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Correlation expansion methods: the idea

® The goal is always to solve H|V) = B |07

® Idea: write the exact ground-state wave function as

U5) = Qoldo)

wave operator / correlation operator

%ﬁb Expansion in terms of particle-hole excitations]

then expand and truncate Qg

reference state

= Before truncation, the expansion is exact

o After truncation, cost reduced from N! to Newith a > 4

® Reference state

© Must be simple enough (such that it can be computed easily and exactly)

© Must be rich enough (such that it is a suitable starting point for the expansion)
o Obtained by

1) Splitting H = Hy + H; 2) Solving for Hy (one-body operator) Hg|pr) = €r|dx)



Concept of mean field

® Slater determinant as reference state

A
o One-body potential: Hy = Z ho(1) —  Holog) = ex|dr) hola) = eqla) Vi
A =t A-body problem A one-body problems
o Build Slater |¢0) = H al,.|0)
i=1

o Independent particles: nucleons move inside a (one-body) potential well or mean field

® Does an independent-particle picture make any sense at all?

o Inter-particle distance in nuclei ~ 2 fm
[Rios & Soma 2012; Lopez et al. 2014]

o Range of nuclear interaction ~ 2 fm 100

: T=5 MeV

Turns out that it does

v Fermi statistics helps out

v Large mean free path A
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Liquid drop model & semi-empirical mass formula

® Picture the nucleus as a (suspended) drop of (incompressible) liquid with surface tension

’ [Gamow, Bohr, Wheeler]

Liquid drop model

Competing processes give rise to nuclear binding
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Non-interacting shell model

Measured binding energies
VS.
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© What creates regular patterns?

o Nucleon shells? (cf. electrons in the atom)

o Yet, no obvious common potential

= Idea: devise an effective one-body potential

o 1. Start with 3D spherical HO potential

0 2. Add term proportional to €2 (centrifugal)

o 3. Add a spin-orbit term £-s

1f

2s
1d

1s

[Goppert-Mayer, Jensen]
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Magic numbers reproduced!



Empirical mean-field potentials

© Empirical one-body potentials provide a reasonable description at a reduced numerical cost

—9 /.
o Consider h(i) = 2757;) + v (i) with  v(i) = v(r;) = il

1+ exp(L=L)
V) \

Common parameterisation:
Woods-Saxon (central) potentials

o
j
=

.............. ’
000000
A A A a4
L—35
L=0 CNucleonS placed in single-particle energy leveD
v Nucleons fulfil Pauli exclusion principle
—
(Coulomb shifts proton potentials J
—o—o—

= Often used in applications needing nuclear physics inputs



Hartree-Fock with realistic potentials

OBE potentials
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Chiral potentials
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Dynamical vs. static correlations

® Dynamical /short-range / weak / single-particle correlations
o Dynamical: characterised by short time scales & high excitation energies
o Short-range: governed by short-distance dynamics

o Weak: perturbative (at least with low-resolution interactions)
o Single-particle: can be described in terms of excitations of a few nucleons

= Short-range correlations

= Associated with short-range repulsion of NN interactions

® Static/long-range/strong/ collective correlations
o Static: characterised by long time scales & low excitation energies
o Long-range: governed by long-distance dynamics

o Strong: strongly non-perturbative

o Collective: description involves coherent excitations of many particles

= E.g. pairing or quadrupole correlations

= Associated with presence of bound np and virtual nn pairs (at least pairing correlations)



Closed- vs. open-shell systems

® Mean-field configurations have different features as N and Z vary
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Nucleons entirely fill levels
below a magic number

Closed-shell systems

Larger energy gap,
excitations hindered,
enhanced stability

Dynamical correlations
drive bulk properties™

-

J

*Each observables is impacted differently

Nucleons partially fill levels
below a magic number
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Open-shell systems

Smaller (— 0) energy gap,
excitations enabled,
lesser stability

Both static & dynamical
correlations are important
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Correlations via particle-hole excitations

® In configuration-space methods, correlations are accounted for by means of ph excitations

A
o Recall: Ref. Slater |P) = 1_[ cj|0) — expand on |CI>Zb) CZCZ . cjc,-|CI>)
i=1

) e ) o TR A B
0000 000 00 A A=asacs
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Ref 1plh 2p2h 3p3h

® Configuration-interaction techniques (e.g. no-core shell model)

o Few-p-few-h and many-p-many-h excitations treated on an equal footing

o Efficient treatment of both dynamical and static correlations

®© Expansion techniques

o Expansion in the rank k of kp-kh excitations

o Efficient treatment of dynamical correlations, difficult to treat static correlations



