�2n(N,Z) ⌘ S2n(N,Z)� S2n(N + 2, Z) (5)

and displayed in Fig. 5. As for the S2n, one first notices
an overall very good agreement with experiment, with
the clear exception of the N = 20 peak and its vicinity.
R.m.s. deviations for this quantity are slightly larger to
the ones characterising two-neutron separation energies,
specifically 3.8, 1.9, 2.9 and 2.4 MeV for argon, calcium,
titanium and chromium respectively. While in semi-magic
calcium isotopes calculations only fail to reproduce the
height of the peak, experimental data for other isotopes
show a displacement of the peak, linked to a possible
disappearance of the N = 20 magic number, which is
not reproduced by the present calculations. In contrast,
the N = 28 peak is very well reproduced up to Z = 22,
with the description only slightly deteriorating for Z = 23
and Z = 24. The emergence of the N = 32 subclosure
is nicely visible in lighter elements, as well as the one at
N = 34 in argon, potassium and calcium. When going
towards higher proton number their evolution is poorly
described starting with N = 34 in scandium and N = 32 in
vanadium. The behaviour becomes even more inconsistent
for chromium. Again, this might signal the importance of

○ Above and below: doubly open shells

○ Z = 20 (calcium): magic number

[Somà et al. 2021]

○ First symmetry-breaking ab initio method

○ Normal + anomalous propagators

⦿ Application to isotopic chains (Z=18-24)
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static deformation. ADC(3) deviations, available for cal-
cium isotopes with sub-shell closures, are also displayed
in the figure. They illustrate the typical gain achieved by
the inclusion of higher-order correlations in semi-magic
systems.

The hypothetical correlation with deformation is fur-
ther examined in Fig. 9, where the four curves of Fig. 8 are
plotted separately and compared to two di↵erent quantities
measuring the e↵ects of deformation in phenomenologi-
cal approaches. First, we consider the simple estimate
Np ⇥Nn, where Np (Nn) is the number of valence proton
(neutron) pairs in a mean-field picture. Such a quantity
has been shown to provide a good estimate of the so-called
deformation energy in (single-reference) energy density
functional (EDF) calculations [66]. Second, we plot the ac-
tual deformation parameter � obtained in (multi-reference)
EDF calculations [67]. These two estimates of deforma-
tion provide a similar picture throughout the four isotopic
chains. This is consistent with the idea that deformation is
mean-field dominated, with beyond-mean-field correlations
accounting for additional fluctuations on top. Turning to
our results, one observes that the correlation between the
theoretical error �E/A and the two phenomenological esti-
mates is striking for all chains. The deformation parameter
�, with smoother variations across sub-shell closures, seems
to provide a slightly better account of our theoretical er-
ror. An exception is visible for light argon isotopes, with
the mean-field estimate Np ⇥Nn better capturing the be-
haviour of �E/A around N = 20. This analysis eventually
supports the intuition that the collective quadrupole cor-
relations arising in doubly-open shell systems can hardly
be captured by present SU(2)-conserving calculations.

Even if in principle all correlations can be accounted
for in the current theoretical scheme, one would need to
include very high orders in the expansion in order to grasp
such quadrupole static correlations. Indeed, for spherical
bases, these are typically associated with the coherent
superposition of many particle-many hole excitations that
are not included in the low-order many-body truncation
schemes currently at reach. Extending beyond the ADC(3)
approximation involves a factorial increase in the numbers

of diagrams and would need a shift of paradigm in which
all contributions are dealt with at once through stochastic
sampling [68]. An alternative solution is the extension
of existing expansion methods towards SU(2)-breaking
schemes that will enable an e�cient description of static
deformation from the outset.

4 Radii

Among the basic nuclear properties addressed by ab initio
calculations in the past few years, the size of medium-mass
nuclei has typically represented (and, to a good extent,
still represents) one of the main challenges. The first sets
of calculations that successfully reproduced ground-state
energies of oxygen isotopes failed to provide, at the same
time, a good description of charge radii [35]. The NNLOsat

Hamiltonian, specifically introduced to cure this issue [40],
very much improved the description of radii although dis-
crepancies for neutron-rich systems have been shown to
persist [35, 69]. An unsatisfactory account of nuclear sizes
remains for several Hamiltonians that are currently em-
ployed in state-of-the-art calculations [74, 8]. Very recently,
new generations of chiral interactions have been proposed
and shown to provide promising results for charge radii of
closed-shell [75] as well as some open-shell [30] medium-
mass nuclei. The behaviour along isotopic chains around
calcium remains however to be investigated. In Ref. [8]
charge radii of oxygen, calcium and nickel isotopes have
been systematically investigated with the NN+3N(lnl)
and NNLOsat Hamiltonians. The study confirmed the good
performance of NNLOsat up to the nickel chains. Here, in
addition to a more refined analysis of calcium isotopes,
charge radii along argon, titanium and chromium chains
are presented.

Mean square (m.s.) charge radii are computed starting
from m.s. point-proton radii hr2pi as follows

hr2chi = hr2pi+ hR2
pi+

N

Z
hR2

ni+ hr2iso +
3~2

4m2
pc

2
. (7)
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pared to experiment. This feature is particularly visible for
N 2 [21, 27] isotopes in all considered chains, as well as be-
yond N = 34 for calcium and chromium. Keeping in mind
the possible deficiency of the currently used Hamiltonian,
this result likely points to missing higher-order correlations.
The ADC(2) truncation scheme employed here already in-
cludes both the lowest-order pairing term and the induced
interaction resulting from the exchange of unperturbed
particle-hole excitations. However, it does not account for
the collective vibrations that are thought to be responsible
for the remaining pairing strength [61, 62, 63, 64]. Conse-
quently, it does improve on HFB results, e.g., by correcting
the odd-even staggering present at the mean-field level
(not shown here), but it does not significantly change the
amplitude of the pairing gap. The extension of GSCGF to
the ADC(3) level is envisaged in the near future, knowing
that such a truncation does indeed seize important features
of collective fluctuations and of their e↵ect on superfluidity.

In titanium and chromium, theoretical and experimen-
tal three-point mass di↵erences show further qualitative
di↵erences. In addition to the average value of �(3) being
too low, the increase of its oscillation between N = 20 and
N = 28 compared to calcium isotopes along with the shell-
closure disappearances at N = 28, 32, 34 are not captured.
The oscillation of �(3) around its average is not related

to the anomalous part of the self-energy (i.e. the pairing
gap) but rather to its normal part (i.e. the e↵ective mean-
field) [55, 65]. The qualitative evolution of this staggering
from calcium to titanium and chromium pointed out above
is thus a fingerprint of increased quadrupole correlations on
the normal self-energy. The absence of this evolution in our
theoretical calculation confirms the need to include these
correlations consistently in both normal and anomalous
channels. While extending GSCGF to the ADC(3) level
should help better describing the staggering of �(3), an
explicit treatment of deformation will probably be the most
e�cient way to reach a quantitative agreement whenever
quadrupole fluctuations become truly collective, i.e. as one
moves significantly away from semi-magic systems.

