

Università di Padova 7-10 June 2021

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- \circ Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter & connections to astrophysics

- Neutron stars & Tolman-Oppenheimer-Volkoff equations
- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EoS

Acknowledgements

• Thanks to (for slides and figures)

- B. Bally (Madrid Uni.)
- T. Duguet (Saclay)
- R. Roth and A. Tichai (TU Darmstadt)

Contents

1. Inter-nucleon forces

• Brief introduction to the nuclear many-body problem

- Properties and modelling of nuclear forces
- The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter & connections to astrophysics

- Neutron stars & Tolman-Oppenheimer-Volkoff equations
- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EoS

Basic facts about nuclei

 \circ 254 stable isotopes, ~3100 synthesised in the lab

○ Heaviest synthesised element Z=118

• Neutron **drip-line** known up to Z=10 (24 neutrons)

• Over-stable magic nuclei (2, 8, 20, 28, 50, 82, ...)

Basic questions about nuclei

254 stable isotopes, ~3100 synthesised in the lab
How many bound nuclei exist? (~6000-8000?)

\circ Heaviest synthesised element Z=118

• **Heaviest possible** element? Enhanced stability near *Z*=120?

Light/mid-mass elements
 produced in stellar fusion

How have heavy elements been produced?

 Neutron drip-line known up to Z=10 (24 neutrons)

• Where is the neutron drip-line beyond Z=10?

• Over-stable magic nuclei (2, 8, 20, 28, 50, 82, ...)

• Are **magic numbers** the same for unstable nuclei?

Diversity of nuclear phenomena

What makes atomic nuclei so complex?

• Mesoscopic systems

- \circ From 2 to few hundreds nucleons \rightarrow Statistical approaches can not be applied
- Enough particles to prompt collective behaviours → Interplay with individual excitations
- Self-organisation and emergent phenomena

• Self-bound quantum systems

- \circ In a first approximation, nucleons occupy quantised orbits
- \circ Filling and energies strongly depend on $A \rightarrow$ each nucleus displays a specific structure
- Purely quantum effects (e.g. halos, bubble-nuclei)

• Interacting via **strong**, **weak** and **EM** forces

- \circ Strong interaction responsible for binding and saturation
- Weak interaction triggers decays of unstable nuclei towards the 'valley of stability'
- EM interaction determines proton-neutron asymmetry and limits the mass

Interdisciplinary aspects

Astrophysics

- Nucleosynthesis (BB, stellar, r-process, ...)
- Neutron stars (birth, life & death)

Particle physics

- \circ Neutrinoless 2 β decay
- Neutrino-nucleus scattering
- Tests of standard model
- Dark matter (nucleus-WIMP scattering)

Other mesoscopic systems

- \circ Ultracold fermionic gases \rightarrow universality classes, superfluidity,
- \circ Atoms & molecules \rightarrow cross-fertilisation of many-body techniques

Which is the most appropriate theoretical description?

Which is the most appropriate theoretical description?

Nonperturbative at low energy

 \rightarrow Lattice QCD

• Nuclei from nucleonic d.o.f.?

• Do we know inter-nucleon interactions?

• Can we solve *A*-body Schrödinger eq.?

• Nuclei from collective d.o.f.?

• Can we do it systematically?

• Which observables can we describe?

Current trend: from a plurality of nuclear models to an articulated "tower" of EFTs

Ab initio nuclear many-body problem

• This course focuses on the **ab initio nuclear many-body problem**

• Ab initio = "from scratch"

• Describe the nucleus as a system of *A* interacting **structure-less nucleons**

• Model the Hamiltonian to describe **inter-nucleon interactions** in free space

• Solve **many-body Schrödinger equation** for all *A* nucleons (non-relativistic)

• Systematically improvable solution + error estimates

• *A*-body Schrödinger equation

$$H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$$

• Strategy:

- 1. Derive/build/model basic interactions between nucleons
- 2. Solve many-body Schrödinger equation
- 3. Compare to data and give feedback on points 1 and 2.

$$\frac{\vec{p}}{m} \approx \frac{200 \text{ MeV}}{1000 \text{ MeV}} \quad \rightarrow \quad \left(\frac{v}{c}\right)^2 < 0.1$$

Ab initio vs effective approach

• Complementary approaches

• Choice depends on the goals (accuracy, predictive power, reach across the mass table, ...)