Correlations via particle-hole excitations

® The two different strategies reflect into two different truncations of the Hilbert space
® Configuration-interaction techniques

o Truncation in terms of the total number of HO excitation quanta Nmax of the many-body states

E.g. Nmax= 6 calculation —
No-core shell model 00—
—oo—

© Expansion techniques

O
O
O
O

o Truncation in terms of the energy of the states included in the one-body basis

o (On top of this there’s the truncation on the rank k of kp-kh excitations that are included)

— -

E.g. emax= 6 calculation
2p2h truncation PN




Closed vs. open shells
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Formal perturbation theory

® Very popular in description of many-electron systems (since early days)

o Coulomb interaction sufficiently weak to allow perturbative treatment

®© Applications in many-nucleon systems traditionally hindered by strong short-range repulsion

o SRG techniques have completely changed this view — renaissance of MBPT in nuclear physics

® Starting point: splitting of the many-body Hamiltonian (“partitioning”)
H = Hy+ H;

SN

unperturbed perturbation

o Eigenvalue equation for Hyp must be numerically accessible

Hy| @) = E](CO)|CI>k) — set of unperturbed eigenstates and eigenenergies {|<Dk>>E,(<0); k € N}

form orthonormal basis of Hilbert space
o In the following |Wf) = |W#) (Do) = |D) Eéo) _ g0

® Goal: approach exact (g.s.) wave function and energy by systematically including effects of H;



Formal perturbation theory

® Define projectors associated with the partitioning of H

P =|®) (P Q=1-"P with

/
— Qcanbe writtenas Q = Z | D) (P | =
k

© Express the exact wave function as

P|®) = |®) QD) = 0
Y D) (D
| Py ) 7| D)

WAy = P|U?) 4 QU4

= |P) + |x)

/
unperturbed wave function

® It follows that the exact energy can be written as

S

correlated wave function

-
E = (Q|H|T?)

= (P|Hp|D) + (P|H1|D) + ¢

\ 4

\

®|Hq|x)

J/

-~

ref

reference energy

&

AFE

™ correlation energy




Formal perturbation theory

® Introduce resolvent operator

RRS _ Z’ | D) (D]

Rayleigh-Schrodinger  E 0 — El(c())
which has the property R¥|®) = 0
® Finally, one gets
4 00 )
X)) = Z(RH 1)k|q)>c correlated wave function

k=1

0
AE = (®|H; Z(RHl)k|(I)>c correlation energy

N k=1 )

and can write exact wave function and g.s. energy as power series in Hj

o0

00

Ay _ (p) A _ (p) €8 2) ' (O|Hy | Pg) (Pr|Hi | D)
) = E |\ E" = E E B = E o 0
p=0 p=0 k E Ek



Many-body perturbation theory

®© Application to many-nucleon systems

o Characterise unperturbed Hamiltonian
o Define basis, derive working expressions (many-body matrix elements & unperturbed energies)

o Use Wick’s theorem — many-body diagrams

® Reference state: Slater determinant

@) =] [cl10)
i=1

® Normal-ordered Hamiltonian
NO2B approximation

o Apply Wick’s theorem with respect to the reference Slater to H
1
2 4
H = H[0]+Z H][)q] : c;gcq : +Z ZH][)q]rs :c;;cgcscr 4. ><
2| pqrs
o Effective (normal-ordered) operators

o Each NO operator of rank ke¢s receives contributions from original operators with keg < k < kmax



Many-body perturbation theory

® Partitioning

o Add and subtract a diagonal (NO) one-body operator

o .

H?! = Zep .c;cp
p

— rrl2] [4] r[2] — 2] _ gl2] (2] . . .
H=H""4+H H“ =H" — H _ZHPQ 1 CpCq
p#q

H():H[O]#—Zep:c;cp: |
D with

® Recall: an orthonormal basis of the A-body Hilbert space can be built via Slater determinants

HA = {|D), |DF), |DF), |c1>g.26>,...} where |c1>g.’?;;'> =clcl ... cici| @)

Ho|®) = HY | D)

— eigenbasis of Hy

Hol @) = (HI" + efb )| @9h)

with €%

i =(ate+---)—(ei+e+--)

o Convention: one-body states occupied (unoccupied) in the reference determinant are labeled
by ijk, ... (a,b,c ...) and are referred to as hole (particle) states



