Ab initio calculations of atomic nuclei Recent progress and future challenges

Lecture 2: Many-body techniques

Part 2: Expansion methods

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter \& connections to astrophysics
o Neutron stars \& Tolman-Oppenheimer-Volkoff equations

- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EoS

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei

State of the art and open problems
3. Equation of state of nuclear matter \& connections to astrophysics
o Neutron stars \& Tolman-Oppenheimer-Vo11koff equations
Equation of state of neutron-star matter

- Astronhysical constraints on the nuclear EoS

Correlation expansion methods: the idea

© The goal is always to solve $\quad H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$
© Idea: write the exact ground-state wave function as

then expand and truncate Ω_{0}
\Rightarrow Before truncation, the expansion is exact
\Rightarrow After truncation, cost reduced from N ! to N^{α} with $\alpha \geq 4$
© Reference state

- Must be simple enough (such that it can be computed easily and exactly)
- Must be rich enough (such that it is a suitable starting point for the expansion)
- Obtained by

1) Splitting $H=H_{0}+H_{1}$
2) Solving for H_{0} (one-body operator) $H_{0}\left|\phi_{k}\right\rangle=\epsilon_{k}\left|\phi_{k}\right\rangle$

Concept of mean field

© Slater determinant as reference state

- One-body potential: $H_{0}=\sum_{i=1}^{A} h_{0}(i) \quad \rightarrow \quad H_{0}\left|\phi_{k}\right\rangle=\epsilon_{k}\left|\phi_{k}\right\rangle \quad \Rightarrow \quad h_{0}|\alpha\rangle=\varepsilon_{\alpha}|\alpha\rangle \quad \forall i$
- Build Slater $\left|\phi_{0}\right\rangle=\prod_{i=1}^{A} a_{\alpha_{i}}^{\dagger}|0\rangle$
- Independent particles: nucleons move inside a (one-body) potential well or mean field
\bigcirc Does an independent-particle picture make any sense at all?
- Inter-particle distance in nuclei $\sim 2 \mathrm{fm}$
- Range of nuclear interaction $\sim 2 \mathrm{fm}$
- Turns out that it does
\checkmark Fermi statistics helps out
\checkmark Large mean free path λ
\rightarrow Quantum liquid
[Rios \& Somà 2012; Lopez et al. 2014]

Liquid drop model \& semi-empirical mass formula

© Picture the nucleus as a (suspended) drop of (incompressible) liquid with surface tension

Liquid drop model

[Gamow, Bohr, Wheeler]
Competing processes give rise to nuclear binding

$$
A=Z+N
$$

$$
\mathrm{BE}(Z, N)=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{Z^{2}}{A^{1 / 3}}-a_{a} \frac{(N-Z)^{2}}{4 A}-\frac{\delta}{A^{1 / 2}}
$$

volume surface
Coulomb
$\mathrm{N}-\mathrm{Z}$ asymmetry
pairing
\checkmark Successful in explaining binding energy global trend x Unsuccessful in explaining fine features, excitation spectra, ...

Non-interacting shell model

Measured binding energies
vs.
Liquid drop model predictions

Systematic deviations

\odot What creates regular patterns?

- Nucleon shells? (cf. electrons in the atom)
- Yet, no obvious common potential
\Rightarrow Idea: devise an effective one-body potential
- 1. Start with 3D spherical HO potential
- 2. Add term proportional to ℓ^{2} (centrifugal)
- 3. Add a spin-orbit term $\ell \cdot s$
[Göppert-Mayer, Jensen]

Notation $\mathrm{n} \ell_{\mathrm{J}}$

Magic numbers reproduced!

Empirical mean-field potentials

\bigcirc Empirical one-body potentials provide a reasonable description at a reduced numerical cost
\circ Consider $h(i)=\frac{\vec{p}^{2}(i)}{2 m}+v(i) \quad$ with $\quad v(i)=v\left(r_{i}\right) \equiv-\frac{v_{0}}{1+\exp \left(\frac{r_{i}-R}{a}\right)}$
$\uparrow V(r)$
Common parameterisation:
Woods-Saxon (central) potentials
\checkmark Nucleons placed in single-particle energy levels
\checkmark Nucleons fulfil Pauli exclusion principle
\checkmark Coulomb shifts proton potentials
\leftrightharpoons Often used in applications needing nuclear physics inputs

Hartree-Fock with realistic potentials

OBE potentials

use of expansion method problematic

Chiral potentials

expansion method OK, but problem non-perturbative

SRG potentials

even perturbation theory works!

