Ab initio calculations of atomic nuclei Recent progress and future challenges

Lecture 1: Inter-nucleon forces

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter \& connections to astrophysics
o Neutron stars \& Tolman-Oppenheimer-Volkoff equations

- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EoS

Acknowledgements

\bigcirc Thanks to (for slides and figures)

- B. Bally (Madrid Uni.)
- T. Duguet (Saclay)
\circ R. Roth and A. Tichai (TU Darmstadt)

Contents

1. Inter-nucleon forces

Brief introduction to the nuclear many-body problem
Properties and modelling of nuclear forces
The modern view: chiral effective field theory
2. Ab initio techniques for the nuclear many-body problem

Configuration-interaction approaches
Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
Mean field and correlations
Expansion methods for closed-shell nuclei
Symmetry breaking
Expansion methods for open-shell nuclei
State of the art and open problems
3. Equation of state of nuclear matter \& connections to astrophysics

Neutron stars \& Tolman-Oppenheimer-Volkoff equations
Equation of state of neutron-star matter

- Astronhysical constraints on the nuclear FoS

Basic facts about nuclei

- 254 stable isotopes, ~ 3100 synthesised in the lab
- Heaviest synthesised element $Z=118$

- Neutron drip-line known up to $Z=10$ (24 neutrons)
- Over-stable magic nuclei $(2,8,20,28,50,82, \ldots)$

Basic questions about nuclei

- 254 stable isotopes, ~ 3100 synthesised in the lab
- How many bound nuclei exist? (6000-8000?)
- Heaviest synthesised element $\mathrm{Z}=118$
- Heaviest possible element?

Enhanced stability near $\mathrm{Z}=120$?

- Neutron drip-line known up to $Z=10$ (24 neutrons)

[^0]- Over-stable magic nuclei ($2,8,20,28,50,82, \ldots$)
- Are magic numbers the same for unstable nuclei?

Diversity of nuclear phenomena

Nucleus: bound (or resonant) state of Z protons and N neutrons

Ground state

Mass, size, superfluidity, ...

Radioactive decays
$\beta, 2 \beta, \alpha, p, 2 p$, fission, ...

Spectroscopy
Excitation modes

$\xrightarrow[\text { angular momentum }]{\longrightarrow}$

Several scales at play:

$\mathrm{p} \& \mathrm{n}$ momenta $\sim 1 \mathbf{1 0}^{\mathbf{8}} \mathrm{eV}$
Separation energies $\sim \mathbf{1 0}^{\mathbf{7}} \mathrm{eV}$
Vibrational excitations $\sim 1 \mathbf{1 0}^{6} \mathrm{eV}$
Rotational excitations $\boldsymbol{\sim} \mathbf{1 0}^{\mathbf{4}} \mathrm{eV}$

Exotic structures

Clusters, halos, ...

Reaction processes
Fusion, transfer, knockout, ...

What makes atomic nuclei so complex?

- Mesoscopic systems
- From 2 to few hundreds nucleons \rightarrow Statistical approaches can not be applied
\circ Enough particles to prompt collective behaviours \rightarrow Interplay with individual excitations
- Self-organisation and emergent phenomena
- Self-bound quantum systems
- In a first approximation, nucleons occupy quantised orbits
- Filling and energies strongly depend on $A \rightarrow$ each nucleus displays a specific structure
- Purely quantum effects (e.g. halos, bubble-nuclei)
\odot Interacting via strong, weak and EM forces
- Strong interaction responsible for binding and saturation
- Weak interaction triggers decays of unstable nuclei towards the 'valley of stability'
- EM interaction determines proton-neutron asymmetry and limits the mass

Interdisciplinary aspects

Astrophysics

- Nucleosynthesis (BB, stellar, r-process, ...)
- Neutron stars (birth, life \& death)

Particle physics

- Neutrinoless 2β decay
- Neutrino-nucleus scattering
- Tests of standard model
- Dark matter (nucleus-WIMP scattering)

Other mesoscopic systems

- Ultracold fermionic gases \rightarrow universality classes, superfluidity,
\circ Atoms \& molecules \rightarrow cross-fertilisation of many-body techniques

Which is the most appropriate theoretical description?

