
Polynomial Division and Elimination Theory Over
Finite Fields

Giulio Crisanti

Based on upcoming work with

Vsevolod Chestnov

Domodossola, 15/07/25

Introduction and Motivation (1/1)
Motivating Example

2

Consider

f(x) = x3 + ax2
− (5 + 2a)x+ 1 p(x) = x

2
− 2x− 1

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

Introduction and Motivation (1/1)
Motivating Example

2

Consider

f(x) = x3 + ax2
− (5 + 2a)x+ 1 p(x) = x

2
− 2x− 1

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

Normal Approach: x
∗
= 1±

√
2 f(x∗) = (1±

√
2)3 + a(1±

√
2)2 − (5 + 2a)(1±

√
2) + 1

= 7± 5
√
2 + a(3± 2

√
2)− (5 + 2a)(1±

√
2) + 1

= 3 + a

Introduction and Motivation (1/1)
Motivating Example

2

Consider

f(x) = x3 + ax2
− (5 + 2a)x+ 1 p(x) = x

2
− 2x− 1

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

Normal Approach: x
∗
= 1±

√
2 f(x∗) = (1±

√
2)3 + a(1±

√
2)2 − (5 + 2a)(1±

√
2) + 1

= 7± 5
√
2 + a(3± 2

√
2)− (5 + 2a)(1±

√
2) + 1

= 3 + a

Rational Expression!

What if this example was more complicated (quintics and beyond)? Is there a fully rational way to obtain this
result? Yes! — Polynomial division

Introduction and Motivation (1/1)
Motivating Example

2

Consider

f(x) = x3 + ax2
− (5 + 2a)x+ 1 p(x) = x

2
− 2x− 1

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

Normal Approach: x
∗
= 1±

√
2 f(x∗) = (1±

√
2)3 + a(1±

√
2)2 − (5 + 2a)(1±

√
2) + 1

= 7± 5
√
2 + a(3± 2

√
2)− (5 + 2a)(1±

√
2) + 1

= 3 + a

Rational Expression!

What if this example was more complicated (quintics and beyond)? Is there a fully rational way to obtain this
result? Yes! — Polynomial division

f(x) = 3 + a mod p(x)

Philosophy: Polynomial division can often solve problems without explicitly needing to solve polynomial systems

3

Review of Polynomial Division (1/2)
Quick Summary

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

f(x) = r(x) mod p(x)

3

Review of Polynomial Division (1/2)
Quick Summary

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

deg(r) < deg(p)

f(x) = r(x) mod p(x)

3

Review of Polynomial Division (1/2)
Quick Summary

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

deg(r) < deg(p)

f(x) = r(x) mod p(x)

Can always be done — best seen by example!

f(x) = x3 + ax2
− (5 + 2a)x+ 1 p(x) = x

2
− 2x− 1 x

2 = p(x) + 2x+ 1

3

Review of Polynomial Division (1/2)
Quick Summary

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

deg(r) < deg(p)

f(x) = r(x) mod p(x)

Can always be done — best seen by example!

f(x) = x3 + ax2
− (5 + 2a)x+ 1 p(x) = x

2
− 2x− 1 x

2 = p(x) + 2x+ 1

f(x) = x (p(x) + 2x+ 1) + a (p(x) + 2x+ 1)− (5 + 2a)x+ 1

= p(x)(x+ a) + 2x2 + x+ 2ax+ a− 5x− 2ax+ 1

= p(x)(x+ a) + 2x2 + a− 4x+ 1

= p(x)(x+ a) + 2(p(x) + 2x+ 1) + a− 4x+ 1

= p(x)(x+ a+ 2) + 4x+ 2 + a− 4x+ 1

= p(x)(x+ a+ 2) + a+ 3

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a
0

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a
0

What about for irrational solutions?
f̃(x) = f(x) + x

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a
0

What about for irrational solutions?
f̃(x) = f(x) + x r̃(x) = r(x) + x = 3 + a+ x

