
P
ro

to
n

n
u
m

b
er

Z
(u

p
to

1
1
8
)

Neutron number N (up to 258)

Stable

Atomic mass evaluation 2020

Ab initio 2020

Energy density functional (Gogny D1M)

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)
M. Wang et al., Chin. Phys. C 45, 030003 (2021)
H. Hergert (private communications)2

2

8

8

20

20

28

28

50

50

82

82

126

184

Vittorio Somà
CEA Saclay

Ab initio calculations of atomic nuclei
Recent progress and future challenges

Università di Padova
7-10 June 2021

Lecture 1: Inter-nucleon forces
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[figure from Bazin 2012]

○Heaviest synthesised element Z=118

○ Over-stable magic nuclei (2, 8, 20, 28, 50, 82, …)

○Neutron drip-line known 
up to Z=10 (24 neutrons)

○ Light/mid-mass elements 
produced in stellar fusion

Basic facts about nuclei

○ 254 stable isotopes, ~3100 synthesised in the lab



Basic questions about nuclei

○How many bound nuclei exist? (~6000-8000?) ○Heaviest possible element? 
Enhanced stability near Z=120?

○How have heavy elements 
been produced?

○Where is the neutron 
drip-line beyond Z=10? ○ Are magic numbers the same for unstable nuclei?

[figure from Bazin 2012]

○Heaviest synthesised element Z=118

○ Over-stable magic nuclei (2, 8, 20, 28, 50, 82, …)

○ Light/mid-mass elements 
produced in stellar fusion

○Neutron drip-line known 
up to Z=10 (24 neutrons)

○ 254 stable isotopes, ~3100 synthesised in the lab



Diversity of nuclear phenomena

Ground state
Mass, size, superfluidity, …

Radioactive decays
β, 2β, α, p, 2p, fission, …

Reaction processes
Fusion, transfer, knockout, …

Spectroscopy
Excitation modes

Exotic structures
Clusters, halos, …

Nucleus: bound (or resonant) state of Z protons and N neutrons

p & n momenta ~ 108 eV

Separation energies ~ 107 eV

Vibrational excitations~ 106 eV

Rotational excitations ~ 104 eV

Several scales at play:



What makes atomic nuclei so complex?

○ From 2 to few hundreds nucleons   ➝   Statistical approaches can not be applied

⦿ Mesoscopic systems

⦿ Interacting via strong, weak and EM forces

○ Enough particles to prompt collective behaviours   ➝   Interplay with individual excitations

○ Self-organisation and emergent phenomena

○ In a first approximation, nucleons occupy quantised orbits

○ Filling and energies strongly depend on A   ➝   each nucleus displays a specific structure

○ Purely quantum effects (e.g. halos, bubble-nuclei) 

○ Strong interaction responsible for binding and saturation

○Weak interaction triggers decays of unstable nuclei towards the ‘valley of stability’

○ EM interaction determines proton-neutron asymmetry and limits the mass

⦿ Self-bound quantum systems



Interdisciplinary aspects

Astrophysics Particle physics

Other mesoscopic systems

○ Nucleosynthesis (BB, stellar, r-process, …)

○ Neutron stars (birth, life & death)

○ Neutrinoless 2β decay 

○ Neutrino-nucleus scattering

○ Ultracold fermionic gases  ➝  universality classes, superfluidity, ….

○ Atoms & molecules  ➝  cross-fertilisation of many-body techniques

Nuclear physics, �� decay, dark matter detection

Nuclear structure crucial for design
and interpretation of experiments

Neutrinos, dark matter studied in
low-energy experiments using nuclei
Abundant material, long observation time
with very low background sensitive to rarest
decays and tiny cross-sections!
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M0⌫�� : Nuclear matrix element
Fi : Nuclear structure factor

Javier Menéndez (UB) �� decay: tests and opportunities INT, July 2019 3 / 30

○ Tests of standard model

○ Dark matter (nucleus-WIMP scattering)



⦿ Nuclei from QCD d.o.f.?
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○Nonperturbative at low energy 

Which is the most appropriate theoretical description?

➝ Lattice QCD   
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Fig. 20. Left: Central part of the nucleon-nucleon potential in the 1S0 channel computed within lattice QCD for three different
quark masses. Taken from ref. [70]. Right: Lattice QCD calculations of bound-state energy levels in the 4He sector. Adapted
from ref. [71].

