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Outline of the talk

•Introduction and motivations 

•Exponential integrals for holomorphic functions: Pearcey Integral 

•Exponential integrals for closed forms: Legendre Family  

•Conclusions and Outlooks
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Exponential integrals
Consider the exponential integral: 

I(γ) = ∫Γ
e−γfμ

Where: 
•  
•  is a n-chain with  
•  
•  is an algebraic volume n-form 

f : X → ℂ
Γ D0 ⊃ ∂Γ ≠ 0
γ ∈ ℂ*
μ
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Exponential integrals
Consider the exponential integral: 
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Exponential integrals
Consider the exponential integral: 

I(γ) = ∫Γ
e−γfμ

Where: 
•  
•  is a n-chain with  
•  
•  is an algebraic volume n-form 

f : X → ℂ
Γ D0 ⊃ ∂Γ ≠ 0
γ ∈ ℂ*
μ

We want to: 
• Identify   and  such that:   

• Determine the dimension and a basis of such spaces:  Master Integrals  

• Compute the   intersection numbers 

• Analyze the dependence on  :  wall crossing structure 

Hk( − ) Hk( − ) I(γ) : Hk( − ) ⊗ Hk( − ) → ℂ

γ
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Multiloop Feynman integrals in Baikov representation  

 
•  is the Baikov Polynomial 
•  is a rational form 
• In dimensional regularization:  

 

ℬ(xi)
ω

γ(D) ∉ ℤ
I = ∫Δ

ℬ(xi)−γω

Physical motivations
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Multiloop Feynman integrals in Baikov representation  

 
•  is the Baikov Polynomial 
•  is a rational form 
• In dimensional regularization:  

 

ℬ(xi)
ω

γ(D) ∉ ℤ
I = ∫Δ

ℬ(xi)−γω

Physical motivations

We lose geometric interpretation 
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Physical motivations

Multiloop Feynman integrals in Baikov representation  

 
•  is the Baikov Polynomial 
•  is a rational form 
• In dimensional regularization:  

 

ℬ(xi)
ω

γ(D) ∉ ℤ
I = ∫Δ

ℬ(xi)−γω

I = ∫Δ
e−γ log ℬ(xi)ω
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The pairing 

∫ exp[ f ]μ : HBetti,global
∙ (X, D0, f ) ⊗ H∙

dR,global(X, D0, f ) → ℂ

[Kontsevich and Soibelman: arXiv:2402.07343, 2024 ]
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The pairing 

∫ exp[ f ]μ : HBetti,global
∙ (X, D0, f ) ⊗ H∙

dR,global(X, D0, f ) → ℂ

[Kontsevich and Soibelman: arXiv:2402.07343, 2024 ]

Global Betti homology  

H∙
Betti,global ((X, D0), f, ℤ) ≡ H∙ ((X, D0), f −1(∞), ℤ)
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The pairing 

∫ exp[ f ]μ : HBetti,global
∙ (X, D0, f ) ⊗ H∙

dR,global(X, D0, f ) → ℂ

[Kontsevich and Soibelman: arXiv:2402.07343, 2024 ]

Global Betti homology  

H∙
dR(X, D0, f ) ≅ ℍ∙(X, Ω∙

X,D0
, ∇f )

Global Twisted de Rham cohomology  

(Ω∙
X,D0

, ∇f ) : Ω0
X,D0

∇f Ω1
X,D0

∇f …
∇f Ωn

X,D0

H∙
Betti,global ((X, D0), f, ℤ) ≡ H∙ ((X, D0), f −1(∞), ℤ)

With

∇f = d − df ∧
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Holomorphic exponent: Morse (Picard-Lefschetz) Theory 
Let  and consider the set:X ≅ ℂn

Γ ∈ Hn(X, DN, ℤ)

ℂz

Γ1

Γ2
Γ3

Γ4

Any reasonable cycle  should connect two distinct regions in  : Γ DN

X ⊃ DN = {z ∈ ℂn |Re(γf(z)) ≥ N}

Moreover, in order to avoid oscillations  must remain constant along Im(γf ) Γ
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Thimbles decomposition
A good basis for  is provided by 
the so called Lefschetz thimbles:  
 
 
 
 
 
 

Hn(X, DN, ℤ)

• Gradient flow lines with constant phase passing through the 
critical points of   

• Ascendent paths  and descendent paths  
• “Traces” of the vanishing cycles along vanishing directions 

 

h = Re(γf(z))
Γ+

i Γ−
i

rank[Hk(X, DN, ℤ)] = {0, k < n,
#Σ, k = n .