3.5 E↵ects of deformation

For several of the quantities discussed above, the poorer
agreement with theoretical data when departing from semi-
magic calcium has been ascribed to an ine�cient descrip-
tion of quadrupole correlations. To substantiate this ob-
servation, di↵erences between computed and experimental
ground-state energies per nucleon are displayed in Fig. 8
for four isotopic chains. The best agreement with experi-
mental values is found for calcium isotopes. Other chains
perform generally worse, with the quality of the descrip-
tion deteriorating in particular for neutron-rich argon and
chromium isotopes. In all cases a clear minimum is visible
at N = 20 and a maximum around N = 24, which suggests
a correlation with the closed- or open-shell character of
the neutrons and the associated absence or presence of
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○ Well-defined minimum at magic N = 20 

⦿ Energy per nucleon: theory vs. experiment
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⦿ Ongoing efforts to extend state-of-the-art techniques to SU(2)-breaking

○ Coupled cluster: only SU(2)   ➝   deformed CC

○ MBPT: on top of U(1)   ➝   deformed BMBPT

  

Remark I: HFB density

NN+3N(M3A)

Let us have a look at the density

● Point matter HFB density

● Expected behavior
– Sign of clusterization

– Localization to come

Energy surface Matter density

Example from deformed (= unrestricted) HFB [Frosini et al. in preparation]

Breaking SU(2)
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Benchmarking many-body approaches

○ All within few %

○ MBPT not shown but wouldn’t be too far

○ Discrepancies w.r.t. data to be attributed to the input Hamiltonian

⦿ Different many-body calculations yield very consistent results

Hergert Ab initio Nuclear Many-Body Theory

FIGURE 5 | Ground-state energies of the oxygen isotopes for various many-body approaches, using the chiral NN+3N(400) interaction at λ = 1.88 fm−1 [183]. Details

on the Lattice EFT calculation can be found in reference [177]. Gray bars indicate experimental data [184].

to configuration-space methods, it would be highly desirable
to test the same chiral NN+3N Hamiltonians in both types of
calculations. However, the Hamiltonians used in configuration
space are typically given in terms of harmonic oscillator matrix
elements (especially if SRG evolved) instead of the coordinate-
space operators required by Lattice EFT or QMC calculations.
Furthermore, Lattice EFT and QMC cannot handle all possible
types of non-locality in the Hamiltonian (cf. section 2.3.7),
including the forms generated by the non-local regulators that
are favored for configuration-space Hamiltonians. Conversely,
local chiral interactions that have been constructed explicitly for
QMC applications [4, 158, 187–190] exhibit slow model-space
convergence in configuration-space calculations because they still
tend to require a significant repulsive core at short distance to
describe nucleon-nucleon scattering data, albeit a far weaker one
than interactions like Argonne V18 [191].

3.2. Extending the Reach of ab initio Theory
The reach of ab initio many-body theory has increased
dramatically over the past decade. Figure 1 illustrates this
growing coverage of the nuclear chart, but it tells only part of
the story. The expansion has happened in many “dimensions”
besides the mass number A, namely by pushing toward exotic
nuclei via improved treatments of the continuum degrees of
freedom, filling in gaps in the coverage that are occupied by
doubly open-shell nuclei with strong intrinsic deformation, and
expanding the types of observables that can be computed from
first principles. Recalling section 3.1, the ongoing push against
the limitations of our many-body approaches will continue to
grow the opportunities for benchmarking current- and next-
generation chiral Hamiltonians.

3.2.1. Pushing the Mass Boundaries
First calculations for selected nuclei and semi-magic isotopic
chains up to tin were already published in the first half of the
last decade [19, 21, 23]. For the most part, they were using a

family of chiral NN+3N interactions that gave a good description
of the oxygen ground-state energies (cf. Figure 5) as well as
the spectroscopy of the lower sd-shell region [24, 26]. However,
the same interactions underpredict nuclear charge radii [192],
and start to overbind as we approached the calcium chain
(cf. Figure 7), eventually leading to an overbinding of 1 MeV per
nucleon in tin. While model-space convergence in CC, IMSRG
and SCGF calculations suggested that calculations for heavier
nuclei would have been technically possible, it made little sense
to pursue them.

The growing number of results for medium-mass nuclei and
the problems they revealed motivated a new wave of efforts
to refine chiral interactions. One direction of research aimed
to achieve a simultaneous description of nuclear energies and
radii up to 48Ca by including selected many-body data in the
optimization protocol of the chiral LECs. This work resulted
in the so-called NNLOsat interaction [194]. While NNLOsat
definitely improved radii [195], its model-space convergence was
found to become problematically slow already in lower pf -shell
nuclei [114, 196, 197].

Simultaneously with the efforts to develop new interactions,
attention also turned toward an older, less consistently
constructed family of chiral NN+3N interactions that exhibited
reasonable saturation properties in nuclear matter calculations
[198, 199]. These forces are referred to as EMλ/", where λ

indicates the resolution scale of the NN interaction, the SRG-
evolved N3LO potential of Entem and Machleidt [200], and
" is the cutoff of an NNLO three-nucleon interaction whose
low-energy constants have been adjusted to fit the triton binding
energy and 4He charge radius [198, 199]. In CC calculations for
the nickel isotopes, Hagen et al. demonstrated that the EM1.8/2.0
interaction, in particular, allowed a good description of the
energies of nuclei in the vicinity of 78Ni [196]. As shown in
Figure 6, these findings have been reinforced by subsequent
VS-IMSRG calculations, as well as the experimental observation
of the first excited 2+ state in this nucleus [201].
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et al. [36] for the 1.8/2.0 (EM) interaction. Considering
the same model-space truncation eMax/E3Max = 14/16 and
harmonic-oscillator frequency h̄! = 16 MeV we find good
agreement within ≈1% for 16O: −127.2 MeV [IM-SRG(2)]
vs −128 MeV ["-CCSD(T)]; for 40Ca: −344.5 MeV vs
−348 MeV; for 48Ca: −416.1 MeV vs −419 MeV; and for
78Ni: −633.6 MeV vs −637 MeV, while there is a difference
of more than 3% for 4He (−29.2 MeV vs −28.2 MeV).

Finally, in Figs. 5 and 6 we show ground-state energies
and charge radii, respectively, for selected closed-shell nuclei
from 4He to 78Ni. Except for the neutron-rich oxygen isotopes
22,24O all calculated ground-state energies from the 1.8/2.0
(EM) interaction are in very good agreement with experiment.
Interestingly the other three interactions follow the same
pattern but are shifted by as much as 1.5 MeV/A in the case of
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FIG. 5. Systematics of the energy per nucleon E/A of closed-
shell nuclei from 4He to 78Ni calculated with the IM-SRG for the four
Hamiltonians considered. The results are compared against experi-
mental ground-state energies from the AME 2012 [40] (extrapolated
for 48,78Ni).

the 2.0/2.0 (PWA) interaction. The experimental charge radii
are enclosed by the 2.2/2.0 (EM) and 2.0/2.0 (PWA) results,
but the trend observed for the closed-shell nuclei studied in
detail already above appears to hold at least up to 78Ni. That
is, radii with 1.8–2.2/2.0 are too small, but 2.0/2.0 (PWA)
gives slightly too large radii. As in the case of ground-state
energies, the radius systematics is similar for all Hamiltonians,
with mainly only a constant shift for the different interactions.
This behavior for the ground-state energy and charge radii is
reminiscent of the Coester-like line for the saturation points of
the four Hamiltonians considered [32].

III. OPEN-SHELL ISOTOPIC CHAINS

In this section, we move beyond closed-shell systems to
explore ground- and excited-state systematics throughout a
selection of isotopic chains in the sd and pf shells, namely
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et al. [36] for the 1.8/2.0 (EM) interaction. Considering
the same model-space truncation eMax/E3Max = 14/16 and
harmonic-oscillator frequency h̄! = 16 MeV we find good
agreement within ≈1% for 16O: −127.2 MeV [IM-SRG(2)]
vs −128 MeV ["-CCSD(T)]; for 40Ca: −344.5 MeV vs
−348 MeV; for 48Ca: −416.1 MeV vs −419 MeV; and for
78Ni: −633.6 MeV vs −637 MeV, while there is a difference
of more than 3% for 4He (−29.2 MeV vs −28.2 MeV).

