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Motivation

® ¢t W production is relevant for BSM searches and

constitutes a significant background for ttH and tttt
production in Standard Model

® Theoretical predictions systematically
underestimate measured rates [ATLAS 2024 and CMS
2023]. Currently within uncertainties, but
experimental precision is set to increase

® NNLO: 2-loop amplitude approximated with soft-W
and massification [Buonocore et al. 2023]._

® Exact 2-loop amplitude is needed to remove
uncertainty of approximation
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Main bottleneck: 2-loop 5-point scattering amplitudes

Cross sections for hjh, — f:

d5h1h2—>f — Z [de1dx2 F i/hl(xla ﬂz)g j/hz(xza /42) d(A’zj_)f(:V) , /42)
1,J=4,9,8

Partonic cross section:
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Amplitude:



What’s the challenge?

® Complexity originates from:

* Massive internal propagators

* Five external legs, two different external scales
® Analytic complexity

* Functions beyond the polylogarithmic case
@® Algebraic complexity

» State of the art calculations: usually localised in the amplitude part of the
calculation

* Here: large expressions also in the differential equations for the integrals



Kinematics
H(py) + t(py) + CZ(P3) + W(p,) + u(ps) — 0O

® Momentum conservation:

P1tpatp3tpi+ps=0
®pi=p;=mi, p;=p;=0, pi=m
® 7 Invariants:

X = {Slz, S35 S34» Sass S15, M7, mvzv}, with

® Dimensional regularisation: d = 4 — 2¢

2
W

u(ps)

CZ(P3)

A4

N\

/]
N\

1(p>)

1(p;)

W(p,)



Integral families

N\ — | Propagators of Feynman integrals |
® Sectors: same non-negative exponents

® Top sector: maximum number of non-negative exponents

@® Amplitude calculations: express k; - p; and k; - k] in terms of propagators

—> Beyond one-loop we need irreducible scalar products (ISPs). Here: 3 ISPs



Integral families: example

di,....d11
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Dy = k2 — th? D¢ = (k, —P1)2
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(tWintegral families

Family F } Family F, Family F;




IBPs and reduction to Master Integrals

® Feynman integrals satisfy linear relations: integration by part identities (IBPs) [Chetyrkin, Tkachov
'81]

g g, O 1%
O — d kld k2 V’u = {kft,pjﬂ}

okl D®...D1” Master Integrals |

® Reduction to master integrals _ﬂ
D X oG (Fe) =0 = GyTse) = ) ¢ (% e[ [(K;0)]
ay J

® Laporta algorithm: IBPs generated for some seeding [Laporta 2000]

® Finite Fields techniques [von Manteuffel, Schabinger 2014; Peraro 2016] to tackle algebraic complexity

® NeatIBP [Wu et al. 2023] and FiniteFlow [Peraro 2019] to generate and solve an optimised system
of IBPs
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Family F;: 141 Mls

(tWintegral families
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Family F’: 122 Mls Family F5: 131 Mls
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Finite field revolution

[von Manteuffel, Schabinger 2014; Peraro 2016]

®Evaluate rational functions at numerical rational points ({p},¢) modulo

prime number — finite field/modular arithmetic

n[1:= << FiniteFlow" ;

®Perform all intermediate rational operations numerically i e A B
out2l= 9223 372036 854 775643

@® Reconstruct the analytic expression of the final result nai= €1 = FFRatMod[3 /4, prime]
c2 = FFRatMod[-7, prime]

from multiple numerical evaluations
Out[3l= 6917 529027 641 081 733

v

Mathematica/C++ framework FiniteFlow [Peraro 2010} Oui4l= 9223 372036 854 775 636

n5:= FFRatRec[cl x c2, prime]
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Method of differential equations

[Kotikov 'g1; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000]

@® Using IBPs we can construct linear differential equations (DEs) for the Mls

VEeX: O0d(X;e)= Z ¢; 7(%; €)G (X5 &)\

-

a

— 057 (X; €) = Bu(X; €) - I(Xe) ¢

® Many strategies to solve the differential equation. Our choice: semi-numerical

approach using DiffExp [Hidding 2020]
» Suitable for very general problems

* The implementation supports only rational functions and simple square roots

" |IBP reduction]
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Whatis a good choice of basis of MIs?

@® The basis of Mls is not unique. A good choice of basis can greatly simplify the DEs

® [Henn 2014]: DEs in canonical form (no general algorithm)

* £ dependence factorises: solution at each order depends only on previous order

* Full control over linear relations through iterated integrals representation of the solution —
Construction of a minimal basis of special functions, which simplifies the representation of the
amplitude

*  Well-established techniques to handle the solution of the DEs
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How do we construct a
canonical basis?
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[Arkani-Hamed, Bourjally,
Cachazo, Trnka 2012]

Dlog-integrands and leading singularities

® Conjecture: integrals with a loop-integrand with at most simple poles and a
constant leading singularity are good Mls

dz
dlog(z + ¢) =
da; A da, g+ z+c¢

pA(ajoy — (1 + a)(1 + ) — 2]

[d log(a;a, — z) —dlog(l +a; + o, + oy, — Z)]

® Commonly: rational functions and simple square roots
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Beyond the dlog-case: elliptic integrals

® During the computation of the leading singularity, we can also bump into an elliptic
curve

d
J \/@Z(z) A dlog(...), P2 =(2Z—a)(z—ay)(z—ay)(z—ay)
4

® The leading singularity contains elliptic functions

® Transcendental functions are needed to put the differential equation in canonical form
* Progress on general strategy in recent years (see e.g. [Gorges et al. 2023])

