Ab initio calculations of atomic nuclei Recent progress and future challenges

Lecture 2: Many-body techniques

Part 1: Exact methods

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter \& connections to astrophysics
o Neutron stars \& Tolman-Oppenheimer-Volkoff equations

- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EoS

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei

State of the art and open problems
3. Equation of state of nuclear matter \& connections to astrophysics

- Neutron stars \& Tolman-Oppenheimer-Vollkoff equations

Equation of state of neutron-star matter

- Astrophysical constraints on the nuclear FoS

Many-body Schrödinger equation

© Goal: solve A-body Schrödinger equation (for any A)

A-body energies of ground and excited states
\bigcirc Only input

$$
H=H_{\mathrm{int}}=T_{\mathrm{int}}+V_{\mathrm{NN}}+V_{3 \mathrm{~N}}+\ldots
$$

- Given as a sum of many operators in momentum space (\otimes spin \& isospin)
- Coupling constants in X-body sector (ideally) fitted on X-body observables
- Increasingly complicated as more nucleons are involved

Coordinate-space vs configuration-space methods

○ Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)

\checkmark Flexible (any spatial configuration is accessible) + no intensive memory requirement
x Sign problem \rightarrow constrained choice of operators + expensive in processor time
© Configuration-space methods
- Expand eigenstates on a basis of known many-body states
\checkmark Universally applicable to any operator + amenable to controlled approximations
x Expensive in memory usage + constrained by the properties of basis states

One-body (= single-particle) basis

\odot Basic constituents: nucleons characterised by position, spin and isospin

- Single-nucleon states expressed as

$$
\left|\varphi_{k}\right\rangle=\left[\left|\varphi_{k}^{\text {space }}\right\rangle \otimes\left|\varphi_{k}^{\text {spin }}\right\rangle\right] \otimes\left|\varphi_{k}^{\mathrm{isospin}}\right\rangle
$$

- Standard choice for nuclear structure approaches

$$
\begin{array}{ll}
\left|\varphi_{k}^{\text {space }}\right\rangle=\left|n \ell m_{\ell}\right\rangle & \text { e.g., solutions of one-body harmon } \\
\left|\varphi_{k}^{\text {spin }}\right\rangle=\left|s m_{s}\right\rangle=\left|\frac{1}{2} m_{s}\right\rangle & \text { eigenstates of } \mathrm{s}^{2} \text { and } \mathrm{s}_{z} \text { with } \mathrm{s}=1 / 2 \\
\left|\varphi_{k}^{\mathrm{isospin}}\right\rangle=\left|t m_{t}\right\rangle=\left|\frac{1}{2} m_{t}\right\rangle & \text { eigenstates of } \mathrm{t}^{2} \text { and } \mathrm{t}_{\mathrm{z}} \text { with } \mathrm{t}=1 / 2
\end{array}
$$

\odot Orbital angular momentum and spin are typically coupled

$$
\left|\varphi_{k}\right\rangle=\left|n\left(\ell \frac{1}{2}\right) j m ; \frac{1}{2} m_{t}\right\rangle=\sum_{m_{l}, m_{s}} c\left(\begin{array}{cc|c}
\ell & \frac{1}{2} & j \\
m_{l} & m_{s} & m
\end{array}\right)\left|n \ell m_{\ell}\right\rangle \otimes\left|\frac{1}{2} m_{s}\right\rangle \otimes\left|\frac{1}{2} m_{t}\right\rangle
$$

Many-body basis

\odot When dealing with fermions, many-body states have to be explicitly antisymmetrised
Antisymmetrisation operator $\mathcal{A}=\frac{1}{A!} \sum_{\pi} \operatorname{sgn}(\pi) P_{\pi}$
Direct product of A 1-body states

Slater determinants

$$
\begin{aligned}
\left|\Phi^{A}\right\rangle & =\mathcal{A}\left\{\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle \otimes \cdots \otimes\left|\varphi_{k_{A}}\right\rangle\right\} \\
& =\frac{1}{\sqrt{A!}} \sum_{\pi} \operatorname{sgn}(\pi) P_{\pi}\left(\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle \otimes \cdots \otimes\left|\varphi_{k_{A}}\right\rangle\right) \\
& \equiv\left|k_{1} k_{2} \cdots k_{A}\right\rangle
\end{aligned}
$$