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a
0

What about for irrational solutions?
f̃(x) = f(x) + x r̃(x) = r(x) + x = 3 + a+ x f̃(x∗) = r̃(x∗) = 3 + a+ x∗ = 4±

√
2

no root cancellations needed

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a
0

What about for irrational solutions?
f̃(x) = f(x) + x r̃(x) = r(x) + x = 3 + a+ x f̃(x∗) = r̃(x∗) = 3 + a+ x∗ = 4±

√
2

no root cancellations needed

Can also apply the same techniques to rational functions
1

g(x)
:= ginv(x) mod p(x)←→ g(x)ginv(x) = 1 mod p(x)Define inverses as:

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a
0

What about for irrational solutions?
f̃(x) = f(x) + x r̃(x) = r(x) + x = 3 + a+ x f̃(x∗) = r̃(x∗) = 3 + a+ x∗ = 4±

√
2

no root cancellations needed

Can also apply the same techniques to rational functions

1

1 + x3
=

13

14
−

5x

14
mod p(x)

1

g(x)
:= ginv(x) mod p(x)←→ g(x)ginv(x) = 1 mod p(x)Define inverses as:

Eg:

4

Review of Polynomial Division (2/2)
How does polynomial division solve the problem from a few slides back?

For p(x∗) = 0s.t.x
∗ what is ? f(x∗)

f(x) = q(x)p(x) + r(x)

f(x∗) = q(x∗)p(x∗) + r(x∗) = r(x∗) = 3 + a
0

What about for irrational solutions?
f̃(x) = f(x) + x r̃(x) = r(x) + x = 3 + a+ x f̃(x∗) = r̃(x∗) = 3 + a+ x∗ = 4±

√
2

no root cancellations needed

Can also apply the same techniques to rational functions

1

1 + x3
=

13

14
−

5x

14
mod p(x)

1

1 + (x∗)3
=

13

14
−

5x∗

14
=

1

14

(

8∓ 5
√
2
)

1

g(x)
:= ginv(x) mod p(x)←→ g(x)ginv(x) = 1 mod p(x)Define inverses as:

Eg:

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can work modulo from the beginning

x
2 = p(x) + 2x+ 1 x

2 = 2x+ 1 mod p(x)

p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can work modulo from the beginning

x
2 = p(x) + 2x+ 1 x

2 = 2x+ 1 mod p(x)

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can work modulo from the beginning

x
2 = p(x) + 2x+ 1 x

2 = 2x+ 1 mod p(x)

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can work modulo from the beginning

x
2 = p(x) + 2x+ 1 x

2 = 2x+ 1 mod p(x)

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(5 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in matrix form:

p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can work modulo from the beginning

x
2 = p(x) + 2x+ 1 x

2 = 2x+ 1 mod p(x)

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(5 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in matrix form:
⎡

⎢

⎢

⎣

1 0 0 0 −3− a

0 1 0 −5 −2

0 0 1 −2 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

RowRed

p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can work modulo from the beginning

x
2 = p(x) + 2x+ 1 x

2 = 2x+ 1 mod p(x)

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(5 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in matrix form:
⎡

⎢

⎢

⎣

1 0 0 0 −3− a

0 1 0 −5 −2

0 0 1 −2 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

RowRed

p(x)

f(x)− 3− a = 0 mod p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can work modulo from the beginning

x
2 = p(x) + 2x+ 1 x

2 = 2x+ 1 mod p(x)

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(5 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in matrix form:
⎡

⎢

⎢

⎣

1 0 0 0 −3− a

0 1 0 −5 −2

0 0 1 −2 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

RowRed

Useful because there exist very quick ways to do row reduction: Sample over finite fields and reconstruct output

p(x)

f(x)− 3− a = 0 mod p(x)

6

Finite Field Reconstruction
Operations on Matrices

M(a1, · · · , an)

6

Finite Field Reconstruction
Operations on Matrices

M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

6

Finite Field Reconstruction
Operations on Matrices

M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

6

Finite Field Reconstruction
Operations on Matrices

M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

6

Finite Field Reconstruction
Operations on Matrices

M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

[FiniteFlow, Peraro, 2019]
Complicated cancellations will happen numerically — final reconstructed output already “simplified”