Finally, in Figs. 5 and 6 we show ground-state energies
and charge radii, respectively, for selected closed-shell nuclei
from 4He to 78Ni. Except for the neutron-rich oxygen isotopes
22,24O all calculated ground-state energies from the 1.8/2.0
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are enclosed by the 2.2/2.0 (EM) and 2.0/2.0 (PWA) results,
but the trend observed for the closed-shell nuclei studied in
detail already above appears to hold at least up to 78Ni. That
is, radii with 1.8–2.2/2.0 are too small, but 2.0/2.0 (PWA)
gives slightly too large radii. As in the case of ground-state
energies, the radius systematics is similar for all Hamiltonians,
with mainly only a constant shift for the different interactions.
This behavior for the ground-state energy and charge radii is
reminiscent of the Coester-like line for the saturation points of
the four Hamiltonians considered [32].
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In this section, we move beyond closed-shell systems to
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[Simonis et al. 2017]

Proliferation of nuclear Hamiltonians

⦿ State of the art (until very recently)

○ No routine/consistent account of systematic uncertainties coming from input Hamiltonian

○ Precision ultimately depends on the chosen input

○ Proliferation of Hamiltonians 

⦿ Need to correctly describe nuclear sizes prompted changes in fitting procedures

○ Mid-mass observables included in the fit of LECs

○ Compromise accuracy on NN data, few-body & spectroscopy
➝   NNLOsat



Ab initio prediction of the drip lines

tens of keV—well beyond current levels of precision—can
make the difference between an isotope being bound or
unbound. Therefore, an assessment of theoretical uncer-
tainty is mandatory for any meaningful drip line prediction.
Ab initio methods present an appealing framework for
uncertainty quantification: one begins with the most gen-
eral Lagrangian compatible with the applicable sym-
metries, organized by a systematically improvable power
counting, then solves the nuclear many-body problem
within a controlled and systematically improvable approxi-
mation scheme, propagating all uncertainties. Such a
prescription has not yet been achieved in practice, so for
the present we use a comparison with known data to
calibrate a physically motivated model for the error. Recent
work in a similar spirit has applied Bayesian machine
learning algorithms to global mass models [10,41,42]. The
main advantages of our current approach are (i) the
predictions should not be biased towards measured data,
because they were not fit to any data beyond helium and
(ii) the predictions can be benchmarked where the proton
and neutron drip lines are known experimentally (mass
models are typically applied to Z ≳ 8).
In the VS-IMSRG, a valence-space Hamiltonian of

tractable dimension is decoupled from the larger Hilbert
space via an approximate unitary transformation. We begin
in a harmonic-oscillator basis of 15 major shells (i.e.,
e ¼ 2nþ l ≤ emax ¼ 14) with an imposed cut of e1 þ e2 þ
e3 ≤ E 3Max ¼ 16 for 3N matrix elements. The resulting
ground-state energies are converged to better than a few

hundred keV with respect to these truncations, and we
perform extrapolations in emax to obtain infrared conver-
gence [43,44]. Transforming to the Hartree-Fock basis, we
capture effects of 3N interactions between valence nucleons
via the ensemble normal ordering of Ref. [35]. We then use
the Magnus formulation of the IMSRG [29,45], truncating
all operators at the normal-ordered two-body level—the
IMSRG(2) approximation—to generate approximate
unitary transformations that decouple the core energy
and valence-space Hamiltonian for each nucleus to be
calculated.
By default, we employ a so-called 0ℏω valence space,

where valence nucleons occupy the appropriate single
major harmonic-oscillator shell (e.g., for 8 < NðZÞ < 20
the sd shell, 20 < NðZÞ < 40 the pf shell, etc.). At
NðZÞ ¼ 2, 8, 20, 40, we do not decouple a neutron (proton)
valence space, and no explicit neutron (proton) excitations
are allowed in the calculation. We discuss exceptions to this
below. Finally the resulting valence-space Hamiltonians are
diagonalized with the NuShellX@MSU shell-model code [46]
(with the exception of a few of the heaviest Ca, Sc, and Ti
isotopes, which were computed with the m-scheme code
Kshell [47]).
We thus calculate ground (and excited) states of all

nuclei from helium to iron, except those for which the shell-
model diagonalization is beyond our computational limits.
For the input NNþ 3N interaction, we use the potential
labeled 1.8=2.0 (EM) in Refs. [17,48], where the 3N
couplings were fit to the 3H binding energy and the 4He

FIG. 1. Calculated probabilities for given isotopes to be bound with respect to one- or two-neutron (proton) removal. The gray region
indicates nuclei that have been calculated, while the height of the boxes corresponds to the estimated probability that a given nucleus is
bound with respect to one- or two-neutron (proton) removal in the neutron-rich (deficient) region of the chart. The inset shows the
residuals with experimental ground-state energies.

PHYSICAL REVIEW LETTERS 126, 022501 (2021)

022501-2

[Stroberg et al. 2021]

⦿ Systematic survey of light and medium-mass nuclei (method: valence-space IMSRG)

○ Good description (+ prediction) of proton and neutron drip lines

○ Rms deviation on total binding energies = 3.3 MeV (cf. 0.7 MeV in energy density functionals)



Mid-mass isotopic chains
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Fig. 1 Total binding energies along Z = 18 − 24 isotopic chains
computed at the ADC(2) level with the NN+3N (lnl) interaction (sym-
bols joined by solid lines). For comparison, experimental data (mea-
sured [37,39,52– 54], full symbols and extrapolated [52], empty sym-
bols) are displayed. Both calculated and experimental values are shifted
by (20− Z)×20 MeV for a better readability. For closed-shell calcium
isotopes, available ADC(3) results [8] are displayed as horizontal lines

and titanium up to 19 MeV for chromium. This addition-
ally points to a possible specific deficiency (besides generic
third-order terms) related to a poor account of quadrupole
correlations, as elaborated on in the following.

3.2 One- and two-nucleon separation energies

Systematically accessing successive nuclides along isotopic
or isotonic chains allows to investigate some of the most
fundamental properties of atomic nuclei such as the limits of
their existence as bound states or the emergence (and evolu-
tion) of magic numbers. Such properties are best studied by
looking at total ground-state energy differences. Two-neutron
separation energies

S2n(N , Z) ≡ |E(N , Z)| − |E(N − 2, Z)| (2)

are first considered. Their values computed from the total
energies of Fig. 1 are shown in Fig. 2, together with available
and extrapolated experimental data. The overall agreement
with experiment is remarkable, with computed values fol-
lowing the main trends of measured data. R.m.s. deviations
amount to 2.9, 1.5, 2.0 and 2.2 MeV for argon, calcium,
titanium and chromium respectively. The two neutron magic
numbers N = 20 and N = 28, associated with sudden drops
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Fig. 2 Two-neutron separation energies along Z = 18−24 isotopic
chains computed with the NN+3N (lnl) interaction (symbols joined by
solid lines), compared to experimental (measured, full symbols and
extrapolated, empty symbols) data. Both calculated and experimental
values are shifted by (Z−20) × 5 MeV for a better readability

of S2n, are visible in all theoretical curves. The N = 28 gap
is very well reproduced across all isotopic chains, with the
good description carrying over to larger neutron numbers for
most chains. On the contrary, the gap at N = 20 turns out to
be overestimated, with the comparison to experiment wors-
ening when departing from proton magic number Z = 20.
The description deteriorates also in other regions, e.g. for
argon isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. The latter observation reflects in
the differences between the r.m.s. deviations reported above.
As discussed further below, it might originate in the poorer
description of the strong quadrupole correlations character-
ising doubly open-shell systems.

The neutron dripline, i.e. the position of the last bound
system in a given isotopic chain, can be also read from two-
neutron separation energies as unbound nuclei are charac-
terised by negative values of S2n. None of the computed
neutron rich isotopes shown in Fig. 2 results unbound, i.e.
the dripline is predicted to be located beyond N = 40 for
all considered chains3. The smallest S2n value are reached
for 56−57Ar and are as low as 100 keV. However, one must
remark that continuum coupling is likely to play an impor-
tant role when binding energies are so close to the neu-
tron emission threshold. Presently, the continuum is crudely

3 Present calculations could not be extended beyond N = 40 due to
convergence issues, see discussion in Ref. [8] for more details.
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Ar Ca Ti Cr

NN+3N (lnl)

E [MeV] 14.1 10.3 14.2 19.2

E/A [MeV] 0.34 0.21 0.29 0.35

S2n [MeV] 2.90 1.56 2.05 2.22

�2n [MeV] 3.84 1.96 2.98 2.48

hr2chi1/2 [fm] 0.211 0.219 0.241 0.242

�hr2chi1/2 [fm] 0.012 0.023 0.020 0.016

NNLOsat

hr2chi1/2 [fm] 0.008 0.022 0.019 0.010

�hr2chi1/2 [fm] 0.008 0.024 0.023 0.013

Table 2. R.m.s. deviation from experimental data of ADC(2)
calculations for various observables considered in the present
study. Deviations are reported separately for the four even-Z
isotopic chains. For comparison, the ADC(3) r.m.s. deviations
for sub-shell closures amount to 2.5 MeV and 0.06 MeV for E
and E/A respectively. Di↵erential r.m.s. radii are computed
relative to 36Ar, 48Ca, 46Ti and 52Cr respectively.