\circ Antisymmetric under exchange $P_{i j}\left|\cdots k_{i} \cdots k_{j} \cdots\right\rangle=\left|\cdots k_{j} \cdots k_{i} \cdots\right\rangle=-\left|\cdots k_{i} \cdots k_{j} \cdots\right\rangle$

- Encodes Pauli principle $\left|\cdots k_{i} \cdots k_{i} \cdots\right\rangle=0 \quad \rightarrow$ minimal intrinsic correlations
\odot Any antisymmetric state can be expanded in the Slater determinant basis

$$
\left|\Psi^{A}\right\rangle=\sum_{k_{1}>k_{2} \cdots>k_{A}} c_{k_{1} k_{2} \ldots k_{A}}\left|k_{1} k_{2} \cdots k_{A}\right\rangle \equiv \sum_{i} c_{i}\left|\Phi_{i}\right\rangle
$$

Configuration interaction

© The strategy is the following

1. Select a one-body basis

$$
|\alpha\rangle \equiv\left|n \ell j m m_{t}\right\rangle
$$

2. Construct A-body basis of Slater determinants

$$
\left|\Phi_{i}\right\rangle \equiv\left|\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\}_{i}\right\rangle
$$

3. Convert Schrödinger equation into a matrix eigenvalue problem

$$
\begin{aligned}
& H\left|\Psi_{k}\right\rangle=E_{k}\left|\Psi_{k}\right\rangle \quad \rightarrow \text { expand } \quad\left|\Psi_{k}\right\rangle=\sum_{i} C_{i}^{(k)}\left|\Phi_{i}\right\rangle \\
& \left\langle\Phi_{j}\right| \times\left[H \sum_{i} C_{i}^{(k)}\left|\Phi_{i}\right\rangle=E_{k} \sum_{i} C_{i}^{(k)}\left|\Phi_{i}\right\rangle\right] \\
& \sum_{i} \underbrace{\left\langle\Phi_{j}\right| H\left|\Phi_{i}\right\rangle}_{\equiv H_{j i}} C_{i}^{(k)}=E_{k} \sum_{i} C_{i}^{(k)} \underbrace{\left\langle\Phi_{j} \mid \Phi_{i}\right\rangle}_{=\delta_{i j}} \longrightarrow \\
& {\left[\begin{array}{ccc}
& \vdots \\
\cdots & \\
\cdots & H_{j i} & \ldots \\
\vdots &
\end{array}\right]\left[\begin{array}{c}
\vdots \\
C_{i}^{(k)} \\
\vdots
\end{array}\right]=E_{k}\left[\begin{array}{c}
\vdots \\
C_{j}^{(k)} \\
\vdots
\end{array}\right]}
\end{aligned}
$$

Model space truncations

© Expansion on Slater determinants involves an infinite number of basis states

$$
\left|\Psi_{k}\right\rangle=\sum_{i=1}^{\infty} C_{i}^{(k)}\left|\Phi_{i}\right\rangle \quad \Rightarrow \quad\left|\Psi_{k}(D)\right\rangle=\sum_{i=1}^{D} C_{i}^{(k)}\left|\Phi_{i}\right\rangle
$$

obviously cannot store an infinite vector... \Rightarrow truncations have to be necessarily introduced
© Two main ways of truncating the basis

- Full CI: truncate the one-body basis (at some maximum single-particle energy $\mathbf{e}_{\max }$)
- No-core shell model: cut the many-body basis (total number of HO excitation quanta $N_{\max }$)

$$
\text { Example: } N_{\max }=6
$$

Computational strategy

\bigcirc Involved computational problem as A increases

- Key features
\circ One is only interested in a few low-lying eigenstates
- Hamiltonian matrix is sparse ($<0.01 \%$ of non-zeros at working values of $N_{\max }$)

\odot Computational solutions \& limitations
- Lanczos-type algorithms employed to extract first few eigenstates and associated eigenvalues
- Fast storage of non-zero matrix elements sets the limits of matrix dimensions
- Extensive use of parallelisation, matrix transformations, optimisation techniques, ...