The situation is more delicate for the EFT expansion. In principle, one of the advantages of using an effective
theory is indeed the capacity to associate an error to each level of truncation of the theory. In practice, the way
chiral EFT is currently implemented poses questions about its feasibility. A fundamental issue concerns the viability
of Weinberg power counting, at the basis of modern chiral EFT interactions, with its correctness being debated
(see, e.g., [63]). Alternative power counting formulations have been proposed but not yet exploited to construct full
Hamiltonians. Moreover, a practical issue relates to the difficulty of deriving higher orders in the chiral EFT expansion
and translating them into matrix elements usable by many-body practitioners, which hinders order-by-order many-
body calculations. Nevertheless, progress is being made towards the long-term goal of thoroughly assessing associated
errors and propagating them into the calculation of many-body observables.

7.2 Extending ab initio calculations to heavy nuclei

Provided that a suitable interaction model is at hand, current ab initio implementations are limited in their applicability
to around mass A ∼ 100. The reasons are mainly computational, but formal challenges are present as well. For what
concerns shell model-type calculations, a diagonalisation of the valence-space Hamiltonian is involved. As A increases,
the dimension of the needed valence space increases. Around or slightly above A ∼ 100 the number of matrix elements
associated to those valence spaces hits the limits of aggregate memory available in modern high-performance computing
clusters (see fig. 6(right)). Possible solutions involve the use of importance-truncation techniques to pre-select a subset
of matrix elements that enter the diagonalisation [64] or the use of Monte Carlo methods [65].

Expansion methods face a different computational problem as they require the use, i.e. the computation and
storage, of large tensors. This pertains both to the interaction matrix elements, in particular of three-body operators,
and to the (particle-hole) amplitudes that enter the many-body expansion. As the mass and consequently the basis
increases, these tensors become intractable. A possible solution involves the implementation of tensor-decomposition
techniques developed in applied mathematics, already in use in quantum chemistry [66]. In addition, these many-body
approaches require generalisations to address doubly open-shell systems, where collective correlations —difficult to
capture when the expansion builds on a spherical reference state— become significant. First steps in this direction are
being done [67].

In general, the extension of ab initio calculations to heavy nuclei will necessarily involve significant technical and
computational developments. Even if such calculations might be able to cover, one day, the whole nuclear chart, at
present it is not clear whether this will be the preferable strategy for a predictive, universal first-principle approach or
instead other EFTs, e.g., based on different (more collective) degrees of freedom, will turn out to be more efficient [68].

7.3 Lattice QCD

One could argue that working with nucleons and pions as degrees of freedom is not really “ab initio”, since we know
that they are composite particles governed by the underlying theory of quantum chromodynamics. Then, can we
compute properties of atomic nuclei starting from QCD?

At low energy, QCD is non-perturbative and calculations are possible only via lattice simulations. A possibility
consists in constructing the bare nucleon-nucleon (and higher-body) interaction directly from lattice QCD calculations.
This route is being pursued but, although a two-body potential has been successfully computed [23] (see fig. 20(left))
and even applied to compute properties of light nuclei [69], considerable difficulties remain in the three-nucleon sector.

[Beane et al. 2013]

⦿  Noise-to-signal ratio of A-nucleon correlation    
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where all interaction energies have been neglected, and N is the number of (independent) calculations.
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More generally, for a system of A nucleons, the noise-to-signal ratio behaves as

�

x
⇠

1
p
N

e
A(MN� 3

2m⇡)t (72)

at large times.
The various “Z-factors”, such as Z3⇡, depend upon the details of the sources and sinks interpolators

that are used. For the calculations performed by the NPLQCD collaboration, the projection onto zero-
momentum final state nucleons, introduces a 1/

p
Volume suppression of the amplitudes of the various

components (except for NN) in addition to color and spin rearrangement suppressions that exists
independent of the spatial structure of the source. As a consequence, an interval of time slices exists at
short times (the “Golden Window”) in which the variance of the correlation function is dominated by
the terms in Eq. (71) that behave as ⇠ e

�2MN t. In this window, the signal-to-noise ratio of the single
baryon correlation function is independent of time. Further, the signal-to-noise ratio does not degrade
exponentially faster in multi-baryon correlation functions than in single-baryon correlation functions in
the “Golden Window”.