As remarked in Ref. [8],NN+3N(lnl) calculations yield
charge radii that underestimate the experimental measure-
ments by about 5 to 10% throughout all considered chains.
Corresponding infinite-matter calculations, not available
at present, would be instrumental to confirm whether this
correlates with a poor reproduction of saturation proper-
ties. The deficient description of absolute radii is reflected
in r.m.s. deviations that are about ten times larger the ones
characterising NNLOsat calculations. Still, relative trends
are generally good, which points to some bulk systematic
deficiency in the Hamiltonian. In contrast, NNLOsat pro-
vides an overall good reproduction of both absolute and
relative charge radii with r.m.s. deviations of the order of
0.01� 0.02 fm, of the order of magnitude as the method
uncertainties for these observables. The main experimental
trends below N = 20, between N = 20 and N = 28 and
above N = 28 are qualitatively described with the excep-
tion of the parabolic behaviour of calcium and titanium.
The largest discrepancy with data is detected for N = 28
isotopes, whose radius is overestimated in all considered
elements. As a consequence, the steep rise past N = 28
observed in calcium and chromium is not reproduced to a
full extent by the present calculations. The inability to cor-
rectly describe the charge radius di↵erence between 48Ca
and 52Ca is common to nearly all existing nuclear structure
calculations (with the notable exception of Refs. [84, 71])
and currently represents a challenge in particular for ab
initio approaches.

For some of the doubly open-shell nuclei considered in
this study, strong (i.e. static) quadrupole correlations are
expected to play an important role and lead to the onset
of deformation. Such correlations are likely to impact the
calculated observables but can be hardly accounted for
in the current scheme that uses (rotational) symmetry-

conserving reference states and incremental extensions of
the formalism. Indeed, r.m.s. deviations of ground-state
energies (both total and per particle) are systematically
larger away from singly-magic calcium, reaching their maxi-
mum in chromium isotopes. Moreover, within each isotopic
chain, a careful comparison between computed and exper-
imental ground-state energies reveals a clear correlation
between the deviation from experiment and the expected
degree of deformation (quantified through the deformation
parameter � obtained via EDF calculations [67]). Remark-
ably, the same patterns are not observed for charge radii,
which display r.m.s. deviations that are roughly indepen-
dent of the closed/open-shell character. This points to
the fact that e↵ects more complex than the ground-state
deformation (e.g. details of the shell structure) play a role
in the fine tuning of nuclear sizes.

Di↵erent strategies could be envisaged to break through
the current limitations of the theoretical method. Even
though the systematic inclusion of higher orders in the
ADC(n) expansion eventually approaches the exact so-
lution of the Schrödinger equation, any increase in the
ADC(n) order beyond n = 3 is, at present, computation-
ally out of reach due to the factorial increase in diagrams
and degrees of freedom. Besides, such a truncation scheme
is unlikely to resolve deformation degrees of freedom until
several orders beyond the current capabilities. Hence alter-
native routes have to be followed, such as the stochastic
sampling of the self-energy or a SU(2)-breaking scheme. In
the first case, one would still work in a standard (spherical
or partially deformed) basis but diagrams are summed to
very high orders using bold diagrammatic Monte Carlo
techniques [68]. This approach is particularly suited to
address correlations at medium energies that have been
identified as key ingredients to devise ab initio nucleon-
nucleus optical potentials [94]. In the second path, the
extension towards a SU(2)-breaking scheme would impose
nuclear deformation already at the level of the reference
state and allow many-body truncations at low ADC(n)
orders, still requiring a final projection on good angular
momentum. Both approaches will involve sophisticated
extensions of the SCGF formalism and will be long-term
developments.
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Table 2. R.m.s. deviation from experimental data of ADC(2)
calculations for various observables considered in the present
study. Deviations are reported separately for the four even-Z
isotopic chains. For comparison, the ADC(3) r.m.s. deviations
for sub-shell closures amount to 2.5 MeV and 0.06 MeV for E
and E/A respectively. Di↵erential r.m.s. radii are computed
relative to 36Ar, 48Ca, 46Ti and 52Cr respectively.

As remarked in Ref. [8],NN+3N(lnl) calculations yield
charge radii that underestimate the experimental measure-
ments by about 5 to 10% throughout all considered chains.
Corresponding infinite-matter calculations, not available
at present, would be instrumental to confirm whether this
correlates with a poor reproduction of saturation proper-
ties. The deficient description of absolute radii is reflected
in r.m.s. deviations that are about ten times larger the ones
characterising NNLOsat calculations. Still, relative trends
are generally good, which points to some bulk systematic
deficiency in the Hamiltonian. In contrast, NNLOsat pro-
vides an overall good reproduction of both absolute and
relative charge radii with r.m.s. deviations of the order of
0.01� 0.02 fm, of the order of magnitude as the method
uncertainties for these observables. The main experimental
trends below N = 20, between N = 20 and N = 28 and
above N = 28 are qualitatively described with the excep-
tion of the parabolic behaviour of calcium and titanium.
The largest discrepancy with data is detected for N = 28
isotopes, whose radius is overestimated in all considered
elements. As a consequence, the steep rise past N = 28
observed in calcium and chromium is not reproduced to a
full extent by the present calculations. The inability to cor-
rectly describe the charge radius di↵erence between 48Ca
and 52Ca is common to nearly all existing nuclear structure
calculations (with the notable exception of Refs. [84, 71])
and currently represents a challenge in particular for ab
initio approaches.

For some of the doubly open-shell nuclei considered in
this study, strong (i.e. static) quadrupole correlations are
expected to play an important role and lead to the onset
of deformation. Such correlations are likely to impact the
calculated observables but can be hardly accounted for
in the current scheme that uses (rotational) symmetry-

conserving reference states and incremental extensions of
the formalism. Indeed, r.m.s. deviations of ground-state
energies (both total and per particle) are systematically
larger away from singly-magic calcium, reaching their maxi-
mum in chromium isotopes. Moreover, within each isotopic
chain, a careful comparison between computed and exper-
imental ground-state energies reveals a clear correlation
between the deviation from experiment and the expected
degree of deformation (quantified through the deformation
parameter � obtained via EDF calculations [67]). Remark-
ably, the same patterns are not observed for charge radii,
which display r.m.s. deviations that are roughly indepen-
dent of the closed/open-shell character. This points to
the fact that e↵ects more complex than the ground-state
deformation (e.g. details of the shell structure) play a role
in the fine tuning of nuclear sizes.