CI dimensionality

\bigcirc "Back-of-the-envelope" estimate of matrix dimensions

- Case of Full CI (recall: truncation acts on the single-particle basis)
© How many Slater determinants can be built from a given number of single-particle states?
- Take A nucleons and n single-particle states
\Rightarrow Number of different possible Slater determinants $\quad\binom{n}{A}=\frac{n!}{(n-A)!A!}$
© Example: ${ }^{16} \mathbf{O}(Z=8, N=8)$ in 40 single-particle states
$\binom{40}{8}=\frac{40!}{(40-8)!8!} \approx 8 \cdot 10^{7} \quad$ for protons $\quad x \quad\binom{40}{8}=\frac{40!}{(40-8)!8!} \approx 8 \cdot 10^{7} \quad$ for neutrons

द) Total of $\mathrm{D}=6 \cdot 10^{15}$ Slater determinants
\Rightarrow Number of non-zero matrix elements (NN only!) scales as D ${ }^{1.2} \rightarrow \sim 10^{18}$ non-zero entries
\Rightarrow Size in memory beyond EB \rightarrow well beyond current capabilities
\odot Current computational limits for the storage and diagonalisation of a large matrix

- Petascale machines: D ~ 10^{10} / / Exascale machines: D ~ 10^{12}

NCSM dimensionality

© No-core shell model

- More gentle scaling (recall: truncation $N_{\max }$ acts on the many-body basis)

Convergence w.r.t. $N_{\text {max }}$

\Rightarrow Very quickly one reaches the computational limits

NCSM dimensionality

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei

State of the art and onen problems
3. Equation of state of nuclear matter \& connections to astrophysics
o Neutron stars \& Tolman-Oppenheimer-Vo11koff equations
Equation of state of neutron-star matter

- Astrophysical constraints on the nuclear FoS

Short-range correlations \& "low-momentum" interactions

\odot Why do we need to include such high values of $N_{\max } /$ large matrix dimensions?

๑ Nuclear interactions generate short-range correlations in many-body states

- Traditionally linked to "hard core" of one-boson exchange potentials
- Weaker but present in modern chiral interactions
\circ Short distance / high momenta / high energy \rightarrow large Hilbert space needed
\odot Idea: use unitary transformations on \boldsymbol{H} to suppress these correlations
- Goal: achieve decoupling between low- and high-momenta
- Builds on EFT ideas (further change in "resolution")
- Low-energy observables unchanged
- Corresponding wave functions are less correlated
- Drawback: additional many-body forces generated
ci Similarity renormalisation group (SRG) transformation

SRG transformation

SRG transformation
[Figures: R. Roth]

chiral NN

Entem \& Machleidt. N ${ }^{3}$ LO, 500 MeV

$$
J^{\pi}=1^{+}, T=0
$$

deuteron wave-function

SRG transformation
[Figures: R. Roth]

$$
\underset{\substack{\wedge=1.58 \mathrm{fm}^{-1}}}{\alpha=0.160 \mathrm{fm}^{4}}
$$

deuteron wave-function

SRG transformation

3B-Jacobi HO matrix elements

(E, i)

chiral NN+3N

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathrm{H}$

SRG transformation

[Figures: R. Roth]

SRG in A-body systems

\bigcirc Effect of induced many-body forces is non-negligible already in small systems

Initial ("genuine") 4-body forces assumed to be very small

- λ-dependence provides estimate of neglected induced 4-body contributions in ${ }^{4} \mathrm{He}$

SRG in A-body systems

\bigcirc Example: no-core shell model calculations of ${ }^{4} \mathrm{He}$ and ${ }^{6} \mathrm{Li}$ ground-state energies

Flow parameters [fm^{-1}]

Normal-ordered two-body approximation

© From original Hamiltonian (normal-ordered w.r.t. the particle vacuum)...

$$
\begin{gathered}
H=\sum_{p q} t_{p q} c_{p}^{\dagger} c_{q}+\frac{1}{(2!)^{2}} \sum_{p q r s} v_{p q r s} c_{p}^{\dagger} c_{q}^{\dagger} c_{s} c_{r}+\frac{1}{(3!)^{2}} \sum_{p q r s t u} w_{p q r s t u} c_{p}^{\dagger} c_{q}^{\dagger} c_{r}^{\dagger} c_{u} c_{t} c_{s} \\
\\
\quad \text { introduce Slater determinant }\left|\phi_{0}\right\rangle=\prod_{i=1}^{A} a_{i}^{\dagger}|0\rangle
\end{gathered}
$$

... to a Hamiltonian normal-ordered w.r.t. to a reference Slater determinant

$$
H=h^{(0)}+\sum_{p q} h_{p q}^{(1)}: a_{p}^{\dagger} a_{q}:+\frac{1}{2!} \sum_{p q r s} h_{p q r s}^{(2)}: a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}:+\frac{1}{6!} \sum_{p q r s t u} h_{p q r s t u}^{(3)}: a_{p}^{\dagger} a_{q}^{\dagger} a_{r}^{\dagger} a_{u} a_{t} a_{s}:
$$