Set of critical points



l = {γ ∈ ℂ* | Im(γf(z)) |σi
= Im(γf(z)) |σj

}
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Stokes Phenomena
As  varies it may happens that a thimble crosses more then 
one singular point:  

 

γ

Stokes’ line 

The number of Thimbles for such values of  is less then for 
generic  

γ
γ

The space  splits into regions separated by Stokes linesℂγ
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Wall crossing structure

As we cross a Stokes ray, associated with a Stokes 
line between the critical points  and   the 

corresponding thimbles and  undergo a 
discontinuous jump to the adjacent region of the 
form: 

σi σj
Γ+

j Γ+
i

(
Γ+(1)

i

Γ+(1)
j ) = (1 Δij

0 1 ) (
Γ+(0)

i

Γ+(0)
j ) , for  hσi

< hσj

Where Δij = (±1)Δi ∘ Δj .
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Wall crossing structure

As we cross a Stokes ray, associated with a Stokes 
line between the critical points  and   the 

corresponding thimbles and  undergo a 
discontinuous jump to the adjacent region of the 
form: 

σi σj
Γ+

j Γ+
i

(
Γ+(1)

i

Γ+(1)
j ) = (1 Δij

0 1 ) (
Γ+(0)

i

Γ+(0)
j ) , for  hσi

< hσj

Where Δij = (±1)Δi ∘ Δj . Intersection among the corresponding vanishing cycles 
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Thimbles intersection

Picard-Lefshetz theorem:  

 
hτ(a) = a + (−1)n(n+1)/2(a ∘ Δ)Δ

Representation of the monodromy acting on vanishing cycles 
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Holomorphic exponent: Twisted de Rham cohomology

Let consider   and extend it to . 
We want to compute the Hypercohomology of the complex: 

f = 𝒫ℓ ∈ ℂ[z] 𝒫ℓ : ℙ1 → ℙ1

(Ω∙
ℙ1,p, ∇) : 0 → 𝒪ℙ1(*p) ∇ Ω1

ℙ1(*p) → 0

∇ ≡ (γ−1d + d𝒫ℓ∧)

With respect to the differential: 
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Holomorphic exponent: Twisted de Rham cohomology

H0
dR(ℂ, d𝒫l) ≅ 0

H1
dR(ℂ, d𝒫ℓ) ≅ ℂℓ−1

Let consider   and extend it to . 
We want to compute the Hypercohomology of the complex: 

f = 𝒫ℓ ∈ ℂ[z] 𝒫ℓ : ℙ1 → ℙ1

(Ω∙
ℙ1,p, ∇) : 0 → 𝒪ℙ1(*p) ∇ Ω1

ℙ1(*p) → 0

∇ ≡ (γ−1d + d𝒫ℓ∧)

With respect to the differential: 

Skipping the details, the final result is  



22

Holomorphic exponent: Twisted de Rham cohomology

H0
dR(ℂ, d𝒫l) ≅ 0

H1
dR(ℂ, d𝒫ℓ) ≅ ℂℓ−1

Let consider   and extend it to . 
We want to compute the Hypercohomology of the complex: 

f = 𝒫ℓ ∈ ℂ[z] 𝒫ℓ : ℙ1 → ℙ1

(Ω∙
ℙ1,p, ∇) : 0 → 𝒪ℙ1(*p) ∇ Ω1

ℙ1(*p) → 0

∇ ≡ (γ−1d + d𝒫ℓ∧)

With respect to the differential: 

Skipping the details, the final result is  

This result depends on the global Jacobian ring 
 
                           
that is NOT sensitive to the coalescence of critical 
points! If one point as multiplicity m, by 
considering the middle extension of the connexion 
we get  

J𝒫ℓ
≅ ℂℓ−1

H1
dR(ℂ, d𝒫ℓ)(m) ≅ ℂℓ−m
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Pearcey Integral 

P(γ) = ∫Γ
e−γ(z4+bz2+cz+d)dz

Σ = {z ∈ ℂ | f′ (z) = 0} = {σi(Δ)}

Δ ≡
> 0 1  real and 2 complex conjugate solutions,
< 0 3  real different solutions,
= 0 3  real solutions with at least a multiple root.