Di↵erent strategies could be envisaged to break through
the current limitations of the theoretical method. Even
though the systematic inclusion of higher orders in the
ADC(n) expansion eventually approaches the exact so-
lution of the Schrödinger equation, any increase in the
ADC(n) order beyond n = 3 is, at present, computation-
ally out of reach due to the factorial increase in diagrams
and degrees of freedom. Besides, such a truncation scheme
is unlikely to resolve deformation degrees of freedom until
several orders beyond the current capabilities. Hence alter-
native routes have to be followed, such as the stochastic
sampling of the self-energy or a SU(2)-breaking scheme. In
the first case, one would still work in a standard (spherical
or partially deformed) basis but diagrams are summed to
very high orders using bold diagrammatic Monte Carlo
techniques [68]. This approach is particularly suited to
address correlations at medium energies that have been
identified as key ingredients to devise ab initio nucleon-
nucleus optical potentials [94]. In the second path, the
extension towards a SU(2)-breaking scheme would impose
nuclear deformation already at the level of the reference
state and allow many-body truncations at low ADC(n)
orders, still requiring a final projection on good angular
momentum. Both approaches will involve sophisticated
extensions of the SCGF formalism and will be long-term
developments.
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⦿ SCGF calculations along mid-mass chains

○ ADC(2) level: few % on differential quantities

○ ADC(3) level: 2.5 % on B.E. of closed-shells

○ Radii within few % but some features are missing

Gorkov ADC(2)
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ments by about 5 to 10% throughout all considered chains.
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at present, would be instrumental to confirm whether this
correlates with a poor reproduction of saturation proper-
ties. The deficient description of absolute radii is reflected
in r.m.s. deviations that are about ten times larger the ones
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are generally good, which points to some bulk systematic
deficiency in the Hamiltonian. In contrast, NNLOsat pro-
vides an overall good reproduction of both absolute and
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isotopes, whose radius is overestimated in all considered
elements. As a consequence, the steep rise past N = 28
observed in calcium and chromium is not reproduced to a
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rectly describe the charge radius di↵erence between 48Ca
and 52Ca is common to nearly all existing nuclear structure
calculations (with the notable exception of Refs. [84, 71])
and currently represents a challenge in particular for ab
initio approaches.
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the fact that e↵ects more complex than the ground-state
deformation (e.g. details of the shell structure) play a role
in the fine tuning of nuclear sizes.

Di↵erent strategies could be envisaged to break through
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ADC(n) expansion eventually approaches the exact so-
lution of the Schrödinger equation, any increase in the
ADC(n) order beyond n = 3 is, at present, computation-
ally out of reach due to the factorial increase in diagrams
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is unlikely to resolve deformation degrees of freedom until
several orders beyond the current capabilities. Hence alter-
native routes have to be followed, such as the stochastic
sampling of the self-energy or a SU(2)-breaking scheme. In
the first case, one would still work in a standard (spherical
or partially deformed) basis but diagrams are summed to
very high orders using bold diagrammatic Monte Carlo
techniques [68]. This approach is particularly suited to
address correlations at medium energies that have been
identified as key ingredients to devise ab initio nucleon-
nucleus optical potentials [94]. In the second path, the
extension towards a SU(2)-breaking scheme would impose
nuclear deformation already at the level of the reference
state and allow many-body truncations at low ADC(n)
orders, still requiring a final projection on good angular
momentum. Both approaches will involve sophisticated
extensions of the SCGF formalism and will be long-term
developments.
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the fact that e↵ects more complex than the ground-state
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ADC(n) expansion eventually approaches the exact so-
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[Arthuis et al. 2020]

Electron scattering cross sections

⦿ Correct reproduction of radii crucial when computing cross sections

○ Particularly important for nuclear physics applications to other domains

Elastic electron scattering @SCRIT 3

Figure 2: Charge density distribution for 132Xe obtained from
Gorgov SCGF calculations at ADC(2). The dotted line with
grey band corresponds to the two-point Fermi distribution
with parameter and error bars extracted from Ref. [10].

at the ADC(2) level. As such, we do not discuss di�er-
ences between ADC(2) and ADC(3) results any further
in this Letter. In the following, we will hence represent
our results as a band obtained for frequencies from 10 to
14 MeV at Nmax = 13 and 12 to 14 MeV at Nmax = 11,
for E3max = 16.

From this procedure, the charge radius of 132Xe is
estimated to be 4.824 ± 0.124 fm, which agrees with the
value extracted from the SCRIT experiment recently,
namely Èr2Í1/2 = 4.79+0.11

≠0.08 fm [10]. For comparison,
the calculations have been reproduced using the newly-
proposed NN + 3N(lnl) interaction [34], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
succesful 1.8/2.0(EM) interaction [31]. In contrast with
NNLOsat, the charge radius obtained for 132Xe is 4.070 ±
0.045 fm, largely underestimating the experimental value
consistently with studies on lighter nuclei [34]. Despite
this failure at reproducing the experimental value, one
notices that NN + 3N(lnl) yield better-converged values
than NNLOsat as expected.

Additionally to the sole charge radius, another quan-
tity that can be computed from SCGF calculations is
the charge density distribution. In the case of 132Xe,
the SCRIT group extracted the parameters c and t
for a two-parameter Fermi charge distribution fl(r) =
fl0/ {1 + exp[4 ln 3(r ≠ c)/t]}. Fig. 2 displays this two-
point Fermi distribution as a dotted line with a gray
band representing the error bars, while the green band
represents our SCGF calculations. It can be observed
that while the SCGF calculations agree with the 2-point
Fermi distribution at the surface of the nucleus, though
slightly over-predicting the charge radius, we obtain an
oscillating behaviour for the density inside the nucleus
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Figure 3: Luminosity multiplied by the di�erential cross-
section for 132Xe obtained from Gorgov SCGF calculations at
ADC(2). The values for the NN + 3N(lnl) interaction have
been scaled by 102 for clarity. The grey bands correspond to
the two-point Fermi distribution with parameter and error
bars extracted from Ref. [10]. Experimental values are taken
from [10], and duplicated with a scaling of 102 for comparison
with NN +3N(lnl) values, where error bars have been removed
for clarity.

that cannot be reproduced with only a two-point Fermi
distribution. Extracting a three-point Fermi distribution
from the experiment would require an increase in its lu-
minosity, such that possible discrepancies between theory
and experiment cannot be discussed any further here.

To better gauge the discrepancies between the theoret-
ical and experimental bands in Fig. 2, we compare the
computed electron scattering cross-sections directly to
SCRIT data. Fig. 3 displays the di�erential cross sec-
tions multiplied by the luminosity as a function of the
e�ective momentum transfer for the three experimental
electron beam energies of Ee = 151 MeV, 201 MeV and
301 MeV. Experimental points and error bars are taken
from Ref. [10]. The di�erent bands are computed using
the DREPHA code [52] starting from the nuclear charge
density distributions obtained from the two-point Fermi
distribution of Ref. [10] (grey bands) and from our SCGF
calculations using NNLOsat (coloured bands). The calcu-
lation is performed in the Distorted Wave Born Approx-
imation (DWBA) [53–55]. The results show very good
agreement with the experimental values, with only an in-
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FIG. 3. Inclusive Ti(e, e′) (top) and Ar(e, e′) (bottom) cross sec-
tions at 2.2 GeV and 15.5◦ scattering angle. The solid (dashed) line
shows the quasielastic cross section with (without) the inclusion
of FSI. For the FSI results, the theoretical uncertainties coming
from model-space convergence are also shown as a shaded band.
Experimental data are taken from Refs. [15,16] and show both the
quasielastic peak and the contribution from meson production at
larger missing energies.

present calculation, we have neglected two-nucleon currents
and meson-production contributions that dominate the cross
section at higher energy transfer [12]. The dashed and solid
curves in the figures demonstrate the effect of FSI. Note that
the colored band in the FSI curve also shows the uncertainty
from model space convergence that has been estimated as
discussed above. This is representative of both curves and
shows that our calculations are near full convergence with
respect to the model space. The inclusion of FSI produces
a small shift in the position of the quasielastic peak that
improves the description for ω < 180 MeV. On the other hand,
strength is removed from the maximum of the peak and moved
to the tail. Hence, the prediction based on the NNLOsat inter-
action and GGF-ADC(2) for ground-state correlations slightly
underestimates the experimental data at the peak. Overall,
the discrepancy is still rather small and it is compatible with
the larger uncertainties that are intrinsic with the accuracy of
state-of-the-art nuclear forces [46].

Let us now turn to inclusive neutrino scattering on 40Ar,
based on the SCGF spectral function and the reaction
model discussed above. The electroweak current is given
by the sum of axial and vector components. The latter is
connected to the electromagnetic current through the con-
served vector current hypothesis and is probed by electron
scattering measurements. Figure 4 displays the computed
inclusive cross sections at 1 GeV scattering energy for neutral
and charged current reactions. The dashed line shows the
analogous calculation for 12C for comparison. The quasielas-
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FIG. 4. Quasielastic neutral (top) and charged current (bottom)
cross sections for 1 GeV neutrino scattering. Dot-dashed lines refer
to a 12C target and solid lines (with a color band showing the
theoretical uncertainty due to model-space convergence) refer to
40Ar. The dotted lines result from using the 48Ti proton spectral
function as an approximation for neutrons in 40Ar. The insets show
the difference between the latter and calculations where the full
spectral distribution of 40Ar is used.

tic peak is found at similar transferred energies for both
40Ar and 12C and its magnitude increases with the mass
number, as expected from superscaling properties of inclusive
reactions [47,48].