○ Nuclei from QCD d.o.f.?

- Nonperturbative at low energy
\rightarrow Lattice QCD
- Noise-to-signal ratio of A-nucleon correlation functions scales as $e^{A\left(M_{N}-\frac{3}{2} m_{\pi}\right) t}$
\rightarrow Calculations possible for small A

Which is the most appropriate theoretical description?

\Rightarrow Current trend: from a plurality of nuclear models to an articulated "tower" of EFTs

Ab initio nuclear many-body problem

- This course focuses on the ab initio nuclear many-body problem
$\odot \mathrm{Ab}$ initio $=$ "from scratch"
- Describe the nucleus as a system of A interacting structure-less nucleons
- Model the Hamiltonian to describe inter-nucleon interactions in free space
\circ Solve many-body Schrödinger equation for all A nucleons (non-relativistic)
- Systematically improvable solution + error estimates
$\bigcirc A$-body Schrödinger equation

$$
\frac{\vec{p}}{m} \approx \frac{200 \mathrm{MeV}}{1000 \mathrm{MeV}} \quad \rightarrow \quad\left(\frac{v}{c}\right)^{2}<0.1
$$

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle
$$

- Strategy:

1. Derive/build / model basic interactions between nucleons
2. Solve many-body Schrödinger equation
3. Compare to data and give feedback on points 1 and 2 .

Ab initio vs effective approach

Ab initio (= "from scratch") approach

$$
\begin{array}{cl}
A \text {-body Hamiltonian } & H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \\
H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+\ldots+V^{A \mathrm{~N}} & \\
\text { A-body wave-function } \\
5 \text { variables } \times \text { A nucleons }
\end{array}
$$

Unfavourable scaling for large A

Effective approach

Two main options \begin{tabular}{ccc}

Reduce active
one-body
Hilbert space
:---:
model

Reduce directly
many-body
Hilbert space
:---:
functional

\end{tabular}$H^{\text {eff }}\left|\Psi_{k}^{\text {eff }}\right\rangle=E_{k}\left|\Psi_{k}^{\text {eff }}\right\rangle$

\odot Complementary approaches
\odot Choice depends on the goals (accuracy, predictive power, reach across the mass table, ...)

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces

The modern view: chiral effective field theory
2. Ab initio techniques for the nuclear many-body problem

Configuration-interaction approaches
Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
Mean field and correlations
Expansion methods for closed-shell nuclei
Symmetry breaking

- Expansion methods for open-shell nuclei

State of the art and open problems
3. Equation of state of nuclear matter \& connections to astrophysics

Neutron stars \& Tolman-Oppenheimer-Volkoff equations
Equation of state of neutron-star matter

- Astrophysical constraints on the nuclear FOS

Nuclear Hamiltonian

\bigcirc Hamiltonian containing strong + Coulomb forces
First quantisation

$$
\begin{aligned}
H & \equiv \sum_{i=1}^{A} \frac{p_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i \neq j}^{A} V^{2 \mathrm{~N}}(i, j)+\frac{1}{6} \sum_{i \neq j \neq k}^{A} V^{3 \mathrm{~N}}(i, j, k)+\cdots \\
& =\sum_{\alpha \beta} t_{\alpha \beta} a_{\alpha}^{\dagger} a_{\beta}+\left(\frac{1}{2!}\right)^{2} \sum_{\alpha \beta \gamma \delta} \bar{v}_{\alpha \beta \gamma \delta}^{2 \mathrm{~N}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}+\left(\frac{1}{3!}\right)^{2} \sum_{\alpha \beta \gamma \delta \zeta \epsilon} \bar{v}_{\alpha \beta \gamma \delta \zeta \epsilon}^{3 \mathrm{~N}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\gamma}^{\dagger} a_{\epsilon} a_{\zeta} a_{\delta}+\cdots
\end{aligned}
$$

$$
\downarrow
$$

- Are there forces beyond pairwise interactions? Why?
\rightarrow Yes, because nucleons are themselves composite particles
- How many of them do we need to include?
\rightarrow In principle all of them, in practice up to 3 N
\circ Which form do the various terms take? What constraints/information do we have?
\rightarrow They are operators in space/spin/isospin, constrained by symmetries \& experiments
- Can we derive these interactions directly from QCD?
\rightarrow In principle yes, in practice...