Dynamical vs. static correlations

© Dynamical / short-range/weak/single-particle correlations

- Dynamical: characterised by short time scales \& high excitation energies
- Short-range: governed by short-distance dynamics
- Weak: perturbative (at least with low-resolution interactions)
- Single-particle: can be described in terms of excitations of a few nucleons
h Short-range correlations
\Rightarrow Associated with short-range repulsion of NN interactions
- Static / long-range / strong / collective correlations
- Static: characterised by long time scales \& low excitation energies
- Long-range: governed by long-distance dynamics
- Strong: strongly non-perturbative
- Collective: description involves coherent excitations of many particles

ᄃ E.g. pairing or quadrupole correlations
\Rightarrow Associated with presence of bound $n p$ and virtual $n n$ pairs (at least pairing correlations)

Closed- vs. open-shell systems

- Mean-field configurations have different features as N and Z vary

Nucleons partially fill levels below a magic number

Open-shell systems

Smaller ($\rightarrow 0$) energy gap, excitations enabled, lesser stability

Both static \& dynamical correlations are important
*Each observables is impacted differently

Correlations via particle-hole excitations

\bigcirc In configuration-space methods, correlations are accounted for by means of ph excitations

- Recall: Ref. Slater $|\Phi\rangle \equiv \prod_{i=1}^{A} c_{i}^{\dagger}|0\rangle \quad \rightarrow$ expand on $\left|\Phi_{i j \cdots}^{a b \cdots}\right\rangle \equiv c_{a}^{\dagger} c_{b}^{\dagger} \ldots c_{j} c_{i}|\Phi\rangle$

$$
\begin{aligned}
& \text { Ref 1p1h } \\
& \text { 2p2h } \\
& \text { 3p3h }
\end{aligned}
$$

○ Configuration-interaction techniques (e.g. no-core shell model)

- Few-p-few-h and many-p-many-h excitations treated on an equal footing
- Efficient treatment of both dynamical and static correlations
- Expansion techniques
- Expansion in the rank k of $k p-k h$ excitations
- Efficient treatment of dynamical correlations, difficult to treat static correlations

Correlations via particle-hole excitations

- The two different strategies reflect into two different truncations of the Hilbert space
\odot Configuration-interaction techniques
- Truncation in terms of the total number of HO excitation quanta $N_{\max }$ of the many-body states

$$
\begin{aligned}
& \text { E.g. } N_{\max }=6 \text { calculation } \\
& \text { No-core shell model }
\end{aligned}
$$

\odot Expansion techniques

- Truncation in terms of the energy of the states included in the one-body basis
\circ (On top of this there's the truncation on the rank k of $k p-k h$ excitations that are included)
E.g. $\boldsymbol{e}_{\max }=\mathbf{6}$ calculation 2p2h truncation

Closed vs. open shells

- Strong shell closure

營 Weak shell closure

- Absent shell closure
- Unclear
- New shell closure

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei

State of the art and open problems
3. Equation of state of nuclear matter \& connections to astrophysics

Neutron stars \& Tolman-Oppenheimer-Vollkoff equations
Equation of state of neutron-star matter

- Astronhysical constraints on the nuclear FoS

Formal perturbation theory

๑ Very popular in description of many-electron systems (since early days)

- Coulomb interaction sufficiently weak to allow perturbative treatment
\odot Applications in many-nucleon systems traditionally hindered by strong short-range repulsion
\circ SRG techniques have completely changed this view \rightarrow renaissance of MBPT in nuclear physics
\odot Starting point: splitting of the many-body Hamiltonian ("partitioning")

- Eigenvalue equation for H_{0} must be numerically accessible

$$
\begin{gathered}
H_{0}\left|\Phi_{k}\right\rangle=E_{k}^{(0)}\left|\Phi_{k}\right\rangle \rightarrow \text { set of unperturbed eigenstates and eigenenergies }\left\{\left|\Phi_{k}\right\rangle, E_{k}^{(0)} ; k \in \mathbb{N}\right\} \\
\text { form orthonormal basis of Hilbert space }
\end{gathered}
$$

- In the following $\quad\left|\Psi_{0}^{\mathrm{A}}\right\rangle=\left|\Psi^{\mathrm{A}}\right\rangle \quad\left|\Phi_{0}\right\rangle=|\Phi\rangle \quad E_{0}^{(0)}=E^{(0)}$
\odot Goal: approach exact (g.s.) wave function and energy by systematically including effects of \boldsymbol{H}_{1}

Formal perturbation theory

© Define projectors associated with the partitioning of H

$$
P \equiv|\Phi\rangle\langle\Phi| \quad Q \equiv 1-P \quad \text { with } \quad P|\Phi\rangle=|\Phi\rangle \quad Q|\Phi\rangle=0
$$