The singular locus is the set 

Where Δ = 8b2 + 27c2

Describing the Grand-canonical partition function of  
gauge Skyrme models for nuclear matter

[Cacciatori, Canfora, Lagos, Muscolino,Vera: JHEP 12:150, 2021 ]
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Pearcey Integral Δ > 0

   

l0 : Re(γ) = −
11
16

3
2

Im(γ), where Im(γf(z)) |σ1
= Im(γf(z)) |σ2

,

l1 : Re(γ) = 0, where Im(γf(z)) |σ2
= Im(γf(z)) |σ3

,

l2 : Re(γ) =
11
16

3
2

Im(γ), where Im(γf(z)) |σ1
= Im(γf(z)) |σ3

.

Fix γ ∉ li
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Pearcey Integral 

f −1(t) =

z1(t)
z2(t)
z3(t)
z4(t)

Consider the preimage of the level set  f(z) = t
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Pearcey Integral 

f −1(t) =

z1(t)
z2(t)
z3(t)
z4(t)

Vanishing cycles 

   and   Δ1 = {z3} − {z4} Δ2 = Δ3 = {z1} − {z4}

Consider the preimage of the level set  f(z) = t
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Pearcey Integral 

f −1(t) =

z1(t)
z2(t)
z3(t)
z4(t)

Vanishing cycles 

   and   Δ1 = {z3} − {z4} Δ2 = Δ3 = {z1} − {z4}

   and   M1 = (
−1 0 0
−1 1 0
1 0 1) M2 = M3 = (

1 −1 0
0 −1 0
0 0 −1)

Monodromy matrices 

Consider the preimage of the level set  f(z) = t
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Pearcey Integral 

f −1(t) =

z1(t)
z2(t)
z3(t)
z4(t)

Vanishing cycles 

   and   Δ1 = {z3} − {z4} Δ2 = Δ3 = {z1} − {z4}

   and   M1 = (
−1 0 0
−1 1 0
1 0 1) M2 = M3 = (

1 −1 0
0 −1 0
0 0 −1)

Monodromy matrices 

Consider the preimage of the level set  f(z) = t

Jump matrices 

                  T(0) = (
1 1 0
0 1 0
0 0 1) T(1) = (

1 0 0
0 1 0
0 −2 1) T(2) = (

1 0 0
0 1 0
1 0 1)
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Pearcey Integral:  Δ < 0
ℂz

Vanishing cycles 

 ,   ,  Δ1 = {z1} − {z2} Δ2 = {z3} − {z4} Δ3 = {z1} − {z4}

 ,     and M1 = (
−1 0 0
0 1 0

−1 0 1) M2 = (
1 0 0
0 −1 0
0 −1 1) M2 = (

1 0 −1
0 1 −1
0 0 1 )

Monodromy matrices 

Stoke’s line: Im(γ) = 0
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Pearcey Integral 
ℂz ℂzℂz

H1(X, DN, ℤ) = span{Γ+
1 , Γ+

2 , Γ+
3 } ≅ ℤ3

H1(X, DN, ℤ)∨ = span{Γ−
1 , Γ−

2 , Γ−
3 } ≅ ℤ3

H1(X, DN, ℤ) = span{Γ+
123} ≅ ℤ

H1(X, DN, ℤ)∨ = span{Γ−
1 , Γ−

23} ≅ ℤ2
H1(X, DN, ℤ) = span{Γ+

1 , Γ+
23} ≅ ℤ2

H1(X, DN, ℤ)∨ = span{Γ−
123} ≅ ℤ
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Logarithmic exponent
Let us consider now 

f(z1, …, zn) = logℬ(z1, …, zn)

 is defined on                              f X = ℂn∖{ℬ = 0} X = ℙn = ℂn ∪ ℙn−1

X − X = Dh ∪ Dv ∪ Dlog

We classify the added divisor according to th behavior of  , the extension of  over :ℬ ℬ X
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Logarithmic exponent
Let us consider now 

f(z1, …, zn) = logℬ(z1, …, zn)

 is defined on                              f X = ℂn∖{ℬ = 0} X = ℙn = ℂn ∪ ℙn−1

X − X = Dh ∪ Dv ∪ Dlog
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Horizontal divisor:  si finiteℬ
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Logarithmic exponent
Let us consider now 

f(z1, …, zn) = logℬ(z1, …, zn)

 is defined on                              f X = ℂn∖{ℬ = 0} X = ℙn = ℂn ∪ ℙn−1

X − X = Dh ∪ Dv ∪ Dlog

We classify the added divisor according to th behavior of  , the extension of  over :ℬ ℬ X