Basic properties of inter-nucleon interactions

\odot Interactions between effective point-like four-component fermions

$$
\text { nucleons }=p / n \text { with spin up } / \text { down }
$$

\odot Most general form $V_{N N}=V(1,2)=V\left(\vec{r}_{1}, \vec{p}_{1}, \vec{\sigma}_{1}, \vec{\tau}_{1} ; \vec{r}_{2}, \vec{p}_{2}, \vec{\sigma}_{2}, \vec{\tau}_{2}\right)$

๑ Constraints

1. Symmetry requirements (continuous and discrete symmetries, isospin)
2. Experimental information (NN scattering, deuteron properties) to fix parameters

- Complicated operator
- Several operatorial structures contribute
- Both infrared and ultraviolet sources of non-perturbativeness
- Infrared related to large scattering length ($\leftrightarrow n n$ virtual state, $n p$ bound state)
- Ultraviolet related to short-range repulsion

Symmetries \& operator structure

© Nuclear interactions are invariant under exchange of the two nucleons, translation, rotation, Galilean boost, parity, time evolution, time reversal, ~isospin
\Rightarrow Constraints on the mathematical form of the operator

$$
V(1,2)=V^{0}+V^{\sigma}\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)+V^{\tau}\left(\vec{\tau}_{1} \cdot \vec{\tau}_{2}\right)+V^{\sigma \tau}\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)\left(\vec{\tau}_{1} \cdot \vec{\tau}_{2}\right)
$$

with

$$
V^{i}=\sum_{k=1}^{5} c_{k}^{i} f_{k}^{i}\left(\vec{r}^{2}, \vec{p}^{2}, \vec{L}^{2}\right) O_{k}
$$

where $\quad \vec{x} \equiv \vec{x}_{1}-\vec{x}_{2}$
and

$$
O_{k}= \begin{cases}\mathbb{1} & \\ \vec{L} \cdot \vec{S} & \text { spin-orbit } \\ S_{12}^{r} \equiv 3\left(\vec{\sigma}_{1} \cdot \bar{r}\right)\left(\vec{\sigma}_{2} \cdot \bar{r}\right)-\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) & \text { tensor }(r) \\ S_{12}^{p} \equiv 3\left(\vec{\sigma}_{1} \cdot \bar{p}\right)\left(\vec{\sigma}_{2} \cdot \bar{p}\right)-\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) & \text { tensor }(p) \\ Q_{12} \equiv \frac{1}{2}\left[\left(\vec{\sigma}_{1} \cdot \vec{L}\right)\left(\vec{\sigma}_{2} \cdot \vec{L}\right)+\left(\vec{\sigma}_{2} \cdot \vec{L}\right)\left(\vec{\sigma}_{1} \cdot \vec{L}\right)\right] & \text { quadratic spin-orbit } \\ & \text { where } \quad \bar{x} \equiv \frac{\vec{x}}{|\vec{x}|}\end{cases}
$$

Experimental constraints: NN scattering

\bigcirc Extensive dataset of nucleon-nucleon scattering observables exists

- Few thousand cross-section data points over several decades are available
- Partial-wave analysis of data with $\mathbf{T}_{\text {lab }} \leq \mathbf{3 5 0} \mathbf{M e V}$ usually employed to fit $\mathbf{V}_{\mathbf{N N}}$
\rightarrow see e.g. https://nn-online.org/
© Reaction types
o np scattering: the easiest
- pp scattering: technically easy to perform experiments, but EM interaction needs to be subtracted (might be non-trivial when aiming for high precision)