$\rightarrow Q$ can be written as $\quad Q \equiv \sum_{k}^{\prime}\left|\Phi_{k}\right\rangle\left\langle\Phi_{k}\right| \equiv \sum_{\left|\Phi_{k}\right\rangle \neq|\Phi\rangle}\left|\Phi_{k}\right\rangle\left\langle\Phi_{k}\right|$
\odot Express the exact wave function as

$$
\begin{aligned}
\left|\Psi^{\mathrm{A}}\right\rangle & =P\left|\Psi^{\mathrm{A}}\right\rangle+Q\left|\Psi^{\mathrm{A}}\right\rangle \\
& =|\Phi\rangle+|\chi\rangle
\end{aligned}
$$

unperturbed wave function
correlated wave function

- It follows that the exact energy can be written as
reference energy

$$
\begin{aligned}
& E^{E^{\mathbf{A}}}=\langle\Phi| H\left|\Psi^{\mathbf{A}}\right\rangle \\
&=\underbrace{\langle\Phi| H_{0}|\Phi\rangle+\langle\Phi| H_{1}|\Phi\rangle}_{\equiv E_{\text {ref }}}+\underbrace{\langle\Phi| H_{1}|\chi\rangle}_{\equiv \Delta E} \\
& \text { ce energy } \quad \text { correlation energy }
\end{aligned}
$$

Formal perturbation theory

\bigcirc Introduce resolvent operator

$$
\text { Rayleigh-Schrödinger } \quad R^{\mathrm{RS}} \equiv \sum_{k}^{\prime} \frac{\left|\Phi_{k}\right\rangle\left\langle\Phi_{k}\right|}{E^{(0)}-E_{k}^{(0)}}
$$

which has the property $R^{\mathrm{RS}}|\Phi\rangle=0$
๑ Finally, one gets

$$
\begin{array}{ll}
|\chi\rangle=\sum_{k=1}^{\infty}\left(R H_{1}\right)^{k}|\Phi\rangle_{c} & \text { correlated wave function } \\
\Delta E=\langle\Phi| H_{1} \sum_{k=1}^{\infty}\left(R H_{1}\right)^{k}|\Phi\rangle_{c} & \text { correlation energy }
\end{array}
$$

and can write exact wave function and g.s. energy as power series in H_{1}

$$
\left|\Psi^{\mathrm{A}}\right\rangle \equiv \sum_{p=0}^{\infty}\left|\Psi^{(p)}\right\rangle \quad E^{\mathrm{A}} \equiv \sum_{p=0}^{\infty} E^{(p)} \quad E^{\text {e.g. }} \quad E^{(2)}=\sum_{k}^{\prime} \frac{\langle\Phi| H_{1}\left|\Phi_{k}\right\rangle\left\langle\Phi_{k}\right| H_{1}|\Phi\rangle}{E^{(0)}-E_{k}^{(0)}}
$$

Many-body perturbation theory

\odot Application to many-nucleon systems

- Characterise unperturbed Hamiltonian
- Define basis, derive working expressions (many-body matrix elements \& unperturbed energies)
- Use Wick's theorem \rightarrow many-body diagrams
\odot Reference state: Slater determinant

$$
|\Phi\rangle \equiv \prod_{i=1}^{A} c_{i}^{\dagger}|0\rangle
$$

© Normal-ordered Hamiltonian
NO2B approximation

- Apply Wick's theorem with respect to the reference Slater to H

$$
H=H^{[0]}+\sum_{p q} H_{p q}^{[2]}: c_{p}^{\dagger} c_{q}:+\frac{1}{4} \sum_{p q r s} H_{p q r s}^{[4]}: c_{p}^{\dagger} c_{q}^{\dagger} c_{s} c_{r}:+\ldots>
$$

- Effective (normal-ordered) operators
- Each NO operator of rank $\boldsymbol{k}_{\text {eff }}$ receives contributions from original operators with $k_{\text {eff }} \leq k \leq k_{\max }$

Many-body perturbation theory

\odot Partitioning

- Add and subtract a diagonal (NO) one-body operator

$$
\begin{aligned}
& H_{0}=H^{[0]}+\sum_{p} e_{p}: c_{p}^{\dagger} c_{p}: \\
& H_{1} \equiv \breve{H}^{[2]}+H^{[4]}
\end{aligned}
$$

with

$$
\bar{H}^{[2]} \equiv \sum_{p} e_{p}: c_{p}^{\dagger} c_{p}
$$

$$
\breve{H}^{[2]} \equiv H^{[2]}-\bar{H}^{[2]}=\sum_{p \neq q} H_{p q}^{[2]}: c_{p}^{\dagger} c_{q}:
$$

