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ABSTRACT

In this article, we focus on the complex relationship between the shape of dark matter (DM) halos and the cosmological models
underlying their formation. We have used three realistic cosmological models from the DEUS numerical simulation project. These
three models have very distinct cosmological parameters (Ωm, σ8, and w) but their cosmic matter fields beyond the scale of DM halos
are quasi-indistinguishable, providing an exemplary framework to examine the cosmological dependence of DM halo morphology.
First, we developed a robust method for measuring the halo shapes detected in numerical simulations. This method avoids numerical
artifacts on DM halo shape measurements, induced by the presence of substructures depending on the numerical resolution or by
any spherical prior that does not respect the triaxiality of DM halos. We then obtain a marked dependence of the halo’s shape both
on their mass and the cosmological model underlying their formation. As it is well known, the more massive the DM halo, the less
spherical it is and we find that the higher the σ8 of the cosmological model, the more spherical the DM halos. Then, by reexpressing the
properties of the shape of the halos in terms of the nonlinear fluctuations of the total cosmic matter field or only of the cosmic matter
field which is internal to the halos, we managed to make the cosmological dependence disappear completely. This new fundamental
cosmological invariance is a direct consequence of the nonlinear dynamics of the cosmic matter field. As the universe evolves, the
nonlinear fluctuations of the cosmic field increase, driving the dense matter halos toward sphericity. The deviation from sphericity,
measured by the prolaticity, triaxiality, and ellipticity of the DM halos, is therefore entirely encapsulated in the nonlinear power
spectrum of the cosmic field. From this fundamental invariant relation, we retrieve with remarkable accuracy the root-mean-square of
the nonlinear fluctuations and, consequently, the power spectrum of the cosmic matter field in which the halos formed. We also recover
the σ8 amplitude of the cosmological model that governs the cosmic matter field at the origin of the DM halos. Our results therefore
highlight, not only the nuanced relationship between DM halo formation and the underlying cosmology but also the potential of DM
halo shape analysis of being a powerful tool for probing the nonlinear dynamics of the cosmic matter field.
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1. Introduction
The formation and evolution of large-scale structures in the
universe are among the most fundamental topics in physi-
cal cosmology. Dark matter (DM) halos, gravitationally bound
concentrations of DM, play an essential role in the complex, non-
linear processes involved in forming cosmic structures. These
halos act as the scaffolding on which visible matter gathers,
influencing, as we know, the formation of galaxies, clusters of
galaxies, and superclusters of galaxies. Therefore, understand-
ing the properties and behavior of DM halos is essential to
unravel the mysteries of cosmic structure formation and their
dependence on cosmological models.

Much cosmological research has focused on various proper-
ties of DM halos, such as their mass function, internal structure,
concentration, or clustering. These studies have shed light on
the processes underlying the formation and evolution of DM
halos, providing insight into their interactions, mergers, and
hierarchical growth (see for example Mo et al. (2010) and ref-
erences therein). In addition, numerous research projects have
revealed how the properties of DM halos can also depend on
⋆ Corresponding authors; jean-michel.alimi@obspm.fr,
remy.koskas@obspm.fr

the underlying cosmology (White et al. 1993; Tinker et al. 2010;
Bhattacharya et al. 2013; Ludlow & Angulo 2017).

Among these properties of halos, the shape of DM halos is
always an important and intense area of active research inter-
est (see a review in Limousin et al. 2013). The morphology of
DM halos does indeed provide valuable information on their
formation history, the dynamics of their assembly, and their
interactions with their environment. Analysis of the shape of
DM halos is also crucial for linking theoretical developments to
observations (Meneghetti et al. 2010; Battaglia et al. 2012; Lee
et al. 2018; Chira et al. 2021).

It is well known thanks to simulations and observations that
DM halos are not simply spherical objects (Kasun & Evrard
2005; Allgood et al. 2006; Hayashi et al. 2007; Despali et al.
2013; Butsky et al. 2016; Suto et al. 2016; Prada et al. 2019). On
the contrary, they exhibit triaxiality, their shapes being marked
by three distinct axes of different lengths. This triaxial nature of
DM halos reflects the complex interaction of gravitational forces
during their formation. It has implications for their dynamical
properties and their interactions with other halos, it influences
also the galaxy formation process, and finally, it undoubtedly
depends on cosmology. We especially address this last question
in this paper.