6

Finite Field Reconstruction
Operations on Matrices

M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

[FiniteFlow, Peraro, 2019]
Complicated cancellations will happen numerically — final reconstructed output already “simplified”

⎡

⎢

⎢

⎣

−1 1 a −(5 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

What is reconstructed?

f(x) = x3 + ax2
− (5 + 2a)x+ 1

p(x) = x
2
− 2x− 1

6

Finite Field Reconstruction
Operations on Matrices

M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

[FiniteFlow, Peraro, 2019]
Complicated cancellations will happen numerically — final reconstructed output already “simplified”

⎡

⎢

⎢

⎣

−1 1 a −(5 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

What is reconstructed?

f(x) = x3 + ax2
− (5 + 2a)x+ 1

p(x) = x
2
− 2x− 1

parameters

variables

Only need to
reconstruct
parameters!

R = Q[a][x]

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Assume for rest of talk

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division

Assume for rest of talk

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division

Assume for rest of talk

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

xy = x mod I

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division

Assume for rest of talk

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

xy = x mod I xy = y + 1 mod I

Problem normally fixed by introducing Groebner Bases
[Buchberger, 1965]

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of polynomials obtained from that has many nice propertiesG I

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of polynomials obtained from that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of polynomials obtained from that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of polynomials obtained from that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of polynomials obtained from that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1 xy

2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

1

12

2

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of polynomials obtained from that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1 xy

2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

Groebner bases can be very difficult to calculate and are often computational bottlenecks!

1

12

2

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of polynomials obtained from that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1 xy

2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

Groebner bases can be very difficult to calculate and are often computational bottlenecks!

Claim: We can explicitly avoid computing a Groebner basis, and still obtain the correct result from
polynomial division, using row reduction

Allows us to compute polynomial divisions without needing to reconstruct the “intermediate” Groebner Basis

1

12

2

[Faugére, 1999] [Buchberger, 1985]

Avoiding Groebner Bases

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

Irreducible monomialsRead off from top row: f(x, y) = y + 1 mod I No explicit Groebner Basis required!

I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

Irreducible monomialsRead off from top row: f(x, y) = y + 1 mod I No explicit Groebner Basis required!

Process can again be implemented in finite fields, with a reconstruction step at the end.

I = ⟨xy − x, xy − y − 1⟩

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical
cancellations of complex intermediate stages

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical
cancellations of complex intermediate stages

Can handle polynomials or multivariate rational functions as input to arbitrary nested depth

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical
cancellations of complex intermediate stages

Can handle polynomials or multivariate rational functions as input to arbitrary nested depth

Functionality not present in Mathematica even with symbolic processing!

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical
cancellations of complex intermediate stages

Can handle polynomials or multivariate rational functions as input to arbitrary nested depth

Functionality not present in Mathematica even with symbolic processing!

Inputs and outputs:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ f(x1, · · · , xn)

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical
cancellations of complex intermediate stages

Can handle polynomials or multivariate rational functions as input to arbitrary nested depth

Functionality not present in Mathematica even with symbolic processing!

Inputs and outputs:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ f(x1, · · · , xn)

Mx1
, · · · ,Mxn

Row reduction for companion matrix construction

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical
cancellations of complex intermediate stages

Can handle polynomials or multivariate rational functions as input to arbitrary nested depth

Functionality not present in Mathematica even with symbolic processing!

Inputs and outputs:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ f(x1, · · · , xn)

Mx1
, · · · ,Mxn

Mf(x1···xn)

Row reduction for companion matrix construction Recursive parsing into companion matrix form

10

Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical
cancellations of complex intermediate stages

Can handle polynomials or multivariate rational functions as input to arbitrary nested depth

Functionality not present in Mathematica even with symbolic processing!