๑ Recall: an orthonormal basis of the A-body Hilbert space can be built via Slater determinants

$$
\begin{aligned}
& \mathcal{H}^{A}=\left\{|\Phi\rangle,\left|\Phi_{i}^{a}\right\rangle,\left|\Phi_{i j}^{a b}\right\rangle,\left|\Phi_{i j k}^{a b c}\right\rangle, \ldots\right\} \quad \text { where }\left|\Phi_{i j \cdots}^{a b \cdots}\right\rangle \equiv c_{a}^{\dagger} c_{b}^{\dagger} \ldots c_{j} c_{i}|\Phi\rangle \\
& H_{0}|\Phi\rangle=H^{[0]}|\Phi\rangle \\
& \rightarrow \text { eigenbasis of } H_{0} \quad H_{0}\left|\Phi_{i j \cdots}^{a b \ldots}\right\rangle=\left(H^{[0]}+\epsilon_{i j \ldots}^{a b \ldots}\right)\left|\Phi_{i j \cdots}^{a j \ldots}\right\rangle \\
& \quad \text { with } \epsilon_{i j \ldots}^{a b \ldots} \equiv\left(e_{a}+e_{b}+\cdots\right)-\left(e_{i}+e_{j}+\cdots\right)
\end{aligned}
$$

- Convention: one-body states occupied (unoccupied) in the reference determinant are labeled by $\mathrm{i}, \mathrm{j}, \mathrm{k}, \ldots$ (a,b,c, ...) and are referred to as hole (particle) states

Many-body perturbation theory

© Choice of partitioning

- Simplest choice in nuclear physics: HO Hamiltonian $H_{0} \equiv \frac{\vec{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \vec{r}^{2}$
- Common (more refined) choice: Hartree-Fock reference
\rightarrow Solve variational HF problem and build $\bar{H}^{[2]}$ from one-body HF Hamiltonian
\rightarrow Møller-Plesset partitioning $\breve{H}^{[2]}=0 \rightarrow H_{1}=H^{[4]}$

○ Resolvent operator

$$
R=-\sum_{a i} \frac{\left|\Phi_{i}^{a}\right\rangle\left\langle\Phi_{i}^{a}\right|}{\epsilon_{i}^{a}}-\left(\frac{1}{2!}\right)^{2} \sum_{a b i j} \frac{\left|\Phi_{i j}^{a b}\right\rangle\left\langle\Phi_{i j}^{a b}\right|}{\epsilon_{i j}^{a b}}-\left(\frac{1}{3!}\right)^{2} \sum_{a b c i j k} \frac{\left|\Phi_{i j k}^{a b c}\right\rangle\left\langle\Phi_{i j k}^{a b c}\right|}{\epsilon_{i j k}^{a b c}}+\ldots
$$

\bigcirc Second-order energy correction

$$
E^{(2)}=-\sum_{a i} \frac{H_{a i}^{[2]} H_{i a}^{[2]}}{\epsilon_{i}^{a}}-\frac{1}{4} \sum_{a b i j} \frac{H_{a b i j}^{[4]} H_{i j a b}^{[4]}}{\epsilon_{i j}^{a b}}
$$

Computational advantages

- No computation of Hamiltonian matrix
- Non-iterative calculation
- Polynomial scaling $O\left(N^{4}\right)$

Many-body perturbation theory

\odot Convergence of MBPT series

- Convergence of the series can be tested up to high orders in small basis (recursive scheme)
- Importance of using the right reference
- Resummation schemes possible (e.g. Padé, eigenvector continuation, ...)

Many-body perturbation theory

\odot Choice of SRG parameter

- Convergence rate depends on α

$$
\begin{array}{r}
\alpha=0.02 \mathrm{fm}^{4}(\bullet) \\
0.04 \mathrm{fm}^{4}(\boldsymbol{\Delta}) \\
0.08 \mathrm{fm}^{4}(\star)
\end{array}
$$

- Additional $N_{\text {max }}$ dependence
[Tichai et al. 2016]

Many-body perturbation theory

\odot Reach

- Calculations currently possible up to mass $A \sim 100$ (and beyond)
\odot Benchmark
[Tichai et al. 2016]
- Accuracy competitive to coupled cluster calculations (non-perturbative and more costly)

$$
\operatorname{MBPT} E_{0}^{(2)}(\mathrm{O}) \quad E_{0}^{(2)}+E_{0}^{(3)}(\bullet)
$$

Non-perturbative methods

\odot Expansion of the exact wave function

$$
\begin{aligned}
& \text { Ref } \\
& \text { 1p1h } \\
& \text { 2p2h } \\
& \text { 3p3h }
\end{aligned}
$$