Many-body perturbation theory

® Choice of partitioning

o Simplest choice in nuclear physics: HO Hamiltonian Hy = — + —mw”r

o Common (more refined) choice: Hartree-Fock reference
— Solve variational HF problem and build H 2] from one-body HF Hamiltonian

— Moller-Plesset partitioning g2l — o - H = 4]

© Resolvent operator

2 ab ab 2 abc abc
R:_Z |CD?><CD?| B i Z |Cbij><q)ij | B i Z |q)ijk><q)ijk| n
et 2! cab 3! cabe
ai ! abij ij abcijk ijk
®© Second-order energy correction
Computational advantages
2 Hc[j] Hi[;] 1 H gé]in i[]i]b o No computation of Hamiltonian matrix
G = = — =

%: €’ 4 %]: gl.‘}b o Non-iterative calculation

o Polynomial scaling O(N4)



Many-body perturbation theory

®© Convergence of MBPT series
o Convergence of the series can be tested up to high orders in small basis (recursive scheme)
o Importance of using the right reference

o Resummation schemes possible (e.g. Padé, eigenvector continuation, ...)
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E —80 || A (Il 107 o4
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[Tichai et al. 2016]



Many-body perturbation theory

® Choice of SRG parameter

o Convergence rate depends on

g

( 4 )
a =0.02fm" (e)

0.04 fm* (a)

0.08 fm*
m'( >J

o Additional Nmax dependence

—16
—18
= —20
2 22
25 2
= 26
—28
—30
—60
= —80
E f
= 100 }
£
B3
& —120
—140
-120
e |
=
— -140 ||
&3
=

-160

[Tichai et al. 2016]

partial sums

energy corrections
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Many-body perturbation theory

® Reach
o Calculations currently possible up to mass A ~ 100 (and beyond)
® Benchmark [Tichai et al. 2016]

o Accuracy competitive to coupled cluster calculations (non-perturbative and more costly)

E/A [MeV]
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Non-perturbative methods

® Expansion of the exact wave function

_— B _._._
\\IJE)4> = | ) o+ | e ) ot L TR I B
0000 000 A 4 A-aes A A=aSaSs
—eo0— —eo0— —_eo— — o0 —
Ref 1plh 2p2h 3p3h
( )

= Perturbative methods: expansion coefficients computed independently

= Non-perturbative methods: expansion coefficients computed self-consistently

= Truncated CI: expansion coefficients computed via a diagonalisation
& J

® Examples of non-perturbative approaches
o Coupled-cluster theory (CC)
= Exponential ansatz for the wave function |Wcc) = el | D)
0 In-medium similarity renormalisation group (IMSRG)

> SRG evolution for H normal-ordered w.r.t. to a reference Slater determinant



Green’s function techniques

® The goal is to solve the A-body Schrodinger equation

H|Wy) = B [0y)

® Instead of working with the full A-body wave function | \IJ?> , rewrite the Schrodinger equation
in terms of 1-, 2-, .... A-body objects G1=G, G, ... Ga (Green’s functions)

= A-1 coupled equations

® 1-, 2-, .... A-body Green’s functions yield expectation values of 1-, 2-, .... A-body operators

= In practice, one usually needs 1- and /or 2-body GFs (~ 1- & 2-body density matrices)

® One-body Green’s function obtained by solving Dyson equation (derived from Schrodinger eq.)

G=GY+c%xq

L/ \

unperturbed Green’s function many-body effects contained in the self-energy X

® Bonus: one-body Green’s function contains information about A+1 excitation energy spectra

= Spectral or Lehmann representation of the Green’s function



Benchmarks

Oxygen binding energies
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[Hebeler et al. 2015]

Mass Number A

© Convergence of many-body results

o Ditferent strategies to solve HWY=EW
o Same input Hamiltonian (except lattice EFT)

o All methods agree within 5%

®© Physics of oxygen isotopes

o Energy trend reproduced by 2N+3N results

o Correct drip line only with 3N forces
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Degeneracy of open-shell systems

® Configuration-space methods expand the solution in ph excitations on top of a reference state
o Standard formulation: reference state has the same symmetries of the exact wave function
o Very efficient to account for dynamical (weak) correlations — closed-shell nuclei

o What about static (strong) correlations? — open-shell nuclei

® Open-shell nuclei are (near-)degenerate with respect to ph excitations

o Gap at the Fermi surface decreases ( — 0 in the limit)

o ph hierarchy becomes ill-defined
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—O0—0— —0—0—0—0-
—O0—0O0——0——0C