A10, page 1 of 21
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202450845
https://orcid.org/0000-0002-3060-6877
mailto:jean-michel.alimi@obspm.fr
mailto:remy.koskas@obspm.fr
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Alimi, J.-M., and Koskas, R.: A&A, 691, A10 (2024)

Measuring with high precision the shape of DM halos is
no easy task (Zemp et al. 2011). Such measurements do indeed
require careful consideration of potential numerical and method-
ological biases. Such biases can arise from a variety of sources,
such as limited numerical resolution, particle sampling effects,
halo detection algorithms, or assumptions made as to shape mea-
surement techniques. Therefore, it is important to have a reliable
method that minimizes possible biases and thus obtain reliable
and accurate shape measurements.

In this paper, we first present such a procedure for measuring
the shape of DM halos, using reliable techniques that mitigate
potential biases. With this procedure, the analysis of DM halos
from DEUS numerical simulations (Alimi et al. 2010; Rasera
et al. 2014; Alimi et al. 2012; Reverdy et al. 2015) first shows
a clear dependence of the shape of the halos on their mass and
on the cosmology in which they formed. We then show that this
cosmological dependence disappears when the shape properties
are expressed in terms of the nonlinear fluctuations of the matter
they contain.

The universal relation between the shape properties of the
halos and the nonlinear root-mean-square (rms) fluctuations of
the cosmic matter field inside the halos that was highlighted
then persists when the nonlinear fluctuations are calculated on
the total cosmic matter field smoothed on the scale of the halos.
This makes it possible to deduce a new universal relation, again
independent of cosmology, between the nonlinear fluctuations
of the matter field internal to the halos and the nonlinear fluctua-
tions of the total cosmic matter field. Finally, from the universal
relation between the halos’ shape and nonlinear fluctuations of
the cosmic matter field, we reconstructed the nonlinear power
spectrum at the scale of the halos and also predict the σ8 ampli-
tude of the fluctuations of the underlying cosmological model in
which the halos were formed.

The paper is structured as follows. In Section 2, we describe
our reliable procedure for measuring the shapes of DM halos
where we address the complex challenges posed by lim-
ited numerical resolution, substructure identification, and other
potential biases. We thus get an accurate and robust way to
measure the shape of DM halos. In Section 3, we study the cos-
mological dependence of DM halo shapes using data simulations
from the DEUS project. We explore how different cosmological
models influence the triaxial features of the halos. In Section 4,
we highlight the universal relation of the properties of halos
shape with the rms fluctuations of the internal matter of the DM
halos. We then extend such a fundamental relation to rms non-
linear fluctuations of the total cosmic matter field. In Section 5,
we present how to utilize this universal relation between halo
shape and nonlinear rms fluctuations of the cosmic matter field
to reconstruct its nonlinear power spectrum. This validates the
effectiveness of our method. Finally, in the last section, we con-
clude and discuss potential limitations and some possible wider
implications of our results with possible future directions for
potential probing of some aspects of fundamental physics.

2. Numerical simulations, cosmological models,
and DM halos catalog

2.1. Numerical simulations and cosmological models

Over the last few decades, numerical simulations have made
it possible to study the formation of cosmic structures in ever
larger volumes of the Universe and over ever longer periods
of the Universe’s history. The study of gravitational collapse
during the formation of cosmic structures has thus become

Table 1. Parameters of Dark Energy Universe Simulations.

Model ΛCDM RPCDM wCDM

Ωm 0.2573 0.23 0.275
Particle mass (M⊙/h) 2.3 · 109 2.0 · 109 2.4 · 109

σGauss
8 0.83 0.68 0.88
σBessel

8 0.8 0.66 0.85
w −1.0 −0.8 −1.2
δc 1.673 1.672 1.674

Notes. For all of the simulations we used, ΩK = 0, ns = 0.9630,
h = 0.72, L = 648 Mpc/h and N = 20483 particles. In addition, for ini-
tial power spectrum computation, Ωb = 0.04356 (and baryons are then
supposed to follow DM dynamics). The σ8’s are the rms fluctuations at
8 Mpc/h, computed on the power spectrum linearly extrapolated to
z = 0, and using a Gaussian W(x) = exp− x2

10 or a Bessel W(x) =
3 sin(x)−x cos(x)

x3 window function. δc is the critical spherical overdensity
at z = 0.

