
Feynman Integral Reduction 
using Syzygy-Constrained 
Symbolic Reduction Rules

Sid Smith 
Based on 2507.XXXX with M. Zeng



Motivation: Amplitudes
• Observables are given by Amplitudes.
• In perturbative Quantum Field Theory, Amplitudes are 

given by a sum of Feynman Diagrams

• Each Feynman Diagram corresponds to a Feynman 
Integral

𝒜(𝑒!𝑒" → 𝜇!𝜇") =	 + + +	…

𝐹 𝑛#, … , 𝑛$ = ./
%&#

'

𝑑(ℓ%
1

𝜌#
)!⋯𝜌$

)"



Motivation: Integration-
by-parts

Generate All Contributing 
Diagrams

Express Diagrams in Terms of 
Scalar Feynman Integrals

Reduce Diagrams to a Subset 
of Master Integrals

Evaluate Master Integrals

• Feynman Integrals 𝐼 𝑛!, … , 𝑛"  belong to a Vector 
Space, the topology defines the space, and the 
indices 𝑛#  define the element. 

• There exists a basis on this vector space, known as 
the Master Integrals.

• Integration-by-parts (IBP) Identities can be used to 
find the coefficients 𝑐#

𝐹 = 	5
*

𝑐*𝐽*

[Smirnov, Petukhov, 2010]

[Chetyrkin, Tkachov, 1981]

[Mastrolia, Mizera, 2019]



Part I:
Integration-by-Parts: An Overview
[Chetyrkin, Tkachov, 1981]

[Laporta, 2000]

[LiteRed, Reduze, FIRE, Kira, NeatIBP, Blade, FiniteFlow]



IBPs: Integral Families
An integral family/topology is defined by

• A set of loop momenta ℓ#, … , ℓ$.
• A set of independent external momenta 𝑝#, … , 𝑝% .
• A set of propagators 𝜌#, … , 𝜌&, of which some can appear as 

denominators, and some as numerators. 

For Example:

𝜌# = ℓ#', 	 𝜌' = ℓ'', 	 𝜌( = ℓ# + ℓ' − 𝑝 '

𝜌) = ℓ# ⋅ 𝑝, 	 𝜌* = ℓ' ⋅ 𝑝
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IBPs: The Laporta 
Algorithm
• IBP Identities give us relations between integrals in a given 

family.

• We can input values of the initial vector 𝑛 into these 
identities to generate a system of equations, this is known 
as seeding.

• The aim is to row-reduce this matrix until there exists an 
equation of the form
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Seeding 𝑛-values
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IBPs: Limitations
Current State-of-the-art:

2-Loop: 5- or 6-point

3-Loop: 4-point

Multi-loop: Increased number of Equations and Variables, 
larger System of Equations.

Multi-scale: More External Legs and Masses mean more 
parameters to keep track of when performing row 
reduction.

High Complexity: For physical Amplitudes calculations, 
one has to deal with integrals with large powers of 
numerators and denominators

[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2020]

[De Laurentis, 2024] 

[Bercini, 2024] 

[Henn, Matijašić, Miczajka, Peraro, Xu, Zhang, 2024] 

[Chakraborty, Gambuti, 2022]

[Gehrmann, Jakubčík, Mella, Syrrakos, Tancredi, 2023]

[Gehrmann, Henn, Jakubčík, Lim, Mella, 2024] 

[Henn, Torres Bobadilla, Lim, 2023/24] 



IBP Tools: Sectors & Cuts
A sector of an integral is fully described by it’s 
denominator powers

𝐹 𝑛 → 𝑚 = 𝑛 *
$%&→(

Loosely speaking, cutting a propagator means 
enforcing that this propagator is on-shell

1
𝜌#
→ 𝛿(𝜌#)

Cuts commute with IBPs.
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𝐹 2,1,1, −1,−3 → (2,1,1,0,0)



IBP Tools: Syzygies
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[Singular] [Gluza, Kajda, 2011]



IBP Tools: Seeding
𝐼 𝑛#, 𝑛E

[Von Hippel, Wilhelm, 2025]

[Song, Yang, Cao, Luo, Zhu, 2025]

[Zeng, 2025]

[Kira]
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IBP Tools: Seeding
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Part 2:
Algorithm for Reduction Rules

[LiteRed] [FIRE] [Kosower, 2018]



Algorithm for Reduction Rules
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1. Building a complete set of reduction rules to 
reduce any arbitrary integral.