© Define density matrix \& occupation numbers

$$
\rho_{p q} \equiv\left\langle\phi_{0}\right| a_{p}^{\dagger} a_{q}\left|\phi_{0}\right\rangle=n_{p} \delta_{p q} \quad \rightarrow \quad \begin{cases}n_{i}=1 & \text { holes } \\ n_{a}=0 & \text { particles }\end{cases}
$$

Normal-ordered two-body approximation

© Normal-ordered matrix elements

$$
\begin{aligned}
& h^{(0)}=\sum_{i} t_{i i} n_{i}+\frac{1}{2} \sum_{i j} v_{i j i j} n_{i} n_{j}+\frac{1}{6} \sum_{i j k} w_{i j k i j k} n_{i} n_{j} n_{k} \\
& h_{p q}^{(1)}=t_{p q}+\sum_{i} v_{p i q i} n_{i}+\frac{1}{2} \sum_{i j} w_{p i j q i j} n_{i} n_{j} \\
& h_{p q r s}^{(2)}=v_{p q r s}+\sum_{i} w_{p q i r s i} n_{i} \longleftarrow \begin{array}{c}
\text { Large part of the original 3N transferred } \\
\text { into effective lower-rank operators }
\end{array} \\
& h_{p q r s t u}^{(3)}=w_{p q r s t u} \\
& \text { Normal-ordered 2-body approximation (NO2B) } \\
& \rightarrow \text { Discard residual 3N operator }
\end{aligned}
$$

Normal-ordered two-body approximation

© Normal-ordered matrix elements

$$
\begin{aligned}
h^{(0)} & =\sum_{i} t_{i i} n_{i}+\frac{1}{2} \sum_{i j} v_{i j i j} n_{i} n_{j}+\frac{1}{6} \sum_{i j k} w_{i j k i j k} n_{i} n_{j} n_{k}=0+ \\
h_{p q}^{(1)} & =t_{p q}+\sum_{i} v_{p i q i} n_{i}+\frac{1}{2} \sum_{i j} w_{p i j q i j} n_{i} n_{j}= \\
h_{p q r s}^{(2)} & =v_{p q r s}+\sum_{i} w_{p q i r s i} n_{i}=
\end{aligned}
$$

$$
h_{p q r s t u}^{(3)}=w_{p q<s t u}
$$

Normal-ordered 2-body approximation (NO2B)

\rightarrow Discard residual 3N operator
© Benchmarked in light nuclei

- 1-3\% error
- Comparable to other errors
[Roth et al. 2012]

Importance truncation

© Not all matrix elements of H are equally relevant

- $N_{\max }$ cuts might not be the most efficient way of selecting important entries
- Is there a way of discarding a priori the most irrelevant entries for a given $N_{\max }$?
- Importance truncation: prior to diagonalisation

1. Estimate the size of each entry upon a given criterion
2. Discard irrelevant entries (i.e., make the matrix even more sparse)
\Rightarrow Construct importance-truncated space from all basis states having $\left|\kappa_{\nu}\right| \geq \kappa_{\text {min }}$
\bigcirc Required features:

- Estimate has be done with a cheap method
- Typical tool of choice: many-body perturbation theory
- In the limit of null threshold one must recover the original (exact) problem
- Smooth behaviour desirable in order to perform extrapolations

Importance truncation

© Example: no-core shell model calculation of ${ }^{16} \mathrm{O}$

- Smooth threshold dependence
- Extrapolation to un-truncated result
- Uncertainty quantification from fit
- Benchmarks possible for for small $N_{\max }$

Applications: oxygen isotopes

\odot First ab initio calculations with $\mathrm{NN}+3 \mathrm{~N}$ chiral interactions along the oxygen chain

- Converged results achieved up to ${ }^{24} \mathrm{O}$
- Unbound ${ }^{26} \mathrm{O}$ harder to compute in HO basis
- Role of "genuine" 3N forces evident

[Hergert et al. 2013]

Applicability of exact ab initio approaches

[Figure: B. Bally]

Stable
\square Atomic mass evaluation 2020
\square Ab initio 2010
\square Energy density functional (Gogny D1M)

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)
M. Wang et al., Chin. Phys. C 45, 030003 (2021)
H. Hergert (private communications)