While in neutral current processes, the cross section de-
pends on both the neutron and proton spectral functions,
the charged current selects only one of them. In particular,
charged current neutrino scattering probes the neutron spectral
distribution of the nucleus. The need to gain information on
the neutron spectral distribution has indeed motivated the
electron scattering measurements in Ti isotopes, whose proton
number equals the neutron number of 40Ar, with the idea
of exploiting isospin symmetry [15]. Besides the presence
of the Coulomb potential, which results in an overall energy
shift of the spectral function, it is not clear to which extent
such a substitution is valid. In particular, since the mirror
isotope 40Ti is unstable and heavier Ti (mainly 48Ti) have to
be used in electron scattering experiments, nuclear structure
effects might play an important role. To test the impact of
this approximation we recomputed the cross sections of Fig. 4
substituting the neutron spectral function of 40Ar with the one
computed for protons in 48Ti for both neutral and charged cur-
rent processes. The resulting two curves are nearly identical at
these energies, with discrepancies below 1% (2%) not only for
neutral but also also for charged currents, where the validity
of the replacement can be analyzed in greater detail.

Summary. We have computed the one-nucleon removal
spectral functions of open-shell 40Ar and 48Ti isotopes,
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⦁ Λ = 450 MeV

⦁ Λ = 500 MeV

⦁ Λ = 550 MeV ex
p.
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! Jacobi-NCSM calculations for 3H and 4He with bare interaction  

! scanning cD over large range, cE always fit to 3H binding energy

cD

○ Two LECs (cD & cE) at N2LO and N3LO

⦿ Example of fit of low-energy constants (LECs) in the three-body sector

○ cD as a parameter in the calculation of E(4He) & r(4He), cE determined to reproduce E(3H)

Systematic fit of low-energy constants

[Hüther et al. 2020]



Application to medium-mass nuclei
2

Figure 1. Ground-state energy and rms-radius of 4He as parametric
function of the low-energy constant cD (see labels) for NN+3N in-
teractions at N2LO (left) and N3LO (right) for cuto↵s ⇤ = 450 MeV
(blue), 500 MeV (red), 550 MeV (green). For each cD, the corre-
sponding cE is determined to reproduce the 3H ground-state energy.

many-body uncertainties of 10 keV and 0.001 fm for energies
and radii, respectively.

For surveys of ground-state energies and radii of closed-
shell nuclei up into the nickel isotopic chain, we employ the
single-reference IM-SRG [25–28] in a Magnus formulation,
truncated beyond normal-ordered two-body terms, for an e�-
cient calculation of radii. We use a consistent free-space SRG
evolution of the Hamiltonian (up to three-body terms) and the
radius operator (up to two-body terms) with a typical flow pa-
rameter ↵ = 0.04 fm4, corresponding to a momentum scale
of 2.24 fm�1 [29, 30]. In addition, we use the natural-orbital
single-particle basis extracted for a perturbatively corrected
one-body density matrix of the target nucleus [31].

For the description of open-shell nuclei we employ the
IM-NCSM introduced in Ref. [32]. It is based on a multi-
reference IM-SRG evolution of the Hamiltonian and all other
operators of interest, starting from a multi-configurational ref-
erence state from an NCSM calculation in a small reference
space, typically Nref

max = 0 or 2. This evolution suppresses
pieces of the A-body Hamiltonian that couple the reference
space to the rest of the model space, thus, leading to an ex-
tremely fast convergence of a subsequent NCSM calculation.
As for the single-reference IM-SRG, we employ a free-space
SRG evolution and a natural-orbital basis. For light p-shell
nuclei we also show conventional NCSM calculations with
the harmonic-oscillator basis.

New Family of Non-Local NN+3N Interactions. In a first
step towards the construction of a family of non-local NN+3N
interactions up to N3LO, we consider the few-nucleon sys-
tems 3H and 4He. We employ the EMN interactions from LO
to N3LO with non-local regulators and cuto↵s ⇤ = 450, 500,
and 550 MeV. They are supplemented with the correspond-
ing 3N interactions at N2LO and N3LO, computed using the
framework of Ref. [33], with non-local regulators in the Ja-
cobi momenta p and q of the form exp(�((p2 + 3/4q2)/⇤2)n)
with the same ⇤ as in the NN interaction. We will adopt n = 3
in the following—choosing another value will lead to slight
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Figure 2. Ground-state energies and point-proton rms radii for se-
lected medium-mass isotopes obtained in IM-SRG for NN+3N in-
teraction at N3LO with ⇤ = 500 MeV for a range of cD parameters
from �3 (blue) to +4 (red) in steps of 1.

shifts in the values of the LEC, but will not change many-
body results significantly. Unlike many previous studies, we
do not fix cD in the few-body domain, e.g., by using the triton
half-life or the 4He radius. We keep cD as a free parameter
and only fix cE for a range of di↵erent cD by fitting the triton
ground-state energy. In this way, we can study di↵erent many-
body observables and their dependence on cD, before deciding
on a selection criterion for the optimum cD.

Exploring cD in Few-Body Systems. As a first set of ob-
servables for this analysis, we consider the ground-state en-
ergy E and point-proton root-mean-square (rms) radius Rp,rms
of 4He obtained in NCSM calculations with the bare NN+3N
interactions at N2LO and N3LO. In Fig. 1 we present the
results in form of cD-trajectories in the (E,Rp,rms)-plane for
the three di↵erent cuto↵s. All cD trajectories follow rotated
parabolic curves, which shift systematically to lower energies
and radii with increasing cuto↵. There is an upper bound for
the 4He ground-state energy and in some cases, e.g., for the
N3LO interaction at ⇤ = 500 MeV, this makes it impossi-
ble to reproduce the experimental ground-state energy—for
all cD

4He is overbound. Another interesting implication re-
lates to the Tjon-line, i.e., the correlation between the 3H and
4He ground-state energies [34, 35]. For all interactions and
all cD values used here, the 3H ground-state energy is fixed to
the experimental value through fitting cE. Nevertheless, the
cD variation changes the 4He energy over a substantial range,
thus, departing from the Tjon-line in a systematic way.

Exploring cD in Many-Body Systems. We can repeat this
analysis for ground-state energies and point-proton radii of
heavier nuclei, ranging from the oxygen to the nickel isotopic
chain. For simplicity we limit ourselves to selected closed-
shell isotopes and use single-reference IM-SRG calculations.
The results for a variation of cD at N3LO with ⇤ = 500 MeV
are presented in Fig. 2. With increasing cD the ground-state
energy is lowered in a very regular fashion for all isotopes
and for cD ⇡ 4 we find good agreement with the experimental
binding energies over the full mass range. At the same time,
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○ Many-body truncation
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⦿ Uncertainties from the expansion method

○ Basis truncation

○ Many-body truncation

○ Neglected induced operators (if any)

○ …

○ Symmetry breaking (if any)
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Table 1 Breakdown of method uncertainties for the observables con-
sidered in the present study. Errors from breaking of U(1) symmetry
were estimated from the particle-number projected HFB calculations
of Ref. [50]. Contributions from neglected two- and three-body radius
operators were estimated using Ref. [51]. All remaining estimates derive
from the GSCGF calculations of Ref. [8] and the present work

NN+3N (lnl) NNLOsat

E rch rch

Model space (emax) 0.5% < 0.1% 0.5%

Model space (e3max) 0.2% 0.2% 0.3%

ADC truncation 2% 0.5% < 0.1%

U(1) breaking 0.2% < 0.1% < 0.1%

Neglected induced op. 2% 1% –

Total 2.9% 1.1% 0.6%

lack of restoration of the broken U(1) symmetry, ab initio
particle-number projected HFB results from Ref. [50] have
been used as an upper limit. This is justified given that the
variance characterising ADC(2) propagators (σ 2