The finite temporal extent introduces backward propagating states (thermal states) into the corre-
lation functions which lead to exponentially worse signal-to-noise ratios at large times [115, 116, 117].
These contributions are suppressed by at least exp(m⇡T ), however, they can cause complications. We
note that the impact of these states can be mitigated by working at larger temporal extents and expo-
nentially large computational resources are not required.

With the high statistics calculations that have been performed, the behavior of the signal-to-noise
ratio has been carefully examined, and it was found to be useful to form the e↵ective noise-to-signal
plot [115]. On each time slice, the quantity

S(t) =
�(t)

x(t)
, (73)

is formed, from which the energy governing the exponential behavior (the signal-to-noise energy-scale)
can be extracted via
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For a correlation function that is dominated by a single state with a corresponding variance correlation
function dominated by a single energy scale, the quantity ES(t; tJ) will be independent of both t and
tJ .

The signal-to-noise ratio in the one- and two-nucleon sector has the simplest structure as only up
and down quarks appear in the interpolating operators. In the single nucleon sector, it is expected that

40

➝ Calculations possible for small A



⦿ Nuclei from QCD d.o.f.?
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⦿ Nuclei from nucleonic  d.o.f.?

○Nonperturbative at low energy 

○ Do we know inter-nucleon interactions?
○ Can we solve A-body Schrödinger eq.?

Which is the most appropriate theoretical description?

⦿ Nuclei from collective d.o.f.?

○ Can we do it systematically?

○Which observables can we describe?

➪ Current trend: from a plurality of nuclear models to an articulated “tower” of EFTs

➝ Lattice QCD   



Ab initio nuclear many-body problem
6
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⦿ This course focuses on the ab initio nuclear many-body problem

⦿ Ab initio = “from scratch”

⦿ A-body Schrödinger equation

5
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○ Describe the nucleus as a system of A interacting structure-less nucleons

○ Model the Hamiltonian to describe inter-nucleon interactions in free space

○ Solve many-body Schrödinger equation for all A nucleons (non-relativistic)

○ Systematically improvable solution + error estimates

1. Derive/build/model basic interactions between nucleons

2. Solve many-body Schrödinger equation

3. Compare to data and give feedback on points 1 and 2.

○ Strategy:



Ab initio vs effective approach

A-body Hamiltonian

Ab initio (= “from scratch”) approach

Two main options

⦿ Complementary approaches

⦿ Choice depends on the goals (accuracy, predictive power, reach across the mass table, …)
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A-body wave-function
5 variables x A nucleons 
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Nuclear Hamiltonian

⦿ Hamiltonian containing strong + Coulomb forces

7
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First quantisation

Second quantisation

➝ Yes, because nucleons are themselves composite particles

○How many of them do we need to include?

○ Are there forces beyond pairwise interactions? Why?

➝ In principle all of them, in practice up to 3N

➝ They are operators in space/spin/isospin, constrained by symmetries & experiments

○ Can we derive these interactions directly from QCD?

○Which form do the various terms take? What constraints/information do we have?

➝ In principle yes, in practice…



Basic properties of inter-nucleon interactions

⦿ Interactions between effective point-like four-component fermions

nucleons = p/n with spin up/down

⦿ Most general form

position momentum spin isospin

1. Symmetry requirements (continuous and discrete symmetries, isospin)

2. Experimental information (NN scattering, deuteron properties) to fix parameters

⦿ Constraints

⦿ Complicated operator

○ Several operatorial structures contribute

○ Both infrared and ultraviolet sources of non-perturbativeness

- Infrared related to large scattering length (⟷ nn virtual state, np bound state)

- Ultraviolet related to short-range repulsion

1
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Symmetries & operator structure

⦿ Nuclear interactions are invariant under exchange of the two nucleons, translation, rotation, 
    Galilean boost, parity, time evolution, time reversal, ~isospin

➪ Constraints on the mathematical form of the operator
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Experimental constraints: NN scattering