2. Applying these reduction rules to reduce a 
specific set of target integrals to master 
integrals

{𝐹 2,1,1, −4, −4 , 𝐹 1,2,1,0, −7 , 𝐹 1,1,1, −6, −4 , 𝐹(1,1,1, −11,0)}



Reduction Rules: 
Sectors

{𝐹 2,1,1, −4, −4 , 𝐹 1,2,1,0, −7 , 𝐹 1,1,1, −6, −4 , 𝐹(1,1,1, −11,0)}



Reduction Rules: Generating Identities
In each sector 𝑚, we generate identities by solving the syzygy equations

𝑃&((𝜌)𝑞(
' 𝜕
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' 𝜌+ = 𝑓+ 𝜌 𝜌+, ∀	𝑖 ∈ 𝜎 = 𝑖 𝑚+ > 0

⇒ 0 =9
+

(𝛼+ + 𝛽+ ⋅ 𝑛)𝐹[𝑛 + �⃗�+]

We are free to fix indices for the sector we are in

𝑛+ = C𝑚+, 𝑖 ∈ 𝜎
𝜂+, 𝑖 ∉ 𝜎 , 	 𝛼+ → 𝛼+ + 𝛽+ ⋅ 𝑚

Keep only identities that contain at least one �⃗�+ such that �⃗�+ , = 0, ∀	𝑗 ∈ 𝜎



Reduction Rules: Ordering Integrals
To write reduction rules, we need a notion of how the integrals are ordered. We therefore define 
a weight function

𝑊 𝑛 = 9
)#-.
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We also need a notion of how to order shift vectors �⃗� on each sector, for this we define the 
sector-specific weight function

𝑤 �⃗� = �⃗� ⋅ 𝜉, −�⃗� ⋅ �⃗�, −𝒪(�⃗�) , 	 𝜉 = 𝑚 P
012→#

, 𝜃+ = 1 − 𝜉+



Reduction Rules: Ordered Identities
We then order the identities such that the highest weight shift vector comes first

0 =9
+

(𝛼+ + 𝛽+ ⋅ 𝜂)𝐹 𝑛 + �⃗�+ ⇒ 𝛼# + 𝛽# ⋅ 𝜂 𝐹 𝑛 + �⃗�# + lower−weight	integrals = 0

{𝐹 2,1,1, −4,−4 , 𝐹 1,2,1,0, −7 , 𝐹 1,1,1, −6,−4 , 𝐹(1,1,1, −11,0)} ⇒ 𝒪 𝑛 = (𝑛#, 𝑛4, 𝑛5, 𝑛6, 𝑛7)
For example, on sector 𝑚 = (1,1,1,0,0), we get

2 2𝑛7 − 𝑛6 𝐹 1,1,1, 𝑛7, 𝑛6 − 1 + lower−weight	integrals = 0

6𝑠 2𝑛7 − 𝑛6 𝐹 1,1,1, 𝑛7, 𝑛6 − 1 + lower−weight	integrals = 0

4 1 − 𝐷 − 𝑛6 𝐹 1,1,1, 𝑛7, 𝑛6 − 1 + lower−weight	integrals = 0

𝐹(1,1,1, 𝑛7, 𝑛6)

𝐹 1,1,1, 𝑛7, 2𝑛7 − 1 , 𝐹 1,1,1, 𝑛7, 0

𝐹 1,1,1,0, −1 , 𝐹(1,1,1,0,0), 𝐹 1,1,1, 𝑛7, 0

⇒
⇒



Reduction Rules: Row Reduced Identities

Before moving on to this step, we are free to fix further indices depending on the integrals that are 
currently irreducible. For example, for 𝐹(1,1,1, 𝑛7, 0), we set 𝑛6 = 0.