Contents

1. Inter-nucleon forces

• Brief introduction to the nuclear many-body problem

• Properties and modelling of nuclear forces

• The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter & connections to astrophysics

- Neutron stars & Tolman-Oppenheimer-Volkoff equations
- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EoS

Nuclear Hamiltonian

- Are there forces beyond pairwise interactions? Why?
 - \rightarrow Yes, because nucleons are themselves composite particles
- How many of them do we need to include?
 - \rightarrow In principle all of them, in practice up to 3N
- Which form do the various terms take? What constraints/information do we have?
 - → They are operators in space/spin/isospin, constrained by symmetries & experiments
- \circ Can we derive these interactions directly from QCD?
 - \rightarrow In principle yes, in practice...

Basic properties of inter-nucleon interactions

● Interactions between effective point-like four-component fermions

nucleons = p/n with spin up/down

• Most general form
$$V_{NN} = V(1,2) = V(\vec{r_1}, \vec{p_1}, \vec{\sigma_1}, \vec{\tau_1}; \vec{r_2}, \vec{p_2}, \vec{\sigma_2}, \vec{\tau_2})$$

position momentum spin isospin

Constraints

- 1. Symmetry requirements (continuous and discrete symmetries, isospin)
- 2. Experimental information (NN scattering, deuteron properties) to fix parameters

Complicated operator

- Several operatorial structures contribute
- Both **infrared** and **ultraviolet** sources of non-perturbativeness
 - Infrared related to large scattering length (\leftrightarrow *nn* virtual state, *np* bound state)
 - Ultraviolet related to short-range repulsion

Symmetries & operator structure

- Nuclear interactions are invariant under exchange of the two nucleons, translation, rotation,
 Galilean boost, parity, time evolution, time reversal, ~isospin
 - G Constraints on the mathematical form of the operator

$$V(1,2) = V^0 + V^{\sigma}(\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V^{\tau}(\vec{\tau}_1 \cdot \vec{\tau}_2) + V^{\sigma\tau}(\vec{\sigma}_1 \cdot \vec{\sigma}_2)(\vec{\tau}_1 \cdot \vec{\tau}_2)$$

with

$$V^{i} = \sum_{k=1}^{5} c_{k}^{i} f_{k}^{i}(\vec{r}^{2}, \vec{p}^{2}, \vec{L}^{2}) O_{k} \qquad \text{where} \quad \vec{x} \equiv \vec{x}_{1} - \vec{x}_{2}$$

and

$$O_{k} = \begin{cases} \mathbbm{1} \\ \vec{L} \cdot \vec{S} & \text{spin-orbit} \\ S_{12}^{r} \equiv 3(\vec{\sigma}_{1} \cdot \vec{r})(\vec{\sigma}_{2} \cdot \vec{r}) - (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) & \text{tensor } (r) \\ S_{12}^{p} \equiv 3(\vec{\sigma}_{1} \cdot \vec{p})(\vec{\sigma}_{2} \cdot \vec{p}) - (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) & \text{tensor } (p) \\ Q_{12} \equiv \frac{1}{2} \left[(\vec{\sigma}_{1} \cdot \vec{L})(\vec{\sigma}_{2} \cdot \vec{L}) + (\vec{\sigma}_{2} \cdot \vec{L})(\vec{\sigma}_{1} \cdot \vec{L}) \right] & \text{quadratic spin-orbit} \end{cases}$$

where $\bar{x} \equiv \frac{\vec{x}}{|\vec{x}|}$

Experimental constraints: NN scattering

• Extensive dataset of nucleon-nucleon scattering observables exists

- Few thousand cross-section data points over several decades are available
- \circ Partial-wave analysis of data with $T_{lab} \leq 350 \; MeV$ usually employed to fit V_{NN}

→ see e.g. https://nn-online.org/

• Reaction types

- **np** scattering: the **easiest**
- **pp** scattering: technically easy to perform experiments, but **EM interaction needs to be subtracted** (might be non-trivial when aiming for high precision)
- **nn** scattering: technically difficult (no n targets), **indirect information**
 - nd scattering (then subtract np component)
 - reactions with nn in final state, e.g. $n+d \rightarrow n+n+p$
 - comparison between different reactions

Yukawa potential

What was known:
 Coulomb interaction between charged particles (infinite range)
 Nuclear interaction is short range ~ 2 fm

➡ Idea: nuclear force mediated by massive spin-0 boson (the "mesotron" → later, pion)

• One-pion exchange describes long-range attraction between nucleons

- \circ Generate tensor and $\tau \boldsymbol{\cdot} \tau$ structures
- Works so well that, as of today, it is part of most sophisticated potential models!