Inputs and outputs:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ f(x1, · · · , xn)

Mx1
, · · · ,Mxn

Mf(x1···xn)

Row reduction for companion matrix construction

Finite Field Reconstruction

Recursive parsing into companion matrix form

f(x1, · · · , xn) = r(x1, · · · , xn) mod I

11

Examples (1/5)
Elimination Theory
Consider the following setup:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ xn > · · · > x1 (+ lexicograhpic ordering)

11

Examples (1/5)
Elimination Theory
Consider the following setup:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ xn > · · · > x1 (+ lexicograhpic ordering)

Polynomial division allows one to eliminate variables from a polynomial system:

x
m

1 mod I

11

Examples (1/5)
Elimination Theory
Consider the following setup:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ xn > · · · > x1 (+ lexicograhpic ordering)

Polynomial division allows one to eliminate variables from a polynomial system:

x
m

1 mod I

= x
m

1 (irreducible monomial)

11

Examples (1/5)
Elimination Theory
Consider the following setup:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ xn > · · · > x1 (+ lexicograhpic ordering)

Polynomial division allows one to eliminate variables from a polynomial system:

x
m

1 mod I

= x
m

1 (irreducible monomial)

= r(x1) = c0 + · · · cax
a

1 a < m (polynomially reduced)

11

Examples (1/5)
Elimination Theory
Consider the following setup:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ xn > · · · > x1 (+ lexicograhpic ordering)

Polynomial division allows one to eliminate variables from a polynomial system:

x
m

1 mod I

= x
m

1 (irreducible monomial)

= r(x1) = c0 + · · · cax
a

1 a < m (polynomially reduced)

only a function of becausex1 {xn, · · · , x2} > x
∞

1

11

Examples (1/5)
Elimination Theory
Consider the following setup:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ xn > · · · > x1 (+ lexicograhpic ordering)

Polynomial division allows one to eliminate variables from a polynomial system:

x
m

1 mod I

= x
m

1 (irreducible monomial)

= r(x1) = c0 + · · · cax
a

1 a < m (polynomially reduced)

only a function of becausex1 {xn, · · · , x2} > x
∞

1

f(x1) = xm

1 − r(x1)Combining:

f(x1) = 0 mod I

x1

x2, · · · , xn

roots of I = 0

11

Examples (1/5)
Elimination Theory
Consider the following setup:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ xn > · · · > x1 (+ lexicograhpic ordering)

Polynomial division allows one to eliminate variables from a polynomial system:

x
m

1 mod I

= x
m

1 (irreducible monomial)

= r(x1) = c0 + · · · cax
a

1 a < m (polynomially reduced)

only a function of becausex1 {xn, · · · , x2} > x
∞

1

f(x1) = xm

1 − r(x1)Combining:

equation for the roots in onlyx1

f(x1) = 0 mod I

x1

x2, · · · , xn

roots of I = 0

roots of f = 0

12

Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate R(a, b, c, d){x, y, z}

12

Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate

Finite Fields System Generation: Seed up to weight 17

R(a, b, c, d)

2000 equations 850 equations ≈ 1s

Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d)

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

{x, y, z}

12

Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate

Finite Fields System Generation: Seed up to weight 17

R(a, b, c, d)

2000 equations 850 equations ≈ 1s

Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d) ≈ 0.027s ≈ 0.016s ≈ 0.15s 3

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

{x, y, z}

12

Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate

Finite Fields System Generation: Seed up to weight 17

R(a, b, c, d)

2000 equations 850 equations ≈ 1s

Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d) ≈ 0.027s ≈ 0.016s ≈ 0.15s 3

R(3, 5, c, d) 27≈ 0.2s

R(3, b, c, d)

R(a, b, c, d)

≈ 2s> 10h

{x, y, z}

12

Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate

Finite Fields System Generation: Seed up to weight 17

R(a, b, c, d)

2000 equations 850 equations ≈ 1s

Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d) ≈ 0.027s ≈ 0.016s ≈ 0.15s 3

R(3, 5, c, d) 27≈ 0.2s

R(3, b, c, d) 523≈ 0.3s

R(a, b, c, d)

≈ 2s> 10h

≈ 3h?

