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= 3 + a

Rational Expression!

What if this example was more complicated (quintics and beyond)? Is there a fully rational way to obtain this 
result? Yes! — Polynomial division

f(x) = 3 + a mod p(x)

Philosophy: Polynomial division can often solve problems without explicitly needing to solve polynomial systems
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∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division 

Assume for rest of talk 

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

xy = x mod I xy = y + 1 mod I

Problem normally fixed by introducing Groebner Bases
[Buchberger, 1965]
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Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis     is a set of polynomials obtained from    that has many nice propertiesG I
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xy = (y + 1)y = y + y2 = y + 1 mod G
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2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

Groebner bases can be very difficult to calculate and are often computational bottlenecks!
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1

12

2

[Faugére, 1999] [Buchberger, 1985]
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n
y
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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⎥

⎥

⎥

⎥

⎥
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⎢

⎢
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⎢

⎢

⎢
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⎥

⎥

⎥
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⎢
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⎢

⎢

⎢

⎢
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⎥
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⎥

⎥

⎥

⎥

⎥

⎥
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RowRed

Irreducible monomialsRead off from top row: f(x, y) = y + 1 mod I No explicit Groebner Basis required!

Process can again be implemented in finite fields, with a reconstruction step at the end.

I = ⟨xy − x, xy − y − 1⟩
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Project Summary

A (Mathematica) package that performs polynomial division over finite fields

Program Overview

No intermediate reconstructions required — only reconstructs the final result, ensuring the numerical 
cancellations of complex intermediate stages 

Can handle polynomials or multivariate rational functions as input to arbitrary nested depth 

Functionality not present in Mathematica even with symbolic processing!

Inputs and outputs:

I = ⟨p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)⟩ f(x1, · · · , xn)

Mx1
, · · · ,Mxn

Mf(x1···xn)

Row reduction for companion matrix construction

Finite Field Reconstruction

Recursive parsing into companion matrix form  

f(x1, · · · , xn) = r(x1, · · · , xn) mod I
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m

1 mod I
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m
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= r(x1) = c0 + · · · cax
a

1 a < m (polynomially reduced)

only a function of      becausex1 {xn, · · · , x2} > x
∞

1

f(x1) = xm

1 − r(x1)Combining:

equation for the roots in      onlyx1

f(x1) = 0 mod I

x1

x2, · · · , xn

roots of I = 0

roots of f = 0
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Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d) ≈ 0.027s ≈ 0.016s ≈ 0.15s 3

R(3, 5, c, d) 27≈ 0.2s

R(3, b, c, d) 523≈ 0.3s

R(a, b, c, d) 6769≈ 3s

≈ 2s> 10h

≈ 3h?

? > 7d

{x, y, z}
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Examples (2/5)
Elimination Benchmarking (Preliminary)

R = Q[a, b, c, d][x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate 

Finite Fields System Generation: Seed up to weight 17  

R(a, b, c, d)

2000 equations 850 equations ≈ 1s

Resultant Singular Time Mathematica Time Finite Fields Time (10 core) Finite Fields Sample Points

R(3, 5, 7, d) ≈ 0.027s ≈ 0.016s ≈ 0.15s 3

R(3, 5, c, d) 27≈ 0.2s

R(3, b, c, d) 523≈ 0.3s

R(a, b, c, d) 6769≈ 3s

The Finite Fields approach is solving a larger set of equations, but isn’t slowed down by intermediate cancellations

≈ 2s> 10h

≈ 3h?

? > 7d

{x, y, z}
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Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral 

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn
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∫
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[Lee, 2013]

Parametric representations allow us to associate an Euler characteristic    to a given Feynman integral χ

ω = d log
(

G(z)−d/2
)

χ = # solutions to ω = 0Computing     is algorithmically simple:χ

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

[Lee, 2013]
[Mastrolia, Mizera 2018]
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For what values of                does    diverge?  {sij ,m} I Landau Analysis
[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia, 
Duhr, Fevola, Gardi, Giroux, Hannesdottir, 

Helmer, McLeod, Mizera, Panzer, 
Papathanasiou, Schwartz, Tellander, Telen, 

Vergu, 2017-2025]

Parametric representations allow us to associate an Euler characteristic    to a given Feynman integral χ

ω = d log
(
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χ = # solutions to ω = 0Computing     is algorithmically simple:χ
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Examples (3/5)
Landau Singularities of Feynman (Euler) Integrals
A Feynman integral can be defined as an Euler/Twisted Period Integral 

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn

[Lee, 2013]

For what values of                does    diverge?  {sij ,m} I Landau Analysis
[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia, 
Duhr, Fevola, Gardi, Giroux, Hannesdottir, 

Helmer, McLeod, Mizera, Panzer, 
Papathanasiou, Schwartz, Tellander, Telen, 

Vergu, 2017-2025]

The Landau Variety can be defined as the values of                for which the Euler characteristic drops in value   {sij ,m}

Parametric representations allow us to associate an Euler characteristic    to a given Feynman integral χ

ω = d log
(

G(z)−d/2
)

χ = # solutions to ω = 0Computing     is algorithmically simple:χ

[Mizera, Fevola, Telen, 2023/24][Chestnov, Matsubara-Heo, Munch, Takayama, 2023]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

[Lee, 2013]
[Mastrolia, Mizera 2018]
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Examples (4/5)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing    :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0
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Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing    :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

as the degenerate configuration is 
approached some solutions fly off to 
infinity  

can be detected checking sums and products of 
roots on the one variable projection
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Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)
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[Correia, Sever, Zhibodeov, 2021]



15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral:                    in the top (max cut) sector alone χ = 60(!)

SOFIA/PLD most complicated letter found: 27(m2)3 + 4s2t+ 4st2

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]



15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral:                    in the top (max cut) sector alone χ = 60(!)

SOFIA/PLD most complicated letter found: 27(m2)3 + 4s2t+ 4st2

Two new simple letters: 

Euler characteristic strategy
{s2 + st+ t2,m2s2 +m2st+ s2t+m2t2 + st2}

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]



15

Examples (5/5)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral:                    in the top (max cut) sector alone χ = 60(!)

SOFIA/PLD most complicated letter found: 27(m2)3 + 4s2t+ 4st2

Two new simple letters: 

Euler characteristic strategy

Four new complicated letters:

{s2 + st+ t2,m2s2 +m2st+ s2t+m2t2 + st2}
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Thank you for listening!