N,Z ∼ 2) is
always smaller than the one found at the HFB level. While
symmetry restoration has been recently designed for MBPT
and coupled-cluster theory [21,22], the existing formalism
can not be straightforwardly applied to GSCGF theory, for
which a dedicated development is yet to be devised. Finally,
discarding four- and higher-body operators induced by the
SRG evolution of the NN+3N (lnl) Hamiltonian introduces
an additional error. This has been estimated by performing
calculations at different values of the SRG parameter, namely
λ = 1.8 fm−1 and λ = 2.2 fm−1, for selected closed- and
open-shell isotopes. In addition, for radii, the uncertainty
originating from having neglected induced two- and three-
body radius operators has been accounted for based on the
findings of Ref. [51]. One notices that model-space uncer-
tainties from emax and e3max truncations are of similar mag-
nitude, 0.5% or smaller, for all cases. Errors coming from the
lack of symmetry restoration do not exceed 0.2% for ground-
state energies, while they result completely negligible for
radii. For NN+3N (lnl) total energies, the overall error is thus
dominated by the many-body truncation and neglected SRG-
induced many-body operators, both contributing with about
2%. Note that these uncertainties cancel out to a good extent
when energy differences2 like two-neutron separation ener-
gies of three-point mass differences are computed. Also for
NN+3N (lnl) radii the dominating error appears to be related
to neglected many-body operators (mostly in the Hamilto-
nian). On the contrary, radii computed with NNLOsat are
characterised by a very good precision, with a total error of
around 0.5%.

2 A notable exception is represented by energy differences near a closed
shell, where errors related to the breaking of particle-number do not
cancel between a closed-shell and and open-shell system.

3 Ground-state energies

3.1 Total energies

Let us start by analysing total ground-state energies along the
seven isotopic chains studied in this work, i.e. argon (Z =
18), potassium (Z = 19), calcium (Z = 20), scandium (Z =
21), titanium (Z = 22), vanadium (Z = 23) and chromium
(Z = 24). The current implementation of GSCGF theory is
based on the assumption that JΠ = 0+ for targeted ground
states and is therefore well suited for even-even nuclei. The
ground-state energy of odd-even systems can be computed
via [55]

E A
odd-even = Ẽ A + ω0, (1)

where Ẽ A is the ground-state energy of the odd-even nucleus
computed as if it had JΠ = 0+, i.e. as a fully paired even-
number-parity state forced to have the right odd number of
particles on average, and ω0 is the lowest one-nucleon sepa-
ration energies in the latter calculation. Further details can be
found in Refs. [25,41]. A more direct but similar approach
is to use the addition and separation energies encoded in the
spectral function but to recompute the even-even isotope with
the center of mass corrections for A±1, as done in Ref. [45].
As a result, one can access the ground-state energy of all iso-
topes with even Z and that of odd-even isotopes with odd Z .
Other observables, e.g. radii or densities, are instead avail-
able only for even-even systems. Further developments, e.g.
involving the use of Hellmann-Feynman theorem, are needed
to extend their calculation to odd-even systems.

Computed ground-state energies are presented in Fig. 1
and compared to experimental (measured and extrapolated)
data. The global behaviour is well captured by the calculated
energies across all values of Z and N , although underbind-
ing with respect to experiment is observed for all chains.
The deviation per nucleon is roughly of the same magni-
tude for all nuclei, around 0.2−0.3 MeV (see also Fig. 8
in the following). For calcium isotopes, for which ADC(3)
calculations (displayed in Fig. 1 as horizontal bars) are avail-
able [8], the root-mean-square (r.m.s.) deviation of E/A from
experiment goes from 0.21 MeV in ADC(2) down to 0.06
MeV in ADC(3) (see also Table 2). This shows that (1) the
bulk of the ADC(2) underbinding is due to missing third-
order correlations and (2) the NN+3N (lnl) Hamiltonian can
reach an excellent agreement with measured total ground-
state energies in this mass region once a more refined trunca-
tion schemes is used. A more careful inspection of the abso-
lute r.m.s. deviations also reveals differences between the
various isotopic chains, with the ADC(2) inaccuracy increas-
ing when going away from singly-magic calcium. Specifi-
cally, focusing on even-Z isotopes, one goes from an absolute
r.m.s. deviation of 10 MeV for calcium to 14 MeV for argon

123

[Soma et al. 2021]
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Table 1 Breakdown of method uncertainties for the observables con-
sidered in the present study. Errors from breaking of U(1) symmetry
were estimated from the particle-number projected HFB calculations
of Ref. [50]. Contributions from neglected two- and three-body radius
operators were estimated using Ref. [51]. All remaining estimates derive
from the GSCGF calculations of Ref. [8] and the present work

NN+3N (lnl) NNLOsat

E rch rch

Model space (emax) 0.5% < 0.1% 0.5%

Model space (e3max) 0.2% 0.2% 0.3%

ADC truncation 2% 0.5% < 0.1%

U(1) breaking 0.2% < 0.1% < 0.1%

Neglected induced op. 2% 1% –

Total 2.9% 1.1% 0.6%

lack of restoration of the broken U(1) symmetry, ab initio
particle-number projected HFB results from Ref. [50] have
been used as an upper limit. This is justified given that the
variance characterising ADC(2) propagators (σ 2

N,Z ∼ 2) is
always smaller than the one found at the HFB level. While
symmetry restoration has been recently designed for MBPT
and coupled-cluster theory [21,22], the existing formalism
can not be straightforwardly applied to GSCGF theory, for
which a dedicated development is yet to be devised. Finally,
discarding four- and higher-body operators induced by the
SRG evolution of the NN+3N (lnl) Hamiltonian introduces
an additional error. This has been estimated by performing
calculations at different values of the SRG parameter, namely
λ = 1.8 fm−1 and λ = 2.2 fm−1, for selected closed- and
open-shell isotopes. In addition, for radii, the uncertainty
originating from having neglected induced two- and three-
body radius operators has been accounted for based on the
findings of Ref. [51]. One notices that model-space uncer-
tainties from emax and e3max truncations are of similar mag-
nitude, 0.5% or smaller, for all cases. Errors coming from the
lack of symmetry restoration do not exceed 0.2% for ground-
state energies, while they result completely negligible for
radii. For NN+3N (lnl) total energies, the overall error is thus
dominated by the many-body truncation and neglected SRG-
induced many-body operators, both contributing with about
2%. Note that these uncertainties cancel out to a good extent
when energy differences2 like two-neutron separation ener-
gies of three-point mass differences are computed. Also for
NN+3N (lnl) radii the dominating error appears to be related
to neglected many-body operators (mostly in the Hamilto-
nian). On the contrary, radii computed with NNLOsat are
characterised by a very good precision, with a total error of
around 0.5%.

2 A notable exception is represented by energy differences near a closed
shell, where errors related to the breaking of particle-number do not
cancel between a closed-shell and and open-shell system.

3 Ground-state energies

3.1 Total energies

Let us start by analysing total ground-state energies along the
seven isotopic chains studied in this work, i.e. argon (Z =
18), potassium (Z = 19), calcium (Z = 20), scandium (Z =
21), titanium (Z = 22), vanadium (Z = 23) and chromium
(Z = 24). The current implementation of GSCGF theory is
based on the assumption that JΠ = 0+ for targeted ground
states and is therefore well suited for even-even nuclei. The
ground-state energy of odd-even systems can be computed
via [55]

E A
odd-even = Ẽ A + ω0, (1)

where Ẽ A is the ground-state energy of the odd-even nucleus
computed as if it had JΠ = 0+, i.e. as a fully paired even-
number-parity state forced to have the right odd number of
particles on average, and ω0 is the lowest one-nucleon sepa-
ration energies in the latter calculation. Further details can be
found in Refs. [25,41]. A more direct but similar approach
is to use the addition and separation energies encoded in the
spectral function but to recompute the even-even isotope with
the center of mass corrections for A±1, as done in Ref. [45].
As a result, one can access the ground-state energy of all iso-
topes with even Z and that of odd-even isotopes with odd Z .
Other observables, e.g. radii or densities, are instead avail-
able only for even-even systems. Further developments, e.g.
involving the use of Hellmann-Feynman theorem, are needed
to extend their calculation to odd-even systems.