• However, not the full story. Short-range part?

- o 1950's: Multi-pion exchange: disaster
- \circ 1960's: More mesons discovered → multi-pion resonances ≈ exchange of heavier mesons

One-boson-exchange potentials

• Meson with larger masses (ρ , ω , σ) can model ranges smaller than $1/m_{\pi}$

• Different spin/isospin structures generated

• Parts sometimes phenomenological (usually the short-range repulsion)

• Experimental side: more and more precise NN data

• **Theoretical** side: more sophisticated potentials → $\chi^2 \approx 2$ in the 1980's, $\chi^2 \approx 1$ in the 1990's

Contents

1. Inter-nucleon forces

- Brief introduction to the nuclear many-body problem
- Properties and modelling of nuclear forces
- \circ The modern view: chiral effective field theory

2. Ab initio techniques for the nuclear many-body problem

- Configuration-interaction approaches
- Techniques to mitigate the "curse of dimensionality" (SRG, NO2B, IT)
- Mean field and correlations
- Expansion methods for closed-shell nuclei
- Symmetry breaking
- Expansion methods for open-shell nuclei
- State of the art and open problems

3. Equation of state of nuclear matter & connections to astrophysics

- Neutron stars & Tolman-Oppenheimer-Volkoff equations
- Equation of state of neutron-star matter
- Astrophysical constraints on the nuclear EoS

Resolution scale of nucleon-nucleon interactions

- **Two main problems** with OBE potentials
 - 1. Substantial part remains **phenomenological**
 - 2. Strong repulsive short-range component ("hard core")

Hard core \leftrightarrow Strong coupling between low and high momenta \leftrightarrow High resolution

Do we really need such high resolution to compute properties of nuclei?

➡ For many of the observables we are interested in, the answer is no

Resolution scale of nucleon-nucleon interactions

[figures from K. Hebeler]

Effective field theory

• The principles

Chiral effective field theory (à la Weinberg)

Ν

π

• ,•, ...

• Building blocks

- 1. Nucleon propagator =
- 2. Pion propagator =
- 3. Pion-nucleon vertex =
- 4. k-nucleon contact = \blacksquare , \Box , ...

Goal of the power counting:

Estimate the power v of the law $(Q/M)^{v}$ with which each contribution (=diagram) scales

• Naive dimensional analysis

- 1. Nucleon propagator ~ Q^{-1}
- 2. Pion propagator $\sim Q^{-2}$
- 3. Derivative operator $\sim Q$
- 4. Loop integration ~ Q^4

Equation for *k*-nucleon connected diagrams

$$v = 2k - 4 + 2L + \sum_{i} \Delta_{i}$$
 with $\Delta_{i} \equiv d_{i} + \frac{n_{i}}{2} - 2$
loops vertices vertices nucleon fields

Weinberg power counting

Chiral effective field theory (à la Weinberg)

Chiral effective field theory (à la Weinberg)

□ Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Potentials from lattice QCD

• First attempts to extract a nucleon-nucleon potential from lattice QCD calculations

[Ishii et al. 2007]

• Technique

- Compute NN wave function on the lattice
- Invert Schrödinger equation

Advantages

- Connects to a more fundamental level
- Does not rely on experimental data
- Can be extended to baryon-baryon interactions

Difficulties

- \circ Only schematic results so far
 - Unphysical pion masses
 - Model dependent extraction
- \circ Very complicated to extend to three-body forces

References

- S. Weinberg, Phys. Lett. B 251 288 (1990) & Nucl. Phys. B 363 3 (1991)
 - Founding work on EFT for nuclear physics
- U. van Kolck, arXiv:1902.03141 (2019)
 - "Les Houches" lectures on EFT for nuclear physics

E. Epelbaum *et al.*, Rev. Mod. Phys. 81 1773 (2009)
 Review on nuclear forces derived within chiral EFT

- H.-W. Hammer et al., Rev. Mod. Phys. 92 025004 (2020)
 - *Review on nuclear effective field theories (including but not only chiral EFT)*
- U. van Kolck, Front. in Phys. 8 79 (2020)
 - \circ Review on the problem of renormalisation of chiral nuclear forces
- N. Ishii et al., Phys. Rev. Lett. 99 022001 (2007); S. Aoki et al., Prog. Theor. Phys. 123 89 (2010)
 Article and review on nuclear forces from lattice QCD
- V. Somà, Eur. Phys. J. Plus 133 434 (2018)
 - *Pedagogical (very) brief history of nuclear interactions*