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Motivation: Amplitudes

* Observables are given by Amplitudes.

* |n perturbative Quantum Field Theory, Amplitudes are
given by a sum of Feynman Diagrams

c/l(eJ’e_ - ,Lt+/,l_) = >M<+ >v< +>-<;:+

* Each Feynman Diagram corresponds to a Feynman
Integral
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Motivation: Integration-
by-parts

* Feynman Integrals I(n4, ..., ny) belong to a Vector
Space, the topology defines the space, and the

indices n; define the element. [smirmov, Petukhov, 2010]
[Mastrolia, Mizera, 2019]

* There exists a basis on this vector space, known as
the Master Integrals.

F = ZCi]i

l
* Integration-by-parts (IBP) Identities can be used to

find the coefficients c; .
[Chetyrkin, Tkachov, 1981]




Part I:
Integration-by-Parts: An Overview

[Chetyrkin, Tkachov, 1981]
[Laporta, 2000]
[LiteRed, Reduze, FIRE, Kira, NeatIBP, Blade, FiniteFlow]



IBPs: Integral Families

An integral family/topology is defined by
« Asetofloop momentat,...,¥;.

* Asetofindependent external momentap, ..., Pg-

* Asetof propagators p4, ..., Py, Of which some can appear as
denominators, and some as humerators.

For Example:

p1 =45, py = 15, pz = (£1 + 4, — p)* < >

ps=*t1-D, ps =4, p



IBPs: The Laporta )
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* |IBP Identities give us relations between integrals in a given
family. >
0= z(“i + i - n)F[n +y;]

: . . i
* We can input values of the initial vector n into these

identities to generate a system of equations, this is known U Seeding n-values
as seeding.

# o #\ /1)
* The aim is to row-reduce this matrix until there exists an - .. : . =
equation of the form ' S '
# . #/\I(.)

(Target) — Z ciJi =0



IBPs: Limitations

[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2020]

Current State-of-the-art: [Chakraborty, Gambuti, 2022]
[Gehrmann, Jakub¢ik, Mella, Syrrakos, Tancredi, 2023]

2-Loop: 5- or 6-point

[De Laurentis, 2024]

3-L00p: 4_p0int [Bercini, 2024]

[Henn, Matijasi¢, Miczajka, Peraro, Xu, Zhang, 2024]
[Gehrmann, Henn, Jakubgik, Lim, Mella, 2024]
[Henn, Torres Bobadilla, Lim, 2023/24]

Multi-loop: Increased number of Equations and Variables,
larger System of Equations.

Multi-scale: More External Legs and Masses mean more
parameters to keep track of when performing row
reduction.

High Complexity: For physical Amplitudes calculations,
one has to deal with integrals with large powers of
numerators and denominators
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IBP Tools: Sectors & Cuts

A sector of an integral is fully described by it’s
denominator powers

R . F(2,1,1,-1,-3) - (2,1,1,0,0)
F(n) - m=n

—ve—0
Loosely speaking, cutting a propagator means
enforcing that this prlopagatoris on-shell = ¢ + Cz>©< + ¢,

—_— % 5 .
Py (i)

Cuts commute with IBPs. ! :
: = : + C2>@<
Ic = Z ciJci I !

l




IBP Tools: Syzygies ...

Jd P (p)q J .
0= jndwb 3e% o - g n(f\, Paa(P)qgmpi =filp)p, Vi€Eo
N a

0 0
G; € {lem» s lhrg W}» P:(p) € {P11(p), ... Pive(P)}
1 L

o _ (P(p), i<SLL+E), | Gi(psciy), i <R
c'M = O, Ci = ) ) MU = )
fi—r(p), otherwise, —pa(j)di_R, j» otherwise
MC — M



[Von Hippel, Wilhelm, 2025]

[Song, Yang, Cao, Luo, Zhu, 2025]

IBP Tools: Seeding =
I(nq,n;)

Laporta Seeding

Rectangular Seeding



[Von Hippel, Wilhelm, 2025]