» Still no general method to efficiently evaluate these functions
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The “simple” 11 W elliptic curves

® Comparable with known elliptic curves (e.g.
[Badger et al. 2024])

@® 4-point kinematics = depend on less than 7
variables

® 3 MlIs for each sector
@ Elliptic curve of the form
@4(Z) — (Z — mtz)(z — 3mt2)932(2)

® The curves are disctinct, as we checked by
computing the j-invariant
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The “monster” t1 W elliptic curve

® First ever study of an elliptic curve for a §-point P2 P3

kinematics = dependence on all 7 invariants

@® 7 Mils in the sector P4

@ Computation of LS leadsto

| dz | d N
" A dlog(a(y, 2))|—| A dlog(a(y, 2)")
V&@ | e f

P1 P5

'Same j-invariant = same elliptic curve]

fT Ef‘l”lﬁ—rl, rl — \/ G(p19p29p39p4)
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Algebraic complexity of the monster curve

® @,(z) has degree 4 in z and degree 14 in X, involves r, and 2787 terms

® Discriminant of the elliptic curve contains a degree 14 polynomial in X
* 2547 terms

* File size is 94 KB

* Appears in the denominators of the DEs = one of the singularities of the
solution

® e-factorised DEs challenging even with known techniques
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How we deal with elliptics

Aims: obtain a good basis compatible with DiffExp

® Simple e-dependence

* No e-poles in the differential equation
* Maximum degree as low as possible (2 in this case)
@ Elliptic Mls finite
* Poles of the amplitude dictated by tree-level and 1-loop: no elliptic functions

* Allows to apply the method of [Badger et al. 2025] to construct a basis of special
functions up to the finite part

Apparent trade-off between the above criteria and the algebraic complexity:

A\ We allow for a spurious degree-g polynomial in the denominators

20



Beyond (?) the dlog-case: nested square roots

® For ttH [Febres Cordero et al. 2024] and ¢#j [Badger
et al. 2024] leading singularities involving nested
square roots were observed. This is the case also

here " .
NR, = \/ ¢,(X) £ g (X)ry, 1y =+/G(P1, P2 D3, Ps)
NR, 3 NR_ pl
@® Nested square roots are not supported by DiffExp .

® Due to the elliptics, the differential equation will not
be e-factorised anyway

—> keep the differential equation linear in &

P3
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Final representation of the differential equation

® We selected a basis
» ¢ factorised as much as possible

* Linear in € for the nested square root sectors and at most quadratic in the elliptic
sectors

* Elliptic integrals finite
® Write connection matrix in terms of independent one-forms

dI(Fe) = AP (T ) - [Fe),  dAP(Re) = Z k[z cDd log(W, (%)) + Z d By ()
=0
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Some numbers...

Nested “Simple” Monster Dimension
. . . . # square
square root elliptic elliptic roots # letters # one-forms | one-forms
sectors sectors sector file
Family 1 Yes 2 No 8 101 119 6.7 MB
Family 2 No O Yes 11 122 84 311 MB
Family 3 No O Yes 12 137 06 316.5 MB
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Some numbers...

Nested “Simple” Monster Dimension ‘
« .. c oo # square
square root elliptic elliptic roots # letters # one-forms | one-forms |
sectors sectors sector file "
Family 1 Yes 2 No 8 101 119
Family 2 No O Yes 11 122 84
Family 3 No O Yes 12 137 06 316.5 MB
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Numerical checks

@® DiffExp implementation with in-house path-parametrisation

® Checked against AMF1ow at 10 physical phase-space points, to 25 digits accuracy

® We verified that we can integrate between any of these 10 points with DiffExp
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Summary and Outlook

@® Basis and differential equation for all the integral families relevant for 1t W
production at 2-loop at leading color

® Addressed complications arising from nested square roots and elliptic integrals

@® Semi-numerical solution using DiffExp

®Next steps

1. 2-loop amplitude

2. e-factorised differential equation
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Summary and Outlook

@® Basis and differential equation for all the integral families relevant for 1t W
production at 2-loop at leading color

® Addressed complications arising from nested square roots and elliptic integrals

@® Semi-numerical solution using DiffExp

®Next steps

1. 2-loop amplitude

Thank you.’

2. e-factorised differential equation
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Backup slides



Semi-numerical evaluation

® Generalised series expansion method [Moriello 2019]: approximate the solution in
terms of logs along the integration path

i Target point outside {
 the physical region

~"Target point in the
physical region ‘

Physical region

, Boundary point

{(AMFlow [Liu, Ma
12022])

Branch cut of the DEs|

G~ Gy+ Y A, log(t— )t — o)

* Work in the physical region: no analytic continuation needed! .



Definitions for elliptic curves

® Cross ratio
(a; — ay)(a, — az)

A =
(@) — az)(ay — ay)
®@Elliptic integral of the first kind
. dr
K() = J
0 /(1 —2)(1 — Ar?)
® Periods of the elliptic curve
“dzg “dz
W = 2C4J — =2K(1), o, = 2C4J — = 21K(1 — A),
o Y 0 Y

|
Wlth C4 — 5\/(@1 — Cl3)(a2 — 614)

® J-invariant

_ _ 3
s — A —4)

j=2
A2(1 — 1)?
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