○ nn scattering: technically difficult (no n targets), indirect information

- nd scattering (then subtract np component)
- reactions with nn in final state, e.g. $\mathrm{n}+\mathrm{d} \rightarrow \mathrm{n}+\mathrm{n}+\mathrm{p}$
- comparison between different reactions

Yukawa potential

What was known:

- Coulomb interaction between charged particles (infinite range)
- Nuclear interaction is short range $\sim 2 \mathrm{fm}$
\lrcorner Idea: nuclear force mediated by massive spin-0 boson (the "mesotron" \rightarrow later, pion)
[Yukawa, Proca]

Yukawa potential

$$
V(r) \propto \frac{e^{-m r}}{r}
$$

$$
\mathrm{m} \sim 100 \mathrm{MeV} \leftarrow \mathrm{r} \sim 2 \mathrm{fm} \quad \text { Range } \sim \text { Compton wavelength of exchanged boson } \sim 1 / \mathrm{m}
$$

\odot One-pion exchange describes long-range attraction between nucleons

- Generate tensor and $\tau \cdot \tau$ structures
- Works so well that, as of today, it is part of most sophisticated potential models!
\bigcirc However, not the full story. Short-range part?
- 1950's: Multi-pion exchange: disaster
- 1960's: More mesons discovered \rightarrow multi-pion resonances \approx exchange of heavier mesons

One-boson-exchange potentials

\bigcirc Meson with larger masses (ρ, ω, σ) can model ranges smaller than $\mathbf{1} / \mathbf{m}_{\pi}$

- Different spin/isospin structures generated
- Parts sometimes phenomenological (usually the short-range repulsion)

© Experimental side: more and more precise NN data
© Theoretical side: more sophisticated potentials $\rightarrow \chi^{2} \approx 2$ in the 1980's, $\chi^{2} \approx 1$ in the 1990's

Three-nucleon forces

\odot Calculations with accurate ($\chi^{2}=1$) OBE potentials show deficiencies in systems with $A>2$

- Lightest nuclei do not match experiment
- Saturation point of nuclear matter is not reproduced

Three-nucleon forces must be considered

〔 Fundamental reason: nucleons are composite particles, but we treat them as structureless

- Certain processes, e.g. involving nucleon excitations, can not be described as 2-body

[Fujita, Miyazawa, ...]
- Three-nucleon forces are added mostly phenomenologically to OBE potentials

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
\circ The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem Configuration-interaction approaches Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT) Mean field and correlations Expansion methods for closed-shell nuclei - Symmetry breaking Expansion methods for open-shell nuclei State of the art and open problems
3. Equation of state of nuclear matter \& connections to astrophysics
o Neutron stars \& Tolman-Oppenheimer-Vollkoff equations

- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EOS

Resolution scale of nucleon-nucleon interactions

- Two main problems with OBE potentials

1. Substantial part remains phenomenological
2. Strong repulsive short-range component ("hard core")

$$
\text { Hard core } \leftrightarrow \text { Strong coupling between low and high momenta } \leftrightarrow \text { High resolution }
$$

Do we really need such high resolution to compute properties of nuclei?

\Rightarrow For many of the observables we are interested in, the answer is no

Resolution scale of nucleon-nucleon interactions

Effective field theory

© The principles

1. Use separation of scales to define d.o.f. \& expansion parameter
[Weinberg, van Kolck, ..]
Typical momentum at play $\quad \frac{Q}{M} \rightarrow \begin{gathered}\text { High energy scale } \\ \text { (not included explicitly) }\end{gathered}$
2. Write all possible terms allowed by symmetries of underlying theory (QCD)

3. Order by size all possible terms \rightarrow systematic expansion (= "power counting")
4. Truncate at a given order and adjust coupling constants (use underlying theory or data)
Chiral EFT
\Rightarrow Expand around $\mathrm{Q} \sim \mathrm{m}_{\pi}$
High-energy via contact interactions
Keep pion dynamic explicit