⦿ Reaction types

○ np scattering: the easiest

○ pp scattering: technically easy to perform experiments, but EM interaction needs 
to be subtracted (might be non-trivial when aiming for high precision)

○ nn scattering: technically difficult (no n targets), indirect information
- nd scattering (then subtract np component)

- reactions with nn in final state, e.g. n+d  ➝  n+n+p
- comparison between different reactions 3He+3He  ➝  4He+p+p

  3He+3H  ➝  4He+p+n

    3H+3H  ➝  4He+n+n

⦿ Extensive dataset of nucleon-nucleon scattering observables exists

○ Few thousand cross-section data points over several decades are available

○ Partial-wave analysis of data with Tlab ≤ 350 MeV usually employed to fit VNN

➝  see e.g.  https://nn-online.org/



Yukawa potential

○ Coulomb interaction between charged particles (infinite range)
What was known:

○ Nuclear interaction is short range ~ 2 fm

➪ Idea: nuclear force mediated by massive spin-0 boson (the “mesotron” ➝  later, pion)
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○ Generate tensor and τ·τ structures

○ 1950’s: Multi-pion exchange: disaster
○ 1960’s: More mesons discovered  ➝  multi-pion resonances ≈ exchange of heavier mesons

e- e-

γ

N N

𝜋
[Yukawa, Proca] Yukawa potential

1935

Range ~ Compton wavelength of exchanged boson ~ 1/mm ~ 100 MeV  ←   r ~ 2 fm

⦿ One-pion exchange describes long-range attraction between nucleons

⦿ However, not the full story. Short-range part?

○ Works so well that, as of today, it is part of most sophisticated potential models!



One-boson-exchange potentials

⦿ Meson with larger masses (𝜌,ω, σ) can model ranges smaller than 1/m𝜋

○ Different spin/isospin structures generated

○ Parts sometimes phenomenological (usually the short-range repulsion)

⦿ Experimental side: more and more precise NN data

⦿ Theoretical side: more sophisticated potentials   ➝   χ2 ≈ 2 in the 1980’s, χ2 ≈ 1 in the 1990’s

1970’s



Three-nucleon forces

○ Saturation point of nuclear matter is not reproduced

The need for three-body forces

‣ empirical values for saturation

[ Akmal et al., Phys. Rev. C 58 (1998) ]

[ Baldo and Maieron, J. Phys. G 34 (2007) ]

Chapter 4

Nuclear matter properties with
three-body forces

4.1 Energy in symmetric nuclear matter

⇥sat � ⇥0 = 0.16± 0.01 fm�3 (4.1)
Esat/N � B = 16± 1 MeV (4.2)

We consider in the following only two of the four realistic NN interactions employed
in Chapter 2, namely the CD-Bonn and the Nijmegen potentials. These proved to be
the most stable at low/high density and high temperature, moreover the A18 and Reid
calculations are characterized by an excessive repulsive behaviour below saturation
density, which cannot be cured with the introduction of three-body forces. This is
possibly due to the inability of the T-matrix scheme to treat correctly the strong
repulsive core in the case of Argonne, and the quantitative inaccuracy of the dated
Reid interaction.

For the two mentioned potentials the averaged three-body forces have been added
to the two-body contributions as outlined in details in Chapter 3. First the calculations
have been performed around saturation density in order to tune the two parameters
U and A which control the overall and relative strength of the two contributions (cf.
(3.4) and (3.10)). The parameters have been adjusted separately for the CD-Bonn and
for the Nijmegen potential by requiring the energy particle to reproduce the empirical
values of the saturation density ⇥0 and the binding energy EB. We do expect di�erent
values of {A, U} for the two NN interactions: since they yield di�erent saturation
curves the missing e�ects do not have to be necessarily the same. This argument surely
applies to the more phenomenological repulsive term (3.10). We believe that however
it is also the case of the 2�-exchange contribution, due to the averaging procedure
which unavoidably makes the resulting two-body interaction an e�ective one. As long
as TBF are not derived consistently within the same theoretical framework, one should
expect this motivation to be valid also for other approaches.

Once the parameters have been fixed, we extend the calculations to the whole
density domain ⇥ ⇥ [0.4 ⇥0, 3 ⇥0] starting with the case of symmetric nuclear matter.
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and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑

σk ,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC (r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC , V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
potential (open stars) by the dashed (red) curve in the
figure, which includes only the 2σ -exchange “Z-diagram”
TBF contribution. The remaining TBF components are overall
attractive and produce the final solid (red) curve in the
figure.

Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.

047304-2

New Coester band

Coester band

Three-nucleon forces must be considered

➪ Fundamental reason: nucleons are composite particles, but we treat them as structureless
○ Certain processes, e.g. involving nucleon excitations, can not be described as 2-body

○ Three-nucleon forces are added mostly phenomenologically to OBE potentials

1980’s

[Li et al. 2006]

[Fujita, Miyazawa, …]

○ Lightest nuclei do not match experiment

⦿ Calculations with accurate (χ2= 1) OBE potentials show deficiencies in systems with A>2 
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Fig. 23. Eliminating degrees of freedom leads to three-body forces.

Pauli blocking. These results are qualitatively unchanged with the inclusion of low-momentum 3N interactions [9,16] (see
Section 5). Moreover, the Weinberg analysis has been applied to pairing in Ref. [77].

In addition to improving perturbative convergence, RG-evolved potentials result in more effective variational
calculations [11] and rapidly converging basis expansions [14,15], as discussed in Section 6. Finally, we mention that as
a by-product of the Weinberg analysis in Ref. [12], it was found that RG-evolved interactions can be accurately described
by low-rank separable expansions, a result that allows significant simplifications in applications ranging from few-body
scattering [78] to the treatment of pairing in finite nuclei [79,80].

2.5. Many-body interactions and operators

In a low-energy effective theory of finite-mass composite particles such as atoms or nucleons, three-body (or higher-
body) interactions are defined as a contribution to the Hamiltonian that is not accounted for by the sum of pairwise
interactions. The polarization of interacting atoms or molecules provides an intuitive example. The Axilrod–Teller potential
is a three-body version of the familiar two-body long-range van derWaals force between atoms; its physical origin is triple-
dipole mutual polarization [81]. Because it contributes at third order in perturbation theory and the fine structure constant
is small, there is a rapidly decreasing hierarchy of many-body forces. Indeed, this contribution is usually negligible inmetals
and semiconductors although not in rare gas solids [82]. For solid xenon, its contribution is calculated to be about 10% of the
ground-state energy [83], comparable to the typical 3N force contribution to the 3H binding energy. Note that polarization
with additional atoms means that the Hamiltonian for an A-body system will inevitably lead to A-body forces.

The EFT perspective (see Section 1.1) confirms that operators (including the Hamiltonian) in any low-energy effective
theory, if it is systematic rather than a model, will have many-body components. The generic origin of these many-body
operators is a restriction of degrees of freedom, such as 3N forces arising from the elimination of the 1 or anti-nucleon
components, as illustrated in Fig. 23. Integrating out or decoupling high-momentum modes with the RG is just another
example. The EFT expansion systematically includes all such contributions as a combination of long-range (for example,
due to pion exchanges) and short-range (contact) terms as on the right side of Fig. 23, even when the origin of the short-
range parts is unclear. Power counting in chiral EFT establishes a decreasing hierarchy of many-body operators (see Fig. 4(a)
for many-body forces) that permits truncation at a tractable level (which in present nuclear structure calculations means
3N forces and two-body current operators).

The strength of many-body components in an initial operator will shift with any change in how high-energy degrees of
freedomare coupled to the low-energy degrees of freedom; particular examples are the running of a Vlow k cutoff⇤ or an SRG
flow parameter �. The correlation plot in Fig. 24(a) of 3H and 4He binding energies calculated using Vlow k NN-only interac-
tions shows the change in the (omitted) many-body contribution with ⇤. This reproduces the empirical Tjon line from phe-
nomenological potentials. The technical challenge is to carry out the evolution of many-body forces and operators in an RG
implementation. The physics challenge is to establish that the EFT hierarchy ofmany-body components is not affected by the
evolution, so that a tractable truncation is still possible. This typicallymeans that the evolution is not extended below⇤ or �
of about 1.5 fm�1. (For cutoffs below the pionmass, three-body forceswill increase to leading order in pionless EFT [30,32].)