increasingly accurate (Numerous reviews on this topic are avail-
able, one example being Kuhlen et al. 2012). In this article, we
use numerical data from “Dark Energy Universe Simulation”1.
DEUS simulations (Alimi et al. 2010; Rasera et al. 2010; Alimi
et al. 2012; Reverdy et al. 2015) are high-performance N-body
simulations; they reproduce cosmic structure formation assum-
ing various dark energy models. The results presented in this
paper have been obtained from three reference main numeri-
cal simulations corresponding to three cosmological models: (i)
The concordance model ΛCDM, (ii) Ratra-Peebles quintessence
model RPCDM (Peebles & Ratra 1988)2 and (iii) a phantom
model (with a constant equation of state w0 < −1) that we
denote wCDM. The cosmological parameters of each of these
models have been chosen in agreement with both SNIa and
CMB WMAP7 constraints (Komatsu et al. 2011), as summa-
rized in Table 1. Such models are thus said to be realistic (Alimi
et al. 2010) and their present cosmic fields are naturally very
close to each other. These simulations were performed in a
L = 648 Mpc/h periodic box using N = 20483 particles. The
analysis of possible numerical effects on the measures of shape
parameters of DM halos, discussed in Section 3 has been per-
formed with additional numerical data from DEUS simulations
with different mass and space resolutions that is with different
numbers of particles and different computing box sizes.

To assess the impact of nonlinear effects on cosmic struc-
ture formation for these models, we first computed at z = 0 both
the linear and nonlinear power spectra of the total matter cosmic
field. The first one denoted PL(k), is simply the linear evolution
of the initial power spectrum until z = 0, as given by CAMB
(Lewis & Challinor 2011). The nonlinear power spectrum PNL(k)
is computed from the z = 0 density field of the numerical simula-
tions’ data. Both are plotted in the internal panel of Figure 1. As
expected, they differ at small scales (k > 0.2 hMpc) and merge
on larger ones. The same observation holds when smoothing
power spectra over mass scales, defining the rms fluctuations:

σ2
L(M) =

1
2π2

∫ +∞

0
k2PL(k)W2

k · ( 3M
4πΩmρc

)1/3 dk, (1)

1 https://www.deus-consortium.org
2 The simulation of the RPCDM cosmological model includes the pri-
mordial imprint of the quintessence scalar field on the initial spectrum
of perturbations, it is however essentially identifiable with a model with
a quasi-constant equation-of-state parameter for dark energy w0 = −0.8
(Alimi et al. 2010).
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Fig. 1. Root-mean-square (rms) fluctuations as a function of the smooth-
ing mass M. The RMS σL of the linear power spectrum (calculated by
CAMB) are dotted lines. The RMS σNL of the nonlinear power spec-
trum (calculated from z = 0 snapshots of DEUS simulations) are in
solid lines. σNL(M) behaves essentially as a power law whose slope
and intercept depend on the cosmology. The inner panel contains the
corresponding linear and nonlinear power spectra, PL and PNL. At high
mass (or low k), the linear and nonlinear rms fluctuations (as well as the
power spectra) are superimposed, as expected.

and similarly with PNL(k) for σ2
NL(M). We have chosen a

Gaussian3 smoothing window W(x) = exp− x2

10 . The 1
10 fac-

tor within our Gaussian window is chosen so that (squared)
Gaussian and Bessel windows coincide up to the second order
around 0. Comparing σL and σNL, as plotted in the left panel
of Figure 1, we again notice that the curves superpose on large
scales (M > 1015M⊙/h) and already differ for halos with mass
(1014M⊙/h). We then defined the pure nonlinear power spectrum
as the ratio between nonlinear and linear power spectra, for each
cosmological model, P(k) = PNL(k)/PL(k) (Alimi et al. 2010).
From such a quantity, we can interestingly see that cosmological
background leaves an imprint during the differentiation between
linear and nonlinear scales: the internal panel of Figure 2 features
the pure nonlinear power spectrum normalized to the ΛCDM
one, PX(k)/PΛCDM(k). The behaviors of PRPCDM/PΛCDM

and of PwCDM/PΛCDM manifestly differ. The former increases
for k > 0.1 h Mpc while the latter is still decreasing for those
modes. Furthermore, the critical mode kc, on which the pure
nonlinear power spectrum deviates by more than five percent
from the ΛCDM model, heavily depends on the cosmologi-
cal model: for RPCDM, kc ≈ 0.3 h Mpc and for wCDM, kc ≈

2 h Mpc. We thus see nonlinear evolution does not forget the
background cosmology or, in other terms, the coupling modes
during nonlinear evolution explicitly depend on cosmology.

3 There are alternatives, for example, the Bessel Window

W(x) = 3
sin(x) − x cos(x)

x3

which is the Fourier transform of a spherical top-hat in real space.

