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Outline of the talk

*|ntroduction and motivations
* Exponential integrals for holomorphic functions: Pearcey Integral

* Exponential integrals for closed forms: Legendre Family

e Conclusions and Outlooks
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Consider the exponential integral:

I(y)=| e "y

We want to:

e Identify H*( —) and H,( — ) such that: I(y) : H(-)® H(-)-C
* Determine the dimension and a basis of such spaces: Master Integrals

e Compute the intersection numbers

e Analyze the dependence on y :{wall crossing structure }
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Physical motivations

Multiloop Feynman integrals in Baikov representation

o B(x;) is the Baikov Polynomial
[ = % (Xl-) 0, *  is a rational form
A e In dimensional regularization: y(D) & Z

I = e —y log B (Xl-) 0,
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The pairing

L |explflu e HP<"™8% (X, Do, ) ® Hg giopailXs Dosf ) = C

[Kontsevich and Soibelman: arXiv:2402.07343, 2024 ]

Global Betti homology Global Twisted de Rham cohomology _
Héetti,glabal <(X’ D()),f, Z) =H" ((Xv DO)af_l(Oo)a Z) Hc.lR(X’ DO?f) = H.(X9 QB(,D(V Vf)

With
(szl' vy Q0 ol 4. Lo
X,Do’ f ) X,DO — X,D() T e T XaDO




Holomorphic exponent: Morse (Picard-Lefschetz) Theory

Let X = C" and consider the set:

X D Dy={z€ C"|Re(yf(z)) > N}

Any reasonable cycle 1" should connect two distinct regions in D), :

| '€ H(X,Dy,7)

Moreover, in order to avoid oscillations Im(yf) must remain constant along 1




Thimbles decomposition

A good basis for H (X, Dy, Z) is provided by
the so called Lefschetz thimbles:

* Gradient flow lines with constant phase passing through the
critical points of h = Re(yf(2))
e Ascendent paths F;“ and descendent paths |-

* “Traces” of the vanishing cycles along vanishing directions e
Ct

0, k<n,
2, k=n.

rank|H,(X, Dy, Z)] = {

Set of critical points



Stokes Phenomena

As vy varies it may happens that a thimble crosses more then
one singular point:

[= 1y € C*|Im(yf(2)) |, = Im(yf(2)) \(,j} Stokes’ line

The number of Thimbles for such values of y is less then for

generic y

The space C}, splits into regions separated by Stokes lines




Wall crossing structure
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Intersection among the corresponding vanishing cycles




Thimbles intersection

A
Picard-Lefshetz theorem: - @\/t

(D o+ e aia

n+1

—— ———— e _— R — e — ——

—— — — == ==

Representation of the monodromy acting on vanishing cycles /

Vt(O) Vt(r)




Holomorphic exponent: Twisted de Rham cohomology

Let consider = P, € Clz] and extend itto P, : P! — P!,
We want to compute the Hypercohomology of the complex:
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Holomorphic exponent: Twisted de Rham cohomology

Let consider = P, € Clz] and extend itto P, : P! — P!,
We want to compute the Hypercohomology of the complex:

(Qp1,, V) 1 0 = Opi(*p) > QL,(¥p) — 0

With respect to the differential:
V = (y_1d+ d@f/\)

Skipping the details, the final result is

H).(C,d%) =0
H.(C,dP,) =~ C’!

This result depends on the global Jacobian ring

Jp = C!

that is NOT sensitive to the coalescence of critical

points! If one point as multiplicity m, by

considering the middle extension of the connexion

we get

. ‘

I ~ |
HdR ((]:’ d‘@f ) (m) — co



Pearcey Integral

— (4 2 Describing the Grand-canonical partition function of
_ v(Z"+bz +cz+d) g
P (}/) — J' € dZ gauge Skyrme models for nuclear matter

F [Cacciatori, Canfora, Lagos, Muscolino,Vera: JHEP 12:150, 2021 ]

The singular locus is the set

2 = {Z e C ‘f,(Z) — O} — {GZ(A)} Where A = 8b* + 27¢”

> 0 1 real and 2 complex conjugate solutions,

<0 3 real different solutions,
=0 3 real solutions with at least a multiple root.