The consistent RG evolution of Vlow k many-body interactions has not yet been achieved. The underlying difficulty is
that the technology used to construct Vlow k requires the solution of the full 3N problem (bound state wave functions
plus scattering wave functions in all breakup channels) to consistently evolve 3N forces (without simplifications). In Vlow k
calculations to date, the three-body evolution is therefore approximated by fitting the leading chiral EFT 3N forces at each
cutoff while evolving the two-body interaction exactly [8,16]. This takes advantage of the EFT expansion being a complete
operator basis for 3N forces, so that the leading effects of the evolution are simply a change in the operator coefficients (see
Section 4.1 for more details).

The SRG offers a new path to the consistent running of many-body interactions and operators, because they evolve
through unitary transformations that require only a representation in a convenient basis. This has recently been
demonstrated in practice [85]; we discuss the details in Sections 4.2 and 4.4. To see how the two-, three-, and higher-body
potentials are identified and evolved, it is useful to decompose the running SRG Hamiltonian8 H� in second-quantized form.
Schematically (suppressing indices and sums),

H� = hT i aÑa + hV (2)
� i aÑaÑaa + hV (3)

� i aÑaÑaÑaaa + · · · , (7)

8 The SRG Hamiltonian is denoted equivalently by H� or Hs , where � ⌘ 1/s1/4.
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Resolution scale of nucleon-nucleon interactions

Hard core  ⟷  Strong coupling between low and high momenta  ⟷  High resolution

⦿ Two main problems with OBE potentials

1. Substantial part remains phenomenological

2. Strong repulsive short-range component (“hard core”)

Do we really need such high resolution to compute properties of nuclei?

𝜌,ω, σ masses > 700 MeV

spatial distances <  0.5 fm
cf. nucleon radius ~ 0.8 fm av. nucleon momenta ~ 200 MeV

pion mass ~ 140 MeV
observables ~ 0.1-10 MeV⟷ ⟷

➪ For many of the observables we are interested in, the answer is no



Resolution: The higher the better?

• resolution of very small (irrelevant) structures can obscure this information

• small details have nothing to do with long-wavelength information!

in the nuclear physics here we are interested in low-energy observables

(long-wavelength information!)

Strategy: Use a low-resolution version

• long-wavelength information is preserved

• distortion at small distance significantly reduced

• much less information necessary

In nuclear physics: 
Use renormalization group (RG) to change resolution! 

Strategy: Use a low-resolution version

• long-wavelength information is preserved

• distortion at small distance significantly reduced

• much less information necessary

In nuclear physics: 
Use renormalization group (RG) to change resolution! 

[figures from K. Hebeler]

Strategy: Use a low-resolution version

• long-wavelength information is preserved

• distortion at small distance significantly reduced

• much less information necessary

In nuclear physics: 
Use renormalization group (RG) to change resolution! 

Resolution scale of nucleon-nucleon interactions



Effective field theory

⦿ The principles

3. Order by size all possible terms  ➝  systematic expansion  (= “power counting”)
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➪ Expand around Q ~ 0

High-energy via contact interactions

N N

𝜋

N N N N

Integrate out pions too
➝  only contact terms

2. Write all possible terms allowed by symmetries of underlying theory (QCD)

Typical momentum at play
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1990’s

4. Truncate at a given order and adjust coupling constants (use underlying theory or data)

1. Use separation of scales to define d.o.f. & expansion parameter



Chiral effective field theory (à la Weinberg)

⦿ Building blocks

1. Nucleon propagator    =

2. Pion propagator           = 𝜋

N

3. Pion-nucleon vertex    =      ・,•, …

4. k-nucleon contact         =      ■, □, …

Goal of the power counting:
Estimate the power ν of the law (Q/M)ν with 

which each contribution (=diagram) scales

⦿ Naive dimensional analysis

1. Nucleon propagator   ∼   Q-1

2. Pion propagator          ∼   Q-2

3. Derivative operator    ∼   Q

4. Loop integration         ∼   Q4

Equation for k-nucleon connected diagrams

with

loops
nucleon fields

derivatives
vertices

Weinberg power counting



Pure contact term One-pion exchange

Central operator (no q dependence) Tensor operator

Chiral effective field theory (à la Weinberg)