Fig. 2. Ratio to the ΛCDM (blue) model as a function of the smooth-
ing mass M of the purely nonlinear rms fluctuations S = σNL/σL for
RPCDM (orange) and wCDM (green) models. In the internal panel,
we plot, in the same way, the ratio to the ΛCDM model of the purely
nonlinear power spectrum P = PNL/PL of each model. We note that
PRPCDM (orange) closely follows PΛCDM (blue) up to kC = 0.4 h Mpc,
after which it deviates significantly. For the wCDM model (green), the
purely nonlinear spectra are very distinct above kC = 1. h Mpc. On the
purely nonlinear ratios of rms fluctuations, the difference is strong on
mass scales 1012–1014 M⊙/h. It is precisely this range of mass that we
will study from the DM halos.

Similar remarks can be made about the dependence of rms
fluctuations as a function of mass. The mass range spanned
by purely nonlinear collapse can then be determined by study-
ing the following quantity S (M) = σNL(M)/σL(M). The ratio
of this quantity to S ΛCDM is plotted as a function of mass in
Figure 2. S RPCDM and S wCDM deviate from S ΛCDM for masses
below 1014M⊙/h. Halos with such masses are therefore espe-
cially suited probes for assessing the cosmological footprint on
nonlinear dynamics, or in other words, it is by studying the prop-
erties of halos with masses below 1014M⊙/h that we can probe
the nonlinear power spectrum and its cosmological dependence.
In the following, we study the shape of these halos, and show that
when such a feature of halos is carefully evaluated, it effectively
constitutes a powerful probe of cosmology.

It should also be noted that even if the cosmological mod-
els we have considered are realistic, this does not mean that the
cosmological parameters that define them are not significantly
different (See Table 1). For instance, σ8 is about 30% lower
in the Ratra-Peebles model than in the phantom model. Simi-
larly, the Ωm values vary by about 20% between the RPCDM
and wCDM models. These differences are much larger than
those of the models used by Despali et al. (2014), where these
authors also studied the cosmological dependence of the shape
of DM halos, but for cosmological models with very similar
cosmological parameters.

2.2. DM halos in numerical simulations

DM halos were detected in simulations with the Parallel Friends
of Friends algorithm with a percolation parameter b = 0.2. We

A10, page 3 of 21



Alimi, J.-M., and Koskas, R.: A&A, 691, A10 (2024)

Table 2. Number of DM halos in each simulation.

Model ΛCDM RPCDM wCDM

Number of halos MFoF ∈ [2.4 · 1012, 1 · 1014] M⊙/h 411 514 338 584 438 456
After eliminating crossing-border halos 409 682 337 031 436 552
After eliminating the halos s. T. Msubstructures/MFoF > 0.1 368 613 297 183 395 962
After eliminating the halos s. T. M200/MFoF < 0.8 (Selected halos) 349 914 271 764 378 887
Proportion of selected halos 85% 80% 86%
M̄ 9.0 · 1012 8.1 · 1012 9.4 · 1012

Median M 4.8 · 1012 4.5 · 1012 4.9 · 1012

Notes. First we count all the halos detected by the FoF algorithm in each cosmological model. We then discarded halos that “crossed” the boundary
of the periodic simulation box. We then discard halos where M200 is more than 20% different from MFoF. Finally, we discard halos where the mass
of the substructures represents more than 10% of the total mass. This gives us the catalogs on which the statistical analyses presented in this paper
are based.

selected well-resolved halos containing more than 1000 parti-
cles. With the Ωm values of the DEUS simulations used, this
amounts to selecting halos from the size of a group of galax-
ies to a cluster of galaxies, with masses between 2.4 · 1012 and
1 · 1014 solar masses (per h). We have more than 300 000 halos
for each cosmology. In Table 2, we present some characteristics
of the halos catalog deduced from each simulation. The halos
in these catalogs are particularly suitable for studying the cos-
mological dependence of nonlinear dynamics, as we saw in the
previous section.

The few halos that “cross” the boundary of the periodic sim-
ulation box are ignored. We also eliminate the objects detected
by the FoF algorithm which are only the combination of two
clusters of comparable mass, linked by a thin filament. Such a
bias, called bridging (Davis et al. 1985), is a very specific fea-
ture of the FoF detection method, so we choose to exclude such
objects from our analysis. In practice, we exclude FoF objects
whose spherical overdensity mass M200 is more than 20% differ-
ent from the total FoF mass MFoF

4 or whose substructures (see
below) excess 10% of the total FoF mass (because such volumi-
nous substructures are probably neighboring halo falling on the
main one). Any detected halo-like structure that presents at least
one of these two characteristics has been simply discarded from
the sample of halos used in our analysis.