Horizontal divisor:  si finiteℬ Vertical divisor(at infinity):  
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Logarithmic exponent
Let us consider now 

f(z1, …, zn) = logℬ(z1, …, zn)

 is defined on                              f X = ℂn∖{ℬ = 0} X = ℙn = ℂn ∪ ℙn−1

X − X = Dh ∪ Dv ∪ Dlog

We classify the added divisor according to th behavior of  , the extension of  over :ℬ ℬ X

Horizontal divisor:  si finiteℬ Vertical divisor(at infinity):  
has poles

ℬ Logarithmic divisor: d  has 
logarithmic poles

ℬ
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Logarithmic exponent

Consider the local system.                                            with ℒα,γ(U) = ker∇ |U , U ⊂ X ∇ = d + γα

H∙(X, α) ≅
H∙ (X̃, Dℝ

∞, Π*(ℒα,γ)), Re(γ) > 0,

H∙ (X̃, Dℝ
ℬ̄, Π*(ℒα,γ)), Re(γ) < 0.

H∙ (X, α) ≅ H∙ ( X̃ , Dℝ +
v ∪ Dℝ −

log , Π*(ℒα,γ))
The global Betti cohomology is defined as

We get:
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Legendre family of Elliptic curves 

ℐ = ∫Γ

dx ∧ dy

[y2 + x(x − 1)(x − λ)]γ = ∫Γ
e−γ log[y2 + x(x − 1)(x − λ)]dx ∧ dy = ∫Γ

e−γ log ℬ(x,y;λ)dx ∧ dy

Consider the integral 

We extend  to  :                 ℬ ℙ2 ℬ(x, y, η; λ) = y2η − x(x − η)(x − ηλ)

And define the close form      
  

      d log ℬ =
2ηydy + [y2 + x2 + xλ(x − 2η)]dη + [−3x2 − η2λ + 2xη(1 + λ)]dx

y2η − x(x − η)(x − ηλ)
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Legendre family of Elliptic curves: Cohomological side 

Dh = Dv = ∅

Analyzing the behavior of   we get ℬ

Dlog = Dℬ ∪ D∞

Dℬ = ℰλ = {[x : y : η] ∈ ℙ2 |ℬ = 0}
With:

D∞ = ℙ1 = {[x : y : 0] ∈ ℙ2} Intersecting at Dℬ ∩ D∞ = [0 : 1 : 0]

H∙
Betti,glob,γ(X, α)( X̃ , S3, Π*(ℒα,γ)) ≅ 0 ⊕ ℂ2 ⊕ ℂ2 ⊕ 0 ⊕ ℂ2

H∙
Betti,glob,γ(X, α)( X̃ , DR

ℬ, Π*(ℒα,γ)) ≅ 0 ⊕ 0 ⊕ ℂ2 ⊕ ℂ4 ⊕ 0

The computation of Betti cohomology gives:
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Conclusions and Outlooks 

• The identification of exponential integrals as periods of twisted de Rham cohomology and Betti homology over 

complex manifolds, allows to accomodate in the same framework a wide range of physically relevant integrals  

• The analysis of the wall crossing structure allows to analytic continue the master integral decomposition in the 

parameter  and carefully avoid Stokes’ phenomena for a sharp counting of the co-homology dimension γ

Outlooks 
• Concrete application of this formalism to Feynman integrals in different representation and multiple variables 

(working progress with Angius, Cacciatori, Mastrolia and Noja) 

•  Analysis of multi parameter dependence (Complex structure moduli of algebraic varieties = kinematic physical 
variables) 

• Application to conformal correlators: string amplitudes
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Thank you 