\Rightarrow Perturbative methods: expansion coefficients computed independently
\Rightarrow Non-perturbative methods: expansion coefficients computed self-consistently
\Rightarrow Truncated CI: expansion coefficients computed via a diagonalisation

- Examples of non-perturbative approaches
- Coupled-cluster theory (CC)

弓 Exponential ansatz for the wave function $\left|\Psi_{C C}\right\rangle=e^{T}|\Phi\rangle$

- In-medium similarity renormalisation group (IMSRG)
\Rightarrow SRG evolution for H normal-ordered w.r.t. to a reference Slater determinant

Green's function techniques

๑ The goal is to solve the A-body Schrödinger equation

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle
$$

- Instead of working with the full A-body wave function $\left|\Psi_{k}^{A}\right\rangle$, rewrite the Schrödinger equation in terms of 1-, 2-, A-body objects $G_{1}=G, G_{2}, \ldots G_{\mathrm{A}}$ (Green's functions)
$\rightarrow A-1$ coupled equations
$\odot 1-2-, \ldots$. A-body Green's functions yield expectation values of 1-, 2-, A-body operators
\rightarrow In practice, one usually needs 1- and / or 2-body GFs ($\sim 1-\& 2$-body density matrices)
- One-body Green's function obtained by solving Dyson equation (derived from Schrödinger eq.)

$$
G=G^{(0)}+G^{(0)} \Sigma G
$$

unperturbed Green's function
many-body effects contained in the self-energy Σ
\odot Bonus: one-body Green's function contains information about $A \pm 1$ excitation energy spectra
\rightarrow Spectral or Lehmann representation of the Green's function

Benchmarks

Oxygen binding energies

© Convergence of many-body results

- Different strategies to solve $\mathrm{H} \Psi=\mathrm{E} \Psi$
- Same input Hamiltonian (except lattice EFT)
- All methods agree within 5\%

\odot Physics of oxygen isotopes

- Energy trend reproduced by $2 \mathrm{~N}+3 \mathrm{~N}$ results
- Correct drip line only with 3N forces

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei

State of the art and open problems
3. Equation of state of nuclear matter \& connections to astrophysics
o Neutron stars \& Tolman-Oppenheimer-Vo11koff equations
Equation of state of neutron-star matter

- Astronhysical constraints on the nuclear FoS

Degeneracy of open-shell systems

\odot Configuration-space methods expand the solution in ph excitations on top of a reference state

- Standard formulation: reference state has the same symmetries of the exact wave function
- Very efficient to account for dynamical (weak) correlations \rightarrow closed-shell nuclei
\circ What about static (strong) correlations? \rightarrow open-shell nuclei
© Open-shell nuclei are (near-)degenerate with respect to ph excitations
\circ Gap at the Fermi surface decreases ($\rightarrow 0$ in the limit)
- ph hierarchy becomes ill-defined

Breakdown of ph expansion

Closed-shell

$$
\Delta E_{\mathrm{MBPT}}^{(2)}=-\frac{1}{4} \sum_{i j a b} \frac{\left|h_{i j a b}^{(2)}\right|^{2}}{e_{a}+e_{b}-e_{i}-e_{j}}>0
$$

- Breakdown of ph expansion evident already in MBPT(2) expressions
- Can be explicitly demonstrated by artificially decreasing the gap in ${ }^{16} \mathrm{O}$
gap

Open-shell

$$
\Delta E_{\mathrm{MBPT}}^{(2)}=-\frac{1}{4} \sum_{i j a b} \frac{\left|h_{i j a b}^{(2)}\right|^{2}}{e_{a}+e_{b}-e_{i}-e_{j}}=0
$$

Single- vs multi-reference strategy

© Multi-reference strategy

- Reopens the gap via IR diagonalisation
- Ref: linear combination of Slater dets.
- UV correlations via ph excitations

\checkmark Symmetries are automatically preserved x ph expansion: complicated formalism
© Single-reference strategy
- Reopens the gap via symmetry breaking
- Ref: single Slater determinant
- UV correlations via ph excitations

$$
\left|\Psi_{0}^{\mathrm{J}=0 \mathrm{~A}}\right\rangle=\Omega_{0}^{\mathrm{SB}}\left|\Phi_{0}^{\mathrm{SB}}\right\rangle
$$

\checkmark ph expansion: simpler formalism
x Symmetries must be restored

Symmetry breaking

\bigcirc Enlarge the variational space

- Requiring the w.f. ansatz to have the same symmetries of H is too restrictive
- In most cases, mean-field solution spontaneously breaks symmetries if allowed

○ Lift the degeneracy

- Trade the ph degeneracy for one in the transformations of the associated symmetry group
- Order parameter $\left\langle\Phi_{0}\right| Q\left|\Phi_{0}\right\rangle=q \equiv|q| e^{i \arg (q)}$

© Symmetry restoration
- Symmetry breaking is fictitious in finite systems
- Symmetry breaking is an intermediate step \rightarrow symmetries must be restored at the end

Symmetry breaking

© Which symmetries can be broken?