○ Finite number of diagram at a given order

○ No ν=1 due to symmetries

○ 3N force cancels at ν=2

○ 3N enter at N2LO, 4N at N3LO

○ Consistency between k-body sectors

○ Estimate of error from (Q/M)ν+1 

Chiral effective field theory (à la Weinberg)

○ Proliferation of terms  ➞  convergence?



results when doing calculations in momentum space. So
n=6 was chosen in [73, 77]. In fact, in [73] independence of
observables for n 5. is explitely demonstrated. Other
important progress made in [73] was the introduction of a
better scheme to quantify the theoretical uncertainties. For
that, one first has to analyze the possible sources of
uncertainties (see also [78, 79]). These include (1) the
systematic uncertainty due to truncation of the chiral
expansion at a given order, (2) the uncertainty in the
knowledge of NQ LECs which govern the long-range part
of the nuclear force, (3) the uncertainty in the determination
of LECs accompanying the contact interactions; and (4)
uncertainties in the experimental data or, in the partial wave
analysis if that is used to determine the LECs. As described
above, there has been much progress in determining the NQ
LECs, so we concentrate on the first type of uncertainty. For a
given observable X p( ), where p is the center-of-mass
momentum corresponding to the considered energy, the
expansion parameter in chiral EFT is given by equation (27),
where Λ is the breakdown scale. As discussed in [73], one
should use 600 MeV- � for the cutoffs R 0.8� , 0.9 and
1.0 fm, 500- � MeV for R 1.1 fm� and 400 MeV- � V
for R 1.2� to account for the increasing amount of cutoff
artifacts. In fact, when increasing the r-space cutoff R, one
actually continuously integrates out pion physics, and the
resulting theory would gradually turn into pionless EFT if one
further softened the cutoff. Having verified this estimation of
the breakdown scale on the example of the neutron–proton
scattering total cross section at various chiral orders [73], one
is naturally led to a method that gives a conservative estimate
of the theoretical uncertainty due to the neglect of higher

orders. In this approach, one ascribes the uncertainty
X pN LO4 ( )% of a N4LO prediction X pN LO4 ( ) for an observable

X p( ), as (and similarly for lower orders)

X p Q X p

Q X p X p

Q X p X p

Q X p X p

Q X p X p

max ,
,

,

,

,

34
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4
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% � q
q �

q �

q �

q �

where the expansion parameter Q is given by equation (27)
and the scale Λ is chosen dependent of the cutoff R as
discussed above. The resulting theoretical uncertainties for
the total cross section and the case of R=0.9 fm were found
in [80] to be consistent with the 68% degree-of-belief
intervals for EFT predictions.

The most sophisticated calculation in the two-nucleon
system is indeed the fifth-order result by Epelbaum et al [77],
which included all new two-pion exchange corrections
appearing at this order as shown in figure 6 (see also the less

Figure 5.Contributions to the effective potential of the 2N, 3N and 4N forces based on Weinberg’s power counting. Here, LO denotes leading
order, NLO next-to-leading order and so on. The various vertices according to equation (29) with 0, 1, 2, 3, 4i% � are denoted by small
circles, big circles, filled boxes, filled diamonds and open boxes, respectively. The boxes surrounding various classes of diagrams are
explained in the text. Figure courtesy of Evgeny Epelbaum.

Figure 6. Fifth-order contributions to the two-pion exchange
potential. Solid and dashed lines refer to nucleons and pions,
respectively. Solid dots denote vertices from the lowest-order NQ
effective Lagrangian. Filled rectangles, ovals and gray circles denote
the order Q4, order Q3 and order Q2 contributions to NQ scattering,
respectively.
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complete work in [81, 82]). Although three-pion exchange
formally appears at N3LO and at N4LO, it has usually been
neglected, as the (nominally) leading 3Q exchange potential at
N3LO is known to be weak compared to the two-pion
exchange [83, 84] and to have negligibly small effect on
phase shifts. However, the subleading corrections at N4LO
are enhanced due to the appearance of the LECs ci [85]. To
check the assertion that the 3Q exchange can still be neglec-
ted, the authors of [77] have carried out a N4LO fit for the
intermediate value of the cutoff of R 1.0� fm, in which the
dominant class-XIII 3Q exchange potential V3

XIII
Q from [85]

was explicitly included. No significant (not even noticeable)
changes both in the quality of the description of the Nijmegen
phase shifts and in the reproduction/predictions for obser-
vables was found. In figure 7, using the above-discussed
method of uncertainty quantification, the S-, P- and D-wave
phase shifts and the mixing angles 1� and 2� at NLO and

higher orders in the chiral expansion for R 0.9� fm are
shown. The various bands result from adding/subtracting the
estimated theoretical uncertainty to/from the calculated
results. Similar results are obtained for np scattering obser-
vables, see [77] for details.