>
1




Pearcey Integral A > 0

Im(y)
11 /3
o< Re(p) = =~ 6\£ Im(),  where Im(f(2)|, =Im(yf(2)], .
l, : Re(y) = 0, where  Im(yf(z))|, = Im(yf(2)], .
11 /3
L : Re(y) = 16\/; Im(y), where  Im(yf(z))|, = Im(yf(z)], . :
) I
Yy (2) (1)
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Pearcey Integral

Consider the preimage of the level set f(z) =t
Vanishing cycles

A =1{z)—{z) and A=A, = {z;} = {z)

2,(1)
Monodromy matrices
=2
7 (t) -1 0 O 1 -1 O
3 M1=(—1 1 O) and M2=M3=(() —1 O)
Z4(1) 1 0 1 0 0 -1
Jump matrices

1 10 1 0 0 1 0 0
TO9={0 1 0 T™W=(0 1 0 T =10 1 0
0 0 1 0 -2 1 1 0 1




Pearcey Integral: A < 0

(1) Im(y) C

Y

Stoke’s line: Im(y) = 0 C

Re(y)

0)

Vanishing cycles
A =121} — %), By= 1) —14)h B3= 12} — 124}

Monodromy matrices

-1 0 0 1 0 O 1 0 -1
O 1 0], M2: 0 -1 O GndM2: 0 1 -1
-1 0 1 0 —1 1 0 0 1

M,




Pearcey Integral

H\(X,Dy, Z) = span{I'T, 17,17} = 73 H\(X,Dy, Z) = span{I'{,15,} & 7? H\(X,Dy, Z) = span{l'[,,} = Z
H,(X,Dy, Z2)" = span{l'7,T5, I3} = Z° H{(X,Dy,Z)" = span{I'7,T5;} & Z* H,(X,Dy, 2)" = span{l'[»;} = Z
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Logarithmic exponent

Let us consider how

zy -2, = logHB(zy, ..., 2,)

fis defined on X = C"\{% = 0} X=pP"=Crypr!

We classify the added divisor according to th behavior of 9, the extension of 9B over X:

X=X=D,UD,UD,,

Horizontal divisor: 93 si finite Vertical divisor(at infinity): 5B ’ Logarithmic divisor: d8 has
has poles logarithmic poles




Logarithmic exponent

Consider the local system. <, (U)=kerV]|, UcCcX with V =d + ya

The global Betti cohomology is defined as

H'(X,) = H (X, DF* U DR, (L))

We get:

(X, DET(Z,)),  Re() >0,
H' X, a) =

H (%D, 1(Z,)),  Re(r) <0




Legendre family of Elliptic curves

Consider the integral

7 = J dx A dy _ J e—ylog[y2+x(x— 1)(x—/1)]dx Ady = J o 1102 By Jy A dy
r [y2+x(x— 1)(x—/1)]y r r

We extend % to P*: B(x,y, 1, 4) = v*n — x(x — n)(x — nl)

And define the close form

— 2nvdy + [y* 4+ x% + xAMx = 2n)]dn + [-3x* — n? A + 2xn(1 + A)]dx
d log B =

vy — x(x — n)(x — nA)




Legendre family of Elliptic curves: Cohomological side

Analyzing the behavior of B we get

With:
Dz=8,={[x:y:n €P*|%B =0)}
D_=P!'={[x:y:0] € P?) Intersecting at DN D, = [0 :1: 0]}

o0

The computation of Betti cohomology gives:

Horsi aton, X (X, S3TIA(ZL, ) 200 C* D C? D 0@ C?
Hiorsi aton X (X, DETIAZL, ) 20000 C*HC* DO




Conclusions and Outlooks

* The identification of exponential integrals as periods of twisted de Rham cohomology and Betti homology over
complex manifolds, allows to accomodate in the same framework a wide range of physically relevant integrals

* The analysis of the wall crossing structure allows to analytic continue the master integral decomposition in the

parameter ¥ and carefully avoid Stokes’ phenomena for a sharp counting of the co-homology dimension

Outlooks
* Concrete application of this formalism to Feynman integrals in different representation and multiple variables
(working progress with Angius, Cacciatori, Mastrolia and Noja)

* Analysis of multi barameter dependence (Complex structure moduli of algebraic varieties = kinematic physical
variables)

* Application to conformal correlators: string amplitudes




Thank you
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