Physical symmetry	Group	Casimir	Correlations
Rotational inv.	$\mathrm{SU}(2)$	$\hat{\vec{J}}^{2}$	Deformation
Particle-number inv.	$\mathrm{U}(1)_{\mathrm{N}} \times \mathrm{U}(1)_{\mathrm{Z}}$	\hat{N}, \hat{Z}	Pairing

© Which symmetries should be broken?

- In principle, the more the better (provided calculations are feasible)
- In practice, there are different formal \& computational consequences
\Rightarrow Breaking $\mathrm{U}(1)$ requires a modification of the (bases of the) formalism, breaking $\mathrm{SU}(2)$ doesn't
\Rightarrow Computationally, breaking $\mathrm{U}(1)$ is cheaper than breaking $\mathrm{SU}(2)$ (symmetry reduction)

$$
\mathrm{U}(1) \text {-breaking methods were first developed }
$$

- Ultimately, it depends on the system
\circ Singly open-shell nuclei \Rightarrow Sufficient to break $\mathbf{U (1)}$
\circ Doubly open-shell nuclei \Rightarrow Necessary to break SU(2)

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter \& connections to astrophysics

- Neutron stars \& Tolman-Oppenheimer-Volkoff equations
- Equation of state of neutron-star matter
- Astronhysical constraints on the nuclear FoS

Gorkov Green's function theory

- Generalises GFs to U(1) breaking
- Normal + anomalous propagators
- First symmetry-breaking ab initio method
© Application to isotopic chains ($\mathrm{Z}=18-24$)
$\circ \mathrm{Z}=20$ (calcium): magic number
- Above and below: doubly open shells
\odot Binding energies
- Systematic calculations possible
- Underbinding corrected at $\operatorname{ADC}(3)$ level

Gorkov Green's function theory

- Generalises GFs to U(1) breaking
- Normal + anomalous propagators
- First symmetry-breaking ab initio method
\odot Application to isotopic chains ($\mathrm{Z}=18-24$)
$\circ \mathrm{Z}=20$ (calcium): magic number
- Above and below: doubly open shells
\odot Two-neutron separation energies

$$
S_{2 \mathrm{n}}(N, Z) \equiv|E(N, Z)|-|E(N-2, Z)|
$$

- Error cancellation in relative quantities
- Drops correspond to magic gaps

Gorkov Green's function theory

© Generalises GFs to U(1) breaking

- Normal + anomalous propagators
- First symmetry-breaking ab initio method
© Application to isotopic chains ($\mathrm{Z}=18-24$)
$\circ Z=20$ (calcium): magic number
- Above and below: doubly open shells

๑ Two-neutron shell gaps

$$
\Delta_{2 \mathrm{n}}(N, Z) \equiv S_{2 \mathrm{n}}(N, Z)-S_{2 \mathrm{n}}(N+2, Z)
$$

- Measure of ph gap
\circ Magic numbers emerge ab initio!
- $N=20$ gap too large
- Agreement deteriorates away from calcium

Gorkov Green's function theory

○ Energy per nucleon: theory vs. experiment

- Well-defined minimum at magic $N=20$
- Correlation with measures of deformation
- Calls for breaking of $\operatorname{SU}(2)$

Deformation across the nuclear chart

[Figure: B. Bally]

\Rightarrow Majority of nuclei display a non-spherical mean field (when allowed to do so)

Breaking SU(2)

\odot Ongoing efforts to extend state-of-the-art techniques to SU(2)-breaking

- Coupled cluster: only $\mathrm{SU}(2) \rightarrow$ deformed CC
- MBPT: on top of $\mathrm{U}(1) \rightarrow$ deformed BMBPT

Example from deformed (= unrestricted) HFB
[Frosini et al. in preparation]

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter \& connections to astrophysics

- Neutron stars \& Tolman-Oppenheimer-Volkoff equations
- Equation of state of neutron-star matter
- Astronhysical constraints on the nuclear FoS

Benchmarking many-body approaches

○ Different many-body calculations yield very consistent results

- All within few \%
- MBPT not shown but wouldn't be too far
- Discrepancies w.r.t. data to be attributed to the input Hamiltonian

Proliferation of nuclear Hamiltonians

\odot State of the art (until very recently)