Next, let us consider 3NFs. While providing a small
correction to the nuclear Hamiltonian as compared to the
dominant NN force, its inclusion is mandatory for quantitative
understanding of nuclear structure and reactions, for recent
reviews, see [88, 89]. Historically, the importance of the 3NF
has been pointed out already in the 1930s [90] while the first
phenomenological 3NF models date back to the 1950s.
However, in spite of extensive efforts, the spin structure of the
3NF is still poorly understood [88]. Chiral EFT indeed pro-
vides a suitable theoretical resolution to the long-standing
3NF problem. As already noted, the 3NF only appears two
orders after the leading NN interaction. At this order, there are
only three topologies contributing, see figure 8. The two-pion
exchange topology is given again in terms of the ci, as dis-
cussed in detail in [91]. The so-called D-term, which is related
to the one-pion exchange between a 4N contact term and a
further nucleon, has gained some prominence in the first
decade of this millennium, as many authors have tried to pin it
down based on a cornucopia of reactions, such as Nd Ndl
[94], NN NNQl [92, 93], NN dℓ ℓOl [95–98], d NNQ Hl
[99–101], or the spectra of light nuclei [102], see figure 9
(here, γ denotes a photon, ℓ a lepton and ℓO its corresponding
antineutrino) . This demonstrates again the power of EFT—
very different processes are related through the same LECs

Figure 7. Results for the np S-, P- and D-waves and the mixing
angles 1� , 2� up to N4LO based on the cutoff of R 0.9� fm in
comparison with the Nimjegen PWA [86] and the GWU single-
energy PWA [87]. The bands of increasing width show estimated
theoretical uncertainty at N4LO, N3LO, N2LO and NLO.

Figure 8. Topologies of the leading contributions to the chiral 3NF.
From left to right: Two-pion exchange, one-pion-exchange and 6N
contact interaction.

Figure 9. Various reactions that all are sensitive to the D-term.
Figure courtesy of Evgeny Epelbaum.
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[Epelbaum et al. 2015]

⦿ Chiral EFT: a systematic framework to construct AN interactions (A=2, 3, …) 

○ High-energy physics unresolved  ➝  soft potentials  ➝  improved many-body convergence
○ Many-body forces and currents consistently derived

➪ Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Chiral effective field theory

⦿ Main features:
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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NPWA with the uncertainty estimated as explained in the
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at

○ A theoretical error can be, in principle, assigned to each order in the expansion
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Tomorrow... from Lattice QCD

! first attempts towards construction of 
nuclear interactions directly from 
lattice QCD simulations 

! compute relative two-nucleon wave 
function on the lattice 

! invert Schrödinger equation to 
extract effective two-nucleon potential 

! only schematic results so far 
(unphysical masses and mass 
dependence, model dependence,…) 

! alternatives: phase-shifts or low-
energy constants from lattice QCD
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Nuclear Interaction from Lattice QCD
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■ first steps towards construction
of a nuclear interaction through
lattice QCD simulations

■ compute relative two-nucleon
wavefunction on the lattice

■ invert Schrödinger equation to
obtain local ‘effective’ two-
nucleon potential

■ schematic results so far (un-
physical quark masses, S-wave
interactions only,...)

10

⦿ First attempts to extract a nucleon-nucleon potential from lattice QCD calculations

○ Compute NN wave function on the lattice
○ Invert Schrödinger equation

⦿ Technique

○ Connects to a more fundamental level

○ Can be extended to baryon-baryon interactions

⦿ Advantages

○ Only schematic results so far

○ Very complicated to extend to three-body forces

⦿ Difficulties

[Ishii et al. 2007]

- Unphysical pion masses

- Model dependent extraction

○ Does not rely on experimental data
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