..................... —O0—0— —O—0O——
N T | e 1905008 doraoince
—0 0 00— —0 0 00— —o 0 00—

0 @ 0

Non-degenerate Near degenerate Degenerate

(Closed shell) (Open shell)



Breakdown of ph expansion

Closed-shell

Gap to first excited state

L]
(2) 2
AED 1 lhz‘jabl
MBPT 4 Ld e +ep—ei—e; >0

ijab

o Breakdown of ph expansion evident
already in MBPT(2) expressions

o Can be explicitly demonstrated by
artificially decreasing the gap in 16O

&ap

Open-shell

No gap

/

Vacuum -————==-2 _@)_

1 j a b
(2) 2
AED 1 |hz‘jab|
MBPT — 4 .
4 “ab €a tep—ei—ej =0

_]_20 = T4
- ® 6 -
i o 160 :
— -140 §
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[Tichai et al. 2020]

perturbation order p



Single- vs multi-reference strategy

© Multi-reference strategy
o Reopens the gap via IR diagonalisation
o Ref: linear combination of Slater dets.

o UV correlations via ph excitations

UV space

IR space

JI=0A\ _ AUV ,aJ=0A
¥o ) =95 1O R )

v Symmetries are automatically preserved

X ph expansion: complicated formalism

®© Single-reference strategy
o Reopens the gap via symmetry breaking
o Ref: single Slater determinant

o UV correlations via ph excitations

a b
l]El 1]

J=0A\ _ »SB|55B
Wo ") =715

v ph expansion: simpler formalism

X Symmetries must be restored



Symmetry breaking

© Enlarge the variational space

o Requiring the w.f. ansatz to have the same symmetries of H is too restrictive

o In most cases, mean-field solution spontaneously breaks symmetries if allowed

® Lift the degeneracy

o Trade the ph degeneracy for one in the transformations of the associated symmetry group

o Order parameter (®o|Q|®o) = q = |gle’*& (@)

Closed-shell systems Open-shell systems

bSymmetry-conserving minimum

Symmetry-breaking minimum

®© Symmetry restoration
o Symmetry breaking is fictitious in finite systems

o Symmetry breaking is an intermediate step — symmetries must be restored at the end



Symmetry breaking

® Which symmetries can be broken?

Physical symmetry Group Casimir Correlations
Rotational inv. SU(2) J?2 Deformation
Particle-number inv. U(1)n x U(1)7 N : 7 Pairing

® Which symmetries should be broken?

o In principle, the more the better (provided calculations are feasible)
o In practice, there are different formal & computational consequences
= Breaking U(1) requires a modification of the (bases of the) formalism, breaking SU(2) doesn’t

= Computationally, breaking U(1) is cheaper than breaking SU(2) (symmetry reduction)

U(1)-breaking methods were first developed

o Ultimately, it depends on the system

o Singly open-shell nuclei = Sufficient to break U(1)
© Doubly open-shell nuclei = Necessary to break SU(2)
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E [MeV]

Gorkov Green’s function theory
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® Generalises GFs to U(1) breaking

© Normal + anomalous propagators

Symbols + line: theory —

\_

o First symmetry-breaking ab initio method

J

®© Application to isotopic chains (Z=18-24)
0 Z =20 (calcium): magic number

o Above and below: doubly open shells
® Binding energies
o Systematic calculations possible

; o Underbinding corrected at ADC(3) level
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[Soma et al. 2021]



Gorkov Green’s function theory

S, [MeV]
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® Generalises GFs to U(1) breaking

© Normal + anomalous propagators

o First symmetry-breaking ab initio method

J

®© Application to isotopic chains (Z=18-24)

0 Z =20 (calcium): magic number

o Above and below: doubly open shells

®© Two-neutron separation energies

Son(N, Z) = |E(N, Z)| = |E(N =2, Z)|

o Error cancellation in relative quantities

o Drops correspond to magic gaps

[Soma et al. 2021]



Gorkov Green’s function theory

50

10

20

60 |

Full symbols: experimental data :
Empty symbols: extrapolated data -
Symbols + line: theory

16 18 20 22 24 26 28 30 32 34 36 38

® Generalises GFs to U(1) breaking
© Normal + anomalous propagators

o First symmetry-breaking ab initio method

®© Application to isotopic chains (Z=18-24)
0 Z =20 (calcium): magic number

o Above and below: doubly open shells

®© Two-neutron shell gaps
Ao (N, Z) = Son(N, Z) — Son(N +2,7)