- No routine / consistent account of systematic uncertainties coming from input Hamiltonian
- Precision ultimately depends on the chosen input
- Proliferation of Hamiltonians
[Simonis et al. 2017]

© Need to correctly describe nuclear sizes prompted changes in fitting procedures
- Mid-mass observables included in the fit of LECs
$\rightarrow \mathbf{N N L O}_{\text {sat }}$
- Compromise accuracy on NN data, few-body \& spectroscopy

Ab initio prediction of the drip lines

\odot Systematic survey of light and medium-mass nuclei (method: valence-space IMSRG)

- Good description (+ prediction) of proton and neutron drip lines
\bigcirc Rms deviation on total binding energies $=3.3 \mathrm{MeV}$ (cf. 0.7 MeV in energy density functionals)

Mid-mass isotopic chains

๑ SCGF calculations along mid-mass chains

- $\operatorname{ADC}(2)$ level: few \% on differential quantities
$\circ \operatorname{ADC}(3)$ level: 2.5% on B.E. of closed-shells
- Radii within few \% but some features are missing

Gorkov ADC(2)
[Somà et al. 2021]

	Ar	Ca	Ti	Cr
$\boldsymbol{N} \boldsymbol{N}+\mathbf{3} \boldsymbol{N}(\operatorname{lnl})$				
$E[\mathrm{MeV}]$	14.1	10.3	14.2	19.2
$E / A[\mathrm{MeV}]$	0.34	0.21	0.29	0.35
$S_{2 \mathrm{n}}[\mathrm{MeV}]$	2.90	1.56	2.05	2.22
$\mathbf{N N L O}$				
$\left\langle r_{\text {chat }}^{2}\right\rangle^{1 / 2}[\mathrm{fm}]$	0.008	0.022	0.019	0.010
$\delta\left\langle r_{\mathrm{ch}}^{2}\right\rangle^{1 / 2}[\mathrm{fm}]$	0.008	0.024	0.023	0.013

Electron scattering cross sections

\bigcirc

Correct reproduction of radii crucial when computing cross sections

- Particularly important for nuclear physics applications to other domains

Elastic electron scattering @SCRIT

[Arthuis et al. 2020]

Inelastic electron scattering @JLAB

[Barbieri et al. 2019]

Systematic fit of low-energy constants

- Example of fit of low-energy constants (LECs) in the three-body sector
- Two LECs ($\mathrm{C}_{\mathrm{D}} \& \mathrm{C}_{\mathrm{E}}$) at $\mathrm{N}^{2} \mathrm{LO}$ and $\mathrm{N}^{3} \mathrm{LO}$
$\circ \mathbf{c}_{\boldsymbol{D}}$ as a parameter in the calculation of $E\left({ }^{4} \mathrm{He}\right) \& r\left({ }^{4} \mathrm{He}\right), \boldsymbol{c}_{\mathbf{E}}$ determined to reproduce $E\left({ }^{3} \mathrm{H}\right)$
[Hüther et al. 2020]

Systematic fit of low-energy constants

- Example of fit of low-energy constants (LECs) in the three-body sector
- Two LECs ($\mathrm{C}_{\mathrm{D}} \& \mathrm{C}_{\mathrm{E}}$) at $\mathrm{N}^{2} \mathrm{LO}$ and $\mathrm{N}^{3} \mathrm{LO}$
$-\mathbf{c}_{\boldsymbol{D}}$ as a parameter in the calculation of $\mathrm{E}\left({ }^{4} \mathrm{He}\right) \& r\left({ }^{4} \mathrm{He}\right), \boldsymbol{c}_{\mathbf{E}}$ determined to reproduce $\mathrm{E}\left({ }^{3} \mathrm{H}\right)$
[Hüther et al. 2020]

Application to medium-mass nuclei

- $C_{D}=-3 \leftrightarrow$ matter
- $C_{D}=+2 \leftrightarrow 4 \mathrm{He}$
- $C_{D}=+4 \leftrightarrow{ }^{16} \mathrm{O}$

N3LO
$\Lambda=500 \mathrm{MeV}$
[Hüther et al. 2020]

- Large sensitivity to 3N parameters

○ "Tension" between optimal values in few-body systems, mid-mass nuclei \& nuclear matter

- Radii not much affected by changes in $\mathrm{c}_{\mathrm{D}} \& \mathrm{C}_{\mathrm{E}}$ (regulator more important)

Assessing uncertainties

Uncertainties from the expansion method

- Basis truncation

[Soma et al. 2020]

Assessing uncertainties

- Uncertainties from the expansion method
- Basis truncation
- Many-body truncation

[Soma et al. 2020]

Assessing uncertainties

(0) Uncertainties from the expansion method

- Basis truncation
- Many-body truncation
- Symmetry breaking (if any)
- Neglected induced operators (if any)