Pionless EFT
\Rightarrow Expand around $\mathrm{Q} \sim 0$

Integrate out pions too
\rightarrow only contact terms

Chiral effective field theory (à la Weinberg)

- Building blocks

1. Nucleon propagator $=\xrightarrow{\mathrm{N}}$
2. Pion propagator $\quad=\quad \ldots \pi$..

Goal of the power counting:

3. Pion-nucleon vertex = •, •, ..
$\longrightarrow \quad$ Estimate the power v of the law $(\mathrm{Q} / \mathrm{M})^{v}$ with which each contribution (=diagram) scales

- Naive dimensional analysis

1. Nucleon propagator $\sim Q^{-1}$
2. Pion propagator $\sim Q^{-2}$
3. Derivative operator $\sim \mathrm{Q}$
4. Loop integration $\sim Q^{4}$

Equation for \boldsymbol{k}-nucleon connected diagrams

$$
\begin{array}{cc}
v=2 k-4+2 L+\sum_{i} \Delta_{i} \quad \text { with } \quad \Delta_{i} \equiv d_{i}+\frac{n_{i}}{2}-2 \\
\text { loops } & \text { vertices } \begin{array}{c}
\text { derivatives }
\end{array} \\
\text { nucleon fields }
\end{array}
$$

Weinberg power counting

Chiral effective field theory (à la Weinberg)

$$
\text { 2N Force } \quad \text { 3N Force } 4 N \text { Force }
$$

Chiral effective field theory (à la Weinberg)

2N Force
 3N Force
 4N Force

$\mathbf{N}^{3} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{4}$

$\mathrm{N}^{4} \mathrm{LO}$
$\left(Q / \Lambda_{\chi}\right)^{5}$
$\mathbf{N}^{5} \mathrm{LO}$
$\left(Q / \Lambda_{\chi}\right)^{6}$

- Consistency between \boldsymbol{k}-body sectors
- Estimate of error from (Q/M) $)^{\text {v+1 }}$
\circ Proliferation of terms \rightarrow convergence?

Chiral effective field theory

\odot Chiral EFT: a systematic framework to construct $A \mathrm{~N}$ interactions ($A=2,3, \ldots$)
\bigcirc Main features:
\circ High-energy physics unresolved \rightarrow soft potentials \rightarrow improved many-body convergence

- Many-body forces and currents consistently derived
- A theoretical error can be, in principle, assigned to each order in the expansion

\lrcorner Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Potentials from lattice QCD

© First attempts to extract a nucleon-nucleon potential from lattice QCD calculations
[Ishii et al. 2007]

- Technique

- Compute NN wave function on the lattice
- Invert Schrödinger equation

\odot Advantages

- Connects to a more fundamental level
- Does not rely on experimental data
- Can be extended to baryon-baryon interactions

\odot Difficulties

- Only schematic results so far
- Unphysical pion masses
- Model dependent extraction
- Very complicated to extend to three-body forces

References

© S. Weinberg, Phys. Lett. B 251288 (1990) \& Nucl. Phys. B 3633 (1991)

- Founding work on EFT for nuclear physics
© U. van Kolck, arXiv:1902.03141 (2019)
- "Les Houches" lectures on EFT for nuclear physics
©. Epelbaum et al., Rev. Mod. Phys. 811773 (2009)
- Review on nuclear forces derived within chiral EFT

○ H.-W. Hammer et al., Rev. Mod. Phys. 92025004 (2020)

- Review on nuclear effective field theories (including - but not only - chiral EFT)
© U. van Kolck, Front. in Phys. 879 (2020)
- Review on the problem of renormalisation of chiral nuclear forces
© N. Ishii et al., Phys. Rev. Lett. 99022001 (2007); S. Aoki et al., Prog. Theor. Phys. 12389 (2010)
- Article and review on nuclear forces from lattice QCD
© V. Somà, Eur. Phys. J. Plus 133434 (2018)
- Pedagogical (very) brief history of nuclear interactions

[^0]: - Where is the neutron drip-line beyond $Z=10$?