© Measure of ph gap
0 Magic numbers emerge ab initio!
o N =20 gap too large

o Agreement deteriorates away from calcium

N [Soma et al. 2021]



Gorkov Green’s function theory

057

® Energy per nucleon: theory vs. experiment 04T

o Well-defined minimum at magic N = 20 “F

o Correlation with measures of deformation

AE/A [MeV]
)

0.1F

o Calls for breaking of SU(2)

0.1F

o | -
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Deformation across the nuclear chart

[Figure: B. Bally]

Deformation of the HFB minimum
with Gogny DIM energy functional

Proton number Z (up to 118)

T 0.05
i 0.05
SRR -0.15
e -0.25

L —

Neutron number N (up to 258)

Data taken from:

= Majority of nuclei display a non-spherical mean field (when allowed to do so)



Breaking SU(2)

© Ongoing efforts to extend state-of-the-art techniques to SU(2)-breaking

o Coupled cluster: only SU(2) — deformed CC
o MBPT: on top of U(1) — deformed BMBPT

< Example from deformed (= unrestricted) HFB [Frosini et al. in preparation]
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Contents

1. Inter-nucleon forces
o Brief introduction to the nuclear many-body problem
o Properties and modelling of nuclear forces

© The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

o Configuration-interaction approaches

o Techniques to mitigate the “curse of dimensionality” (SRG, NO2B, IT)
© Mean field and correlations

o Expansion methods for closed-shell nuclei

o Symmetry breaking

o Expansion methods for open-shell nuclei

o State of the art and open problems



®© Different many-body calculations yield very consistent results

o All within few %
o MBPT not shown but wouldn’t be too far

o Discrepancies w.r.t. data to be attributed to the input Hamiltonian
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Proliferation of nuclear Hamiltonians

© State of the art (until very recently)

o No routine/ consistent account of systematic uncertainties coming from input Hamiltonian
o Precision ultimately depends on the chosen input

o Proliferation of Hamiltonians [Simonis et al. 2017]
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Ab initio prediction of the drip lines

® Systematic survey of light and medium-mass nuclei (method: valence-space IMSRG)

o Good description (+ prediction) of proton and neutron drip lines

o Rms deviation on total binding energies = 3.3 MeV (cf. 0.7 MeV in energy density functionals)

Proton number Z

25 1

\)
)

—_
ot
1

é
b

Confirmed dripline

Last known

| - o

Prob. Bound

1.0

0.8

0.6

0.4

0.2

0.0

50

Neutron number N

[Stroberg et al. 2021]



Mid-mass isotopic chains

®© SCGF calculations along mid-mass chains

o ADC(2) level: few % on differential quantities

o ADC(3) level: 2.5 % on B.E. of closed-shells

o Radii within few % but some features are missing
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[Soma et al. 2021]
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Electron scattering cross sections

® Correct reproduction of radii crucial when computing cross sections

o Particularly important for nuclear physics applications to other domains

Elastic electron scattering @SCRIT

[Arthuis et al. 2020]

Inelastic electron scattering @[LAB

[Barbieri et al. 2019]
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Systematic fit of low-energy constants

© Example of fit of low-energy constants (LECs) in the three-body sector
o Two LECs (cp & cg) at N2LO and N3LO

O ¢p as a parameter in the calculation of E(4He) & r(¢He), cg determined to reproduce E(3H)

[Hiither et al. 2020]
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Systematic fit of low-energy constants

© Example of fit of low-energy constants (LECs) in the three-body sector
o Two LECs (cp & cg) at N2LO and N3LO

O ¢p as a parameter in the calculation of E(4He) & r(¢He), cg determined to reproduce E(3H)

[Hiither et al. 2020]
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Application to medium-mass nuclei

|
o)

% ® ¢cp = -3 < matter
2_7: | ¢ Cb=+2 < 4He
[ : | = +4 o 160
%_8-_ —- CD
E ] N3LO
-9¢ . A =500 MeV
=35} .
£33
= 3 :
|

1

[Hiither et al. 2020]

1610 2410 361(:a 4OICa 481(:a 521Ca 48'Ni 56lNi 68'1\Ii 78'1\Ii

o Large sensitivity to 3N parameters
o “Tension” between optimal values in few-body systems, mid-mass nuclei & nuclear matter

o Radii not much affected by changes in cp & cg (regulator more important)