° [Song, Yang, Cao, Luo, Zhu, 2025]
IBP Tools: Seedin
{ ] [Kira]

Laporta Seeding Rectangular Seeding



Part 2:
Algorithm for Reduction Rules



Algorithm for Reduction Rules

1. Building a complete set of reduction rules to
reduce any arbitrary integral.

2. Applying these reduction rules to reduce a
specific set of target integrals to master
integrals
pr="%1,  pp=13  p3=(1+4;—p)

{F(2,1,1,-4,-4),F(1,2,1,0,-7),F(1,1,1,—6,—4),F(1,1,1,—11,0)} pr=%1-p, ps=4p
1

2
F(n1)n2;n31n4in5) = jl_[dea ny Ny N3 Ny Ng
a1 P1 Pz P3 Py Ps
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Reduction Rules: Generating Identities

In each sector m, we generate identities by solving the syzygy equations

d . .
Paa(p)qgwpi = fi(p)pi, Vi€ o={ilm; >0}
a
= 0 =2(“i+,§i -n)F [+ y;]
;]

We are free to fix indices for the sector we are in

m;, IlEo +,§ _
n; = ) a; = a; Fem
l T’ii l$0', l l l

Keep only identities that contain at least one y; such that ()7i)j =0,Vj€Eo



Reduction Rules: Ordering Integrals

To write reduction rules, we need a notion of how the integrals are ordered. We therefore define
a weight function
WD = (2, 1.2 (= 1),= D m,0(D)
n;>0 n;>0 n;<0

We also need a notion of how to order shift vectors ¥ on each sector, for this we define the
sector-specific weight function

W()_/)) = ()7'?'_)7@'_007))' f:ﬁi ’ ei = 1_51'



Reduction Rules: Ordered Identities

We then order the identities such that the highest weight shift vector comes first
0= Z(ai + B, - DF[AR+ 7] = (a1 + By - 11)F[7 + 7,] + lower—weight integrals = 0
i

(F(2,1,1,—4,—4),F(1,2,1,0,—=7), F(1,1,1,—6, —4), F(1,1,1,—11,0)} = O(R) = (ny, ny, n3, Ns, ny)

For example, on sectorm = (1,1,1,0,0), we get

F(1,1,1,n4,n5)

U
6s(2n, —ng)F(1,1,1,n4,ns — 1) + lower—weight integrals = 0 F(1,1,1,n4,2n, — 1), F(1,1,1,n4,0)
U

4(1—-D —n5)F(1,1,1,n4,n5 — 1) + lower—weight integrals = 0 F(1,1,1,0,—-1),F(1,1,1,0,0),F(1,1,1,n,,0)

2(2n, — ng)F(1,1,1, n4, ng — 1) + lower—weight integrals = 0



Reduction Rules: Row Reduced Identities

Before moving on to this step, we are free to fix further indices depending on the integrals that are
currently irreducible. For example, for F(1,1,1,n4,0), we setng = 0.

We then make small perturbations around this fixed point, by inputting the following seed
integrals

{(1;1;1; Ny, 0)) (1)1;1r Ny, _1)) (1;1;1; Ny — 1r0)}
This generates more identities, with 7 = (n,) now

0= Z(aki + Bri - MF[A + Pral, k=1,..,1
7



Reduction Rules: Row Reduced Identities

We then order all M shift vectors y; according to sector-specific weight, and write the identities in
matrix form

0=Z(“i+,§i'ﬁ)F[ﬁ+)7i]=>

l

((aﬂ,ﬁn.)-u,ﬁ) (alM,Ew)-(1,ﬁ)><F(ﬁff1)>

(0511»,5711) (L) - (“IMr EIM) - (1,7) F(+vm)

a1 Bur 0 am Pim
= : : : :
a1 P am Bim
We then row reduce this matrix using FiniteFlow and reconstruct identities that are useful to resolve
the irreducible integrals so far.



Reduction Rules: Direct Solution

If we are left with any irreducible integrals after the previous steps, then we move on to this final step.