We then make small perturbations around this fixed point, by inputting the following seed 
integrals

1,1,1, 𝑛7, 0 , 1,1,1, 𝑛7, −1 , (1,1,1, 𝑛7 − 1,0)

This generates more identities, with 𝜂 = 𝑛7  now

0 =9
+

(𝛼8+ + 𝛽8+ ⋅ 𝜂)𝐹 𝑛 + �⃗�8+ , 	𝑘 = 1,… , 𝐼



Reduction Rules: Row Reduced Identities
We then order all 𝑀 shift vectors �⃗�+ according to sector-specific weight, and write the identities in 
matrix form

0 =9
+

(𝛼+ + 𝛽+ ⋅ 𝜂)𝐹 𝑛 + �⃗�+ ⇒
𝛼##, 𝛽## ⋅ (1, 𝜂) ⋯ 𝛼#9, 𝛽#9 ⋅ (1, 𝜂)

⋮ ⋱ ⋮
𝛼:#, 𝛽:# ⋅ (1, 𝜂) ⋯ 𝛼:9, 𝛽:9 ⋅ (1, 𝜂)

𝐹(𝑛 + �⃗�#)
⋮

𝐹(𝑛 + �⃗�9)

⇒
𝛼## 𝛽## ⋯ 𝛼#9 𝛽#9
⋮ ⋮ ⋮ ⋮ ⋮
𝛼## 𝛽:# ⋯ 𝛼:9 𝛽:9

We then row reduce this matrix using FiniteFlow and reconstruct identities that are useful to resolve 
the irreducible integrals so far.



Reduction Rules: Direct Solution
If we are left with any irreducible integrals after the previous steps, then we move on to this final step.

Given a specific irreducible integral, we insert seeds in the vicinity of this fixed point, keeping the 
analytic dependence on the indices 𝑛+ in the equations. 
For example, the integral 𝐹(1,1,1, 𝑛7, 0) is still irreducible after the first two steps, so we input the 
following seeds

1,1,1, 𝑛7, 0 , (1,1,1, 𝑛7 − 1,0)
Solving the resulting system using FiniteFlow, we are able to recover the reduction rule

𝐹 1,1,1, 𝑛7 − 2 → lower−weight	integrals

This also works to resolve irreducible integrals with no 𝑛+ dependence, such as 𝐹 1,1,1, −1,0 . If an 
integral can not be reduced it is inferred as a master integral.



Reduction Rules: 
Summary



Applying Rules: 
Generating 
Equations



Applying Rules: Back Substitution

0 # # # #
# # # 0 #
# 0 0 # #
# # 0 # 0
0 0 # 0 #

⟹

# # # # #
0 # # # #
0 0 # # #
0 0 0 # #
0 0 0 0 #

⟹

# 0 0 0 #
0 # 0 0 #
0 0 # 0 #
0 0 0 # #
0 0 0 0 #

Forward-Elimination Back-Substitution

Reduction Rule Equations



Part 3:
Examples



Examples: Double Box with External Mass

{𝐹 1,1,1,1,1,1,1, −10,−10 , 𝐹 1,2,1,1,1,1,1, −6,−6 , 𝐹 1,1,1,1,1,1,1, −2,−15 }



Examples: Massless Pentabox

{𝐹 1,1,1,1,1,1,1,1, −10,−10,0 , 𝐹 1,1,1,1,1,1,1,1, −5,−6,−3 }

[Brunello, Chestnov, Mastrolia, 2024]



Examples: Spinning Black Hole

[Akpinar, Cordero, Kraus, Smirnov, Zeng, 2024]

47365 Target Integrals {𝐹 11,1,1,1,1,1,1, −10,0 , 𝐹 3,5,1,5,1,1,1, −7,−3 ,… }

10 days ⇒ 11 hours



Conclusion
• We presented a novel algorithm for reducing Feynman integrals by generating 

symbolic reduction rules that can be applied to an arbitrary set of Feynman 
integrals.

• The motivation behind this algorithm is for the reduction of Feynman integrals with 
high powers of numerators and denominators. 

• We tested the algorithm against two highly non-trivial examples of rank-20 integrals 
for the double box with an external mass and the massless pentabox.

• We also presented an application of this algorithm to a physical problem, the 
spinning black hole



Outlook
• This algorithm can be incredibly effective for the computation of amplitudes in non-

renormalizable field theories such as gravity.

• Currently, the reduction rule part of the algorithm is the bottleneck, but we foresee 
plenty of ways to improve the implementation of this. 

• A similar approach with Laporta identities without the syzygy constraints could 
prove useful for more complex topologies, where Singular struggles to solve the 
syzygy equations.



Thank you! J