{x, y, z}

12

Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate

Finite Fields System Generation: Seed up to weight 17

R(a, b, c, d)

2000 equations 850 equations ≈ 1s

Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d) ≈ 0.027s ≈ 0.016s ≈ 0.15s 3

R(3, 5, c, d) 27≈ 0.2s

R(3, b, c, d) 523≈ 0.3s

R(a, b, c, d) 6769≈ 3s

≈ 2s> 10h

≈ 3h?

? > 7d

{x, y, z}

12

Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate

Finite Fields System Generation: Seed up to weight 17

R(a, b, c, d)

2000 equations 850 equations ≈ 1s

Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d) ≈ 0.027s ≈ 0.016s ≈ 0.15s 3

R(3, 5, c, d) 27≈ 0.2s

R(3, b, c, d) 523≈ 0.3s

R(a, b, c, d) 6769≈ 3s

The Finite Fields approach is solving a larger set of equations, but isn’t slowed down by intermediate cancellations

≈ 2s> 10h

≈ 3h?

? > 7d

{x, y, z}

13

Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn

13

Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn

[Lee, 2013]
Parameters (Mandelstam variables) Integration variables

13

Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn

[Lee, 2013]
Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

13

Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn

[Lee, 2013]

Parametric representations allow us to associate an Euler characteristic to a given Feynman integral χ

ω = d log
(

G(z)−d/2
)

χ = # solutions to ω = 0Computing is algorithmically simple:χ

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

[Lee, 2013]
[Mastrolia, Mizera 2018]

13

Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn

[Lee, 2013]

For what values of does diverge? {sij ,m} I Landau Analysis
[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia,
Duhr, Fevola, Gardi, Giroux, Hannesdottir,

Helmer, McLeod, Mizera, Panzer,
Papathanasiou, Schwartz, Tellander, Telen,

Vergu, 2017-2025]

Parametric representations allow us to associate an Euler characteristic to a given Feynman integral χ

ω = d log
(

G(z)−d/2
)

χ = # solutions to ω = 0Computing is algorithmically simple:χ

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

[Lee, 2013]
[Mastrolia, Mizera 2018]

13

Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn

[Lee, 2013]

For what values of does diverge? {sij ,m} I Landau Analysis
[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia,
Duhr, Fevola, Gardi, Giroux, Hannesdottir,

Helmer, McLeod, Mizera, Panzer,
Papathanasiou, Schwartz, Tellander, Telen,

Vergu, 2017-2025]

The Landau Variety can be defined as the values of for which the Euler characteristic drops in value {sij ,m}

Parametric representations allow us to associate an Euler characteristic to a given Feynman integral χ

ω = d log
(

G(z)−d/2
)

χ = # solutions to ω = 0Computing is algorithmically simple:χ

[Mizera, Fevola, Telen, 2023/24][Chestnov, Matsubara-Heo, Munch, Takayama, 2023]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

[Lee, 2013]
[Mastrolia, Mizera 2018]

14

Examples (4/5)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

14

Examples (4/5)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

14

Examples (4/5)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

14

Examples (4/5)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

14

Examples (4/5)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

as the degenerate configuration is
approached some solutions fly off to
infinity

14

Examples (4/5)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

as the degenerate configuration is
approached some solutions fly off to
infinity

can be detected checking sums and products of
roots on the one variable projection

15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

[Correia, Sever, Zhibodeov, 2021]

15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

SOFIA/PLD most complicated letter found: 27(m2)3 + 4s2t+ 4st2

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]

15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

SOFIA/PLD most complicated letter found: 27(m2)3 + 4s2t+ 4st2

Two new simple letters:

Euler characteristic strategy
{s2 + st+ t2,m2s2 +m2st+ s2t+m2t2 + st2}

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]

15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

SOFIA/PLD most complicated letter found: 27(m2)3 + 4s2t+ 4st2

Two new simple letters:

Euler characteristic strategy

Four new complicated letters:

{s2 + st+ t2,m2s2 +m2st+ s2t+m2t2 + st2}

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]

16

Thank you for listening!