[Soma et al. 2021]	$N N+3 N(\ln 1)$		$\mathrm{NNLO}_{\mathrm{sat}}$ r_{ch}
Model space $\left(e_{\max }\right)$	0.5%	$<0.1 \%$	0.5%
Model space $\left(e_{3 \max }\right)$	0.2%	0.2%	0.3%
ADC truncation	2%	0.5%	$<0.1 \%$
U(1) breaking	0.2%	$<0.1 \%$	$<0.1 \%$
Neglected induced op.	2%	1%	-
Total	2.9%	1.1%	0.6%

Assessing uncertainties

- Uncertainties from the expansion method
- Basis truncation
- Many-body truncation
- Symmetry breaking (if any)
- Neglected induced operators (if any)

○ ...

[Soma et al. 2021]	$N N+3 N(\ln)$		$\mathrm{NNLO}_{\mathrm{sat}}$
E	r_{ch}	r_{ch}	
Model space $\left(e_{\max }\right)$	0.5%	$<0.1 \%$	0.5%
Model space $\left(e_{3 \max }\right)$	0.2%	0.2%	0.3%
ADC truncation	2%	0.5%	$<0.1 \%$
U(1) breaking	0.2%	$<0.1 \%$	$<0.1 \%$
Neglected induced op.	2%	1%	-
Total	2.9%	1.1%	0.6%

Uncertainties from the Hamiltonian

- Ideally, at each order from cutoff variation
- If not possible, use some estimate
[Epelbaum et al. 2015]

$$
\begin{aligned}
\Delta X^{\mathrm{N}^{3} \mathrm{LO}}(p)=\max (& Q^{5} \times\left|X^{\mathrm{LO}}(p)\right|, \quad Q^{3} \times\left|X^{\mathrm{LO}}(p)-X^{\mathrm{NLO}}(p)\right|, \quad Q^{2} \times\left|X^{\mathrm{NLO}}(p)-X^{\mathrm{N}^{2} \mathrm{LO}}(p)\right| \\
& \left.Q \times\left|X^{\mathrm{N}^{2} \mathrm{LO}}(p)-X^{\mathrm{N}^{3} \mathrm{LO}}(p)\right|\right)
\end{aligned}
$$

Towards systematic calculations (with uncertainties)

\bigcirc Evaluation of uncertainties from the Hamiltonian
[Hüther et al. 2020]

Towards systematic calculations (with uncertainties)

\bigcirc Evaluation of uncertainties from the Hamiltonian + the many-body method
[Hüther et al. 2020]

Progress of ab initio calculations

- Only exact methods available

Progress of ab initio calculations

- Only exact methods available

Progress of ab initio calculations

[Figure: B. Bally]

\circ Development of symmetry-conserving methods \rightarrow doubly closed-shell nuclei
\circ Development of $\mathrm{U}(1)$ symmetry-breaking methods \rightarrow singly open-shell nuclei

Progress of ab initio calculations

\circ Development of $\mathrm{SU}(2)$ symmetry-breaking methods \rightarrow doubly open-shell nuclei

Open problems

© Towards heavy nuclei

- Size of 3N matrix elements becomes prohibitive
\rightarrow Techniques from applied maths \rightarrow Tensor factorisation of the many-body problem
๑ Doubly open-shell nuclei
- Symmetry breaking? Single- or multi-reference? Scaling?
\rightarrow Strategy has to be adapted to the obejective
\odot Uncertainty quantification
- Thorough quantification to establish link to QCD \& predictive power
\rightarrow Development of efficient many-body emulators \rightarrow Towards statistical analyses of LEC fits
\rightarrow Issue of renormalisability?
\odot How far can this approach be pushed?
- Not obvious that "chiral EFT in the A-body sector" works all the way up to superheavy nuclei
\rightarrow Different types of EFT explored

References

© J. Vary et al., J. Phys. Conf. Series 18001283 (2009)

- Discussion on computational requirements and limitations in CI calculations
© S. Bogner et al., Prog. Part. Nucl. Phys. 6594 (2010)
- Review on similarity renormalisation group techniques
© H. Hergert, Front. in Phys. 8379 (2020)
- Overview on the state of the art of ab initio methods
© A. Tichai et al., Front. in Phys. 8164 (2020)
- Review on many-body perturbation theory
© V. Somà, Front. in Phys. 8340 (2020)
- Review on Self-consistent Green's function theory
© K. Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65457 (2015)
- Overview on applications in medium-mass nuclei (with focus on role of 3N forces)
© T. Hüther et al., Phys. Lett. B 808135651 (2020)
- Order-by-order calculations of nuclear properties