Computed ground-state energies are presented in Fig. 1
and compared to experimental (measured and extrapolated)
data. The global behaviour is well captured by the calculated
energies across all values of Z and N , although underbind-
ing with respect to experiment is observed for all chains.
The deviation per nucleon is roughly of the same magni-
tude for all nuclei, around 0.2−0.3 MeV (see also Fig. 8
in the following). For calcium isotopes, for which ADC(3)
calculations (displayed in Fig. 1 as horizontal bars) are avail-
able [8], the root-mean-square (r.m.s.) deviation of E/A from
experiment goes from 0.21 MeV in ADC(2) down to 0.06
MeV in ADC(3) (see also Table 2). This shows that (1) the
bulk of the ADC(2) underbinding is due to missing third-
order correlations and (2) the NN+3N (lnl) Hamiltonian can
reach an excellent agreement with measured total ground-
state energies in this mass region once a more refined trunca-
tion schemes is used. A more careful inspection of the abso-
lute r.m.s. deviations also reveals differences between the
various isotopic chains, with the ADC(2) inaccuracy increas-
ing when going away from singly-magic calcium. Specifi-
cally, focusing on even-Z isotopes, one goes from an absolute
r.m.s. deviation of 10 MeV for calcium to 14 MeV for argon
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⦿ Uncertainties from the Hamiltonian

23

of R = 0.9 fm, we obtain

�tot(50 MeV) = 183.6Q0 � 17.1Q2 (⇠12) + 0.5Q3 (⇠3) � 0.2Q4 (⇠0.8) = 166.8 mb ,

�tot(96 MeV) = 84.8Q0 � 9.7Q2 (⇠11) + 3.2Q3 (⇠4) � 0.8Q4 (⇠1.3) = 77.5 mb ,

�tot(143 MeV) = 52.5Q0 � 3.4Q2 (⇠10) + 5.1Q3 (⇠4) � 0.5Q4 (⇠1.8) = 53.7 mb ,

�tot(200 MeV) = 34.9Q0 + 1.0Q2 (⇠9) + 6.7Q3 (⇠5) + 0.6Q4 (⇠2.4) = 43.2 mb , (7.34)

see also Fig. 7, while for the softest cuto↵ R = 1.2 fm we find

�tot(50 MeV) = 159.4Q0 + 5.4Q2 (⇠23) + 0.8Q3 (⇠9) + 1.6Q4 (⇠3) = 167.2 mb ,

�tot(96 MeV) = 60.2Q0 + 8.7Q2 (⇠17) + 2.4Q3 (⇠9) + 6.8Q4 (⇠5) = 78.1 mb ,

�tot(143 MeV) = 30.8Q0 � 7.8Q2 (⇠13) + 2.8Q3 (⇠8) + 11.2Q4 (⇠5) = 52.6 mb ,

�tot(200 MeV) = 17.2Q0 + 5.3Q2 (⇠10) + 2.5Q3 (⇠8) + 13.6Q4 (⇠6) = 38.6 mb . (7.35)

The expected size of NLO, N2LO and N3LO corrections indicated in the subscripts is estimated as (p/⇤b)2, (p/⇤b)3

and (p/⇤b)4 times the LO result in each particular case. The cms momenta corresponding to the energies of Elab = 50,
96, 143 and 200MeV are p = 153MeV, p = 212MeV, p = 259MeV and p = 307MeV, respectively. Generally, the
estimated size of corrections at various orders appears to be in a reasonable agreement with their actual size. The
N3LO corrections are smaller than expected for R = 0.9 fm but turn out to be large for the cuto↵ R = 1.2 fm at
higher energies. We emphasize that it might be too optimistic to expect a convergent expansion at the energies of
Elab = 143 and 200MeV for the softest cuto↵ since the expansion parameter Q in these cases is larger than 0.5. Also
the fact that the LO contribution at the highest energy for R = 1.2 fm amounts to less than half of the total result
suggests that this cuto↵ is not applicable at such an energy. We also observe an interesting feature that the EFT
expansion actually converges faster than expected at low energy when soft cuto↵s are employed, see the first line in
Eq. (7.35) and the left plot in Fig. 7. This behavior becomes even more pronounced at lower energies. In fact, when
reducing the cuto↵ R, we actually continuously integrate out pion physics, and the resulting theory would gradually
turn into pionless EFT if we would further soften the cuto↵. At very low energies with momenta well below the pion
mass, pionless EFT, which correspond to the expansion in p/M⇡, may actually be more e�cient than the expansion
in chiral EFT which is controlled by the parameter M⇡/⇤b.

Having tested our estimation for the breakdown scale ⇤b in the results for the np total cross section at various
chiral orders, we are now in the position to estimate the theoretical uncertainty of our results at N3LO. To be on
a conservative side, we will ascribe the uncertainty �XN

3
LO(p) of our N3LO prediction XN

3
LO(p) for an observable

X(p) via

�XN
3
LO(p) = max

✓
Q5

⇥

���XLO(p)
���, Q3
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���, Q2
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2
LO(p)

���,

Q⇥

���XN
2
LO(p)�XN

3
LO(p)

���
◆
, (7.36)

where the expansion parameter Q is given by Eq. (7.33) and the scale ⇤b is chosen dependent of the cuto↵ R as
discussed above. We emphasize that such a simple estimation of the theoretical uncertainty does not provide a
statistical interpretation. This can be improved e.g. by employing a Bayesian framework [88, 93] and performing
marginalization over higher-order corrections. We postpone such an analysis for a future study and will adopt the
simplified treatment introduced above here and in what follows. We will further impose an additional constraint for
the theoretical uncertainties at NLO and N2LO by requiring them to have at least the size of the actual higher-order
contributions. We emphasize that the above way of estimating the uncertainty does not rely on cuto↵ variation and
can be carried out for any given value of R.

Our results for the np total cross section at various orders in the chiral expansion and for various choices of the cuto↵
R are shown in Fig. 8. Notice that at the smallest energy, we observe deviations between our N3LO results and the
NPWA which are likely caused by the employed treatment of IB corrections in the 1S0 partial way. In particular, we
chose to determine the LECs C1S0, D1

1S0
and D2

1S0
solely from the pp phase shift and adjusted C̃np

1S0
to reproduce

the np scattering length. The splitting between the np and pp 1S0 phase shifts thus comes out as a prediction. It
is therefore not surprising that the results for the np 1S0 phase shifts show some deviations from the NPWA. These
deviations are expected to be largely reduced at next-higher order in the chiral expansion.

○ Ideally, at each order from cutoff variation

○ If not possible, use some estimate [Epelbaum et al. 2015]
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⦿ Evaluation of uncertainties from the Hamiltonian
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Hüther et al.; PLB 808, 135651 (2020)  
⦿ Evaluation of uncertainties from the Hamiltonian + the many-body method

Towards systematic calculations (with uncertainties)

[Hüther et al. 2020]
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Open problems

⦿ How far can this approach be pushed?

○ Not obvious that “chiral EFT in the A-body sector” works all the way up to superheavy nuclei

⦿ Towards heavy nuclei

○ Size of 3N matrix elements becomes prohibitive

⦿ Doubly open-shell nuclei

○ Symmetry breaking?  Single- or multi-reference?  Scaling?

⦿ Uncertainty quantification

○ Thorough quantification to establish link to QCD & predictive power

➝  Techniques from applied maths  ➝  Tensor factorisation of the many-body problem

➝  Strategy has to be adapted to the obejective

➝  Development of efficient many-body emulators ➝  Towards statistical analyses of LEC fits

➝  Different types of EFT explored

➝  Issue of renormalisability?
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