Assessing uncertainties

® Uncertainties from the expansion method

o Basis truncation
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Assessing uncertainties

® Uncertainties from the expansion method

o Basis truncation

o0 Many-body truncation
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Assessing uncertainties

® Uncertainties from the expansion method

NN+3N(Inl) NNLOg4¢
. . [Soma et al. 2021]

o Basis truncation L Ich Ich

o Many—body truncation Model space (emax) 0.5% < 0.1% 0.5%
Model space (e3max) 0.2% 0.2% 0.3%

o Symmetry breaking (if any) ADC truncation 2% 0.5% <0.1%

i i U(1) breakin 0.2% < 0.1% < 0.1%

o Neglected induced operators (if any) W e i ’ ’

Neglected induced op. 2% 1% —

O ... Total 2.9% 1.1% 0.6%




Assessing uncertainties

® Uncertainties from the expansion method

NN+3N(Inl) NNLOg,¢
. . [Soma et al. 2021]

O Basis truncation L Ich Ich

o Many—body truncation Model space (emax) 0.5% < 0.1% 0.5%
Model space (e3max) 0.2% 0.2% 0.3%

o Symmetry breaking (if any) ADC truncation 2% 0.5% <0.1%

i i U(1) breakin 0.2% < 0.1% < 0.1%

o Neglected induced operators (if any) W e ’ ’ ’
Neglected induced op. 2% 1% —

o ... Total 2.9% 1.1% 0.6%

® Uncertainties from the Hamiltonian

o Ideally, at each order from cutoff variation

o If not possible, use some estimate [Epelbaum e al. 2015]

AXNLO() — max (Q5 «|xo)

QP x ‘XLO(p) B XNLO(p)

0% x ‘XNLO(p) B XNQLO(p)

Y

Q x [X¥10) - xN10() ).
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Towards systematic calculations (with uncertainties)

® Evaluation of uncertainties from the Hamiltonian
[Hiither et al. 2020]
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Towards systematic calculations (with uncertainties)

®© Evaluation of uncertainties from the Hamiltonian + the many-body method
[Hiither et al. 2020]
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Progress of ab initio calculations

[Figure: B. Bally]

.

Proton number Z (up to 118)

l Stable
] Atomic mass evaluation 2020

B Ab initio 2005

M Energy density functional (Gogny D1M)

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)

Neutron number N (up to 258) M. Wang et al., Chin. Phys. C 45, 030003 (2021)
- H. Hergert (private communications)

© Only exact methods available



Progress of ab initio calculations

[Figure: B. Bally]

.

Proton number Z (up to 118)

...... Neutron number N (up to 258)

© Only exact methods available
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B Stable
] Atomic mass evaluation 2020

M Ab initio 2010

M Energy density functional (Gogny D1M)

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)

M. Wang et al., Chin. Phys. C 45, 030003 (2021)
H. Hergert (private communications)



Progress of ab initio calculations

[Figure: B. Bally]

.

Proton number Z (up to 118)

Neutron number N (up to 258)

e

B Stable
] Atomic mass evaluation 2020

M AbD initio 2015

M Energy density functional (Gogny D1M)

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)

M. Wang et al., Chin. Phys. C 45, 030003 (2021)
H. Hergert (private communications)

o Development of symmetry-conserving methods — doubly closed-shell nuclei

o Development of U(1) symmetry-breaking methods — singly open-shell nuclei



Progress of ab initio calculations

.

Proton number Z (up to 118)

[Figure: B. Bally]

B Stable
] Atomic mass evaluation 2020

M Ab initio 2020

M Energy density functional (Gogny D1M)

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)

Neutron number N (up to 25 8) M. Wang et al., Chin. Phys. C 45, 030003 (2021)
- H. Hergert (private communications)

o Development of SU(2) symmetry-breaking methods — doubly open-shell nuclei



Open problems

© Towards heavy nuclei

o Size of 3N matrix elements becomes prohibitive

— Techniques from applied maths — Tensor factorisation of the many-body problem

® Doubly open-shell nuclei

o Symmetry breaking? Single- or multi-reference? Scaling?

— Strategy has to be adapted to the obejective

® Uncertainty quantification
o Thorough quantification to establish link to QCD & predictive power

— Development of efficient many-body emulators & Towards statistical analyses of LEC fits

— Issue of renormalisability?

® How far can this approach be pushed?

o Not obvious that “chiral EFT in the A-body sector” works all the way up to superheavy nuclei

— Different types of EFT explored
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