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Introduction
N = 4 SYM: correlators can be computed using the hexagon ansatz

method is based in integrability: operators are expressed as spin chains
carrying excitations using Bethe ansätze [Minahan, Zarembo ’02]

loop-corrections:

gluing corrections
alternatively: Lagrangian insertion [Eden, Gottwald, Le Plat, TS ’23]

gluing corrections can be reduced to rational integrals
→ can be solved using intersection theory

↓
master decomposition

solving canonical differential equations for the masters
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Outline

Hexagon Ansatz

Short Introduction

Gluing Corrections

Intersection Theory

Twisted De Rham Co-Homology

Computing Intersection Numbers

Results

Solving the Gluing Integrals

Conclusion
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The Hexagon Ansatz
goal: compute correlators within integrability

main idea: cutting 3-point function into two hexagonal patches
[Basso, Komatsu, Vieira ’15]

sum over all ways to distribute the excitations, schematically:

⟨BL1OL2OL3⟩ ∝
1
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can be extended towards:

general n-point function → position dependence
higher genus surfaces → N expansion
higher loop orders → gluing corrections
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Gluing Corrections
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1

“virtual particles” may
propagate over edges

included by summing over all possible states on each edge
→ bound states with infinitely many fermions ψ1, ψ2 and up to one of

each of the bosons ϕ1, ϕ2

structure of S-matrix allows for power counting in g2

g2(L+1) for each excitation on an edge of size L
g−2 for each pair of excitations on different edges of the same hexagon

we try to evaluate the first correction to ⟨O2 O2 O2 O2 O2⟩
single-gluing channels can be evaluated rather straight forward
double-gluing is more complicated [Fleury, Komatsu ’18]
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The Double-Gluing Process
for simplicity, we only consider the so-called X -element of the S-matrix by
restricting to ϕ11ϕ

0
2-states: [De Leeuw, Eden, Le Plat, Meier, Sfondrini ’19]

IX =
∞∑

K , L=1

K−1,L−1∑
k, l=0

∫
du dv
4π

K L g2(v+−u−) ΣKL(u,v) X̂ k,l
k (u,v)W (u,v)

(u−)2(v+)2u+v−(u+−v−)

picking residua, we can decompose this as follows

IX = (S1 + S2) + SW + Smes + Smat

S1 =
∑

aσlmbσjkmyσLmzσjK
σkKm
jσjkKm

∗ Γ1kmΓ1lmΓKmΓLmΓjKLmΓ1jklLM
Γ1kΓ1lΓKΓLΓ21mΓ1lLMΓ1jKmΓ1jkLM

,

S2 =
∑

aσjlmbσkmyσjLmzK
σlLM
jσjlLM

∗ Γ1kmΓ1lmΓKmΓLmΓjKLmΓ1jkKmΓ1jklLM
Γ1kΓ1lΓKΓLΓ21mΓ1kKmΓ1jKmΓ1jkLMΓ1jlLM

the other parts are easily resummed
a, b, y, z are defined by cross-ratios of the planar kinematics
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Resumming in Terms of Rational Integrals

these sums are of p+1Fp-type → can be rewritten as integrals:
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Basics of Intersection Theory
twisted period integrals:

∫
CR

u φL =: ⟨φL|CR ]

→ φL = φ̂L(z)dz := φ̂L(z)dz1 ∧ . . . ∧ dzn: rational n-form
→ u: multivalued function, vanishing at the boundaries of CR

and poles of φL

→ define twist d log(u) =: ω =:
∑
ω̂idzi

integrals are invariant under shifts φ→ φ+∇ωϕ := φ+ dϕ+ ω ∧ ϕ
→ twisted De Rham cohomology with finite basis of masters of size

ν = # of solutions to (ωi = 0)

master decomposition formula: [Mastrolia, Mizera ’19]

[Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera ’19]

⟨φL| =
ν∑

i=1

ci ⟨ei | with ci = ⟨φL | hj⟩(C−1)ji and Cij := ⟨ei | hj⟩

we can also decompose derivatives of masters: ∂x⟨ei | = ⟨∇σx ei | = Ωij ⟨ej |
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Computing Intersection Numbers

1-forms:

⟨φL|φR⟩ =
∑
p∈Pω

Resz=p(ψp φR)

∇ωψp = φL ψp =
max∑

n=min

ci (z − p)n +O(z − p)max+1

n-forms:

can iteratively project out 1-form bases
→ we can reduce everything to 1-form intersection numbers

doing so introduces multiplicatively growing total basis
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Computing the Gluing Integrals

our integrals have no twist → can be introduced by defining
u = (s (1− s) t (1− t)

∏
pi (s, t))

γ

→ the limit γ → 0 yields the correct integral

dealing with the quadratic polynomials requires us to write them in a
factorized form p(s, t) = (s − s+(t))(s − s−(t))

most intersection numbers only need the leading order in this pole, however
for differential matrices we need second order

→ very tedious expansion
→ actually, everything beyond leading order turns out to be just a

consistency condition

we find canonical differential equations for the masters that can be
integrated

putting everything together in the end, we can confirm the expected identity
S2 = S1(a ↔ b, y ↔ z)
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Summary

we solved first gluing integrals (without inherent twist) using intersection
theory

proof of principle
→ allows generalisation to more general correlators

other matrix elements (i.e. bound state compositions) can be computed
similarly

doable in reasonable time-frame on a laptop

seconds to few minutes for most intersection numbers
10s of minutes to few hours for differential-equation matrices
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Thank You!
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