Given a specific irreducible integral, we insert seeds in the vicinity of this fixed point, keeping the
analytic dependence on the indices n; in the equations.

For example, the integral F(1,1,1,n4,0) is stillirreducible after the first two steps, so we input the

following seeds
{(1,1,1,n4,0),(1,1,1,n, — 1,0)}

Solving the resulting system using FiniteFlow, we are able to recover the reduction rule

F(1,1,1,n, — 2) — lower—weight integrals

This also works to resolve irreducible integrals with no n; dependence, such as F(1,1,1, —1,0). If an
integral can not be reduced it is inferred as a master integral.



Reduction Rules:

Summary

Sector

Generate Ordered
IBP Identities

v

Yes

Are these
sufficient?

Nol

Row Reduce
Identities

¢ \ 4

Sector Finished, integrals
that can't be reduced are
Master Integrals

Are these

sufficiey/
No i

Solve Directly for W
Missing Rules J




'Queue = Targets |

‘(Take highest weight "
”| integral of queue |

Applying Rules: N Y
Generating =) 4
Equations N T

No

/ \ No " Is there an ; Yes ' Add to Equations
| Add integral to list of Masters €«———— ( identity/rule to reduce )—— > Add integral to reduced list
« . this integral? 4 _Add new integrals to queue /



Applying Rules: Back Substitution

Forward-Elimination Back-Substitution
0 # # # # H # # # # # 0 O
# # # 0 #)\) | (0 # # # #\| | [0 # O
# 0 0 # #|=10 0 # # #|=]|0 0 #
# # 0 # O 0 0 0 # # 0 0 O
0 0 # 0 # 0 0 0 O # 0 0 O

|

Reduction Rule Equations

S H O O O



Part 3:
Examples



Examples: Double Box with External Mass

D2

P1

Cut Time Taken | Number of Equations | Number of Masters
P {5,7} 284s 18971 14
{1,4,7} 60s 8120 4
{3,6,7} 178s 12287 8
{4,6,7} 57s 2643 4
{1,3,4,6} 26s 1153 3
| |
‘) ‘) \ {1,3,5,6} 35s 2031 5

{F(1,1,1,1,1,1,1,-10,-10),F(1,2,1,1,1,1,1,—6,—6),F(1,1,1,1,1,1,1,—2,—15)}




Examples: Massless Pentabox

D2

D1

p Cut Time Taken | Number of Equations | Number of Masters
{1,4,8} 6997s 51619 21
D4 {1,5,8} 2912s 39446 27
{2,5,8} 23721s 112188 31
/ {1,3,4,6} 974s 3979 13
- 2 {1,3,4,7} 1063s 4275 9
b (24,78} | 7064s 28338 12

{F1,1,1,1,1,1,1,1,—-10,—-10,0),F(1,1,1,1,1,1,1,1,-5,—6,—3)}

[Brunello, Chestnov, Mastrolia, 2024]




Examples: Spinning Black Hole

o o
P1 P4

[Akpinar, Cordero, Kraus, Smirnov, Zeng, 2024]

. -
P2 P3
47365 Target Integrals {F(11,1,1,1,1,1,1,—10,0), F(3,5,1,5,1,1,1,—7,—-3), ... }

10 days = 11 hours



Conclusion

* We presented a novel algorithm for reducing Feynman integrals by generating
symbolic reduction rules that can be applied to an arbitrary set of Feynman
integrals.

* The motivation behind this algorithm is for the reduction of Feynman integrals with
high powers of numerators and denominators.

* We tested the algorithm against two highly non-trivial examples of rank-20 integrals
for the double box with an external mass and the massless pentabox.

* We also presented an application of this algorithm to a physical problem, the
spinning black hole



Outlook

* This algorithm can be incredibly effective for the computation of amplitudes in non-
renormalizable field theories such as gravity.

* Currently, the reduction rule part of the algorithm is the bottleneck, but we foresee
plenty of ways to improve the implementation of this.

* A similar approach with Laporta identities without the syzygy constraints could
prove useful for more complex topologies, where Singular struggles to solve the
syzygy equations.
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