The halo catalogs constructed for the three cosmological
models are presented in Table 2. They contain a large popula-
tion of halos (more than 300 000). The mass range of the halos
in each catalog perfectly covers the scales on which the strongest
cosmological imprints on nonlinear dynamics are expected.

3. Triaxiality of DM halos: Methodological aspects

3.1. Definition of shape parameters

While it is usual to model halos, to a first approximation, as a
stack of concentric isotropic spheres, we are nevertheless led to
enrich their description by taking into account their triaxiality.
This triaxiality manifests itself at different levels. In parallel with
theoretical knowledge and the numerous observational results,
N-body simulations largely confirm that the current shape of
DM halos deviates from sphericity: Jing & Suto (2002) had
already noticed that surfaces of constant local density are well-
fitted by ellipsoids. Numerous other studies have also concluded
that there is significant triaxiality in the shape of the halos

4 FoF mass is the mass deduced from the counting of all the particles
included in halos detected by FoF algorithm.

(Bailin & Steinmetz 2005; Kasun & Evrard 2005; Allgood et al.
2006; Hayashi et al. 2007; Vera-Ciro et al. 2011; Bonamigo et al.
2015; Butsky et al. 2016; Prada et al. 2019). As a first illustra-
tion, we consider the three-dimensional representation of three
simulated halos in the ΛCDM cosmological model, with respec-
tive mass MFoF = 6.1 · 1012M⊙/h, MFoF = 1.8 · 1013M⊙/h and
MFoF = 3.65 ·1013M⊙/h in Figure 3. The first is rather spherical,
and the others, besides the numerous peripheral substructures,
are more compressed along one axis. We made it more visible in
the second row of this figure where the halos are projected onto
the simulation plane y− z. The second halo in the central position
presents a sub-halo, very off-center and apparently with a non-
negligible mass. Finally, in the third row of Figure 3, we compute
the scatter plot in which each point is a particle of the considered
halo, its abscissa is its distance to the halo densest point, its ordi-
nates, in blue, are the local overdensity (δ) where the particle
stands. We represent in orange, the overdensity of the spherical
shell this particle belongs to (among 64 other, logarithmically
spaced). The fact that there is no one-to-one correspondence
between the radius and local overdensity (the cloud is thick) is
another illustration of the halo triaxiality so a spherical descrip-
tion is not relevant. We will thus approximate the overall shape
of halos as an ellipsoid. However, for a given halo, determining
the parameters of the best fitting ellipsoid (i.e., size and orien-
tation of its principal axis), must once again be carried out with
care.

The majority of available methods involve the computation
of the inertia tensor of the considered halo:

M
i j
sample = ⟨xix j⟩sample − ⟨xi⟩sample⟨x j⟩sample 1 ≤ i, j ≤ 3, (2)

where the averages are taken from a certain sample of particles.
The choice of the sample of particles to be used in each halo has
to be done with delicate. Indeed, taking into account all the parti-
cles in a given halo to extract the main ellipsoid is both sensitive
to the algorithm used to detect that halo, and to the resolution in
which the halo has been simulated. This point will be discussed
in more detail in the next section, but in any case, such potential
numerical effects need a reliable method for capturing the shape
of halos (see Section 3.2).

Let us denote a2 ≥ b2 ≥ c2 the eigenvalues ofMsample. One
can form the following dimensionless quantities:

– the ellipticity E = a−c
2(a+b+c)

– the prolaticity p = a−2b+c
2(a+b+c)

– the triaxiality T = a2−b2

a2−c2 .
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Fig. 3. Three DM halos with three various numbers of particles (the particle mass is equal to 2.1 · 109 M⊙/h) in ΛCDM Dark Energy Universe
Simulations. Their mass is respectively from left to right 6.1 · 1012, 1.8 · 1013, 3.65 · 1013 M⊙/h. The first line of this figure shows the three-
dimensional representations of the halos: each halo contains numerous substructures, mainly located at the periphery; their number increases with
the mass of the halo. The second line shows the ellipsoids corresponding at best to the δ = 200, δ = 2000 and δ = 20 000 isodensities, superimposed
on the particles in the (y, z) plane. The graphs in the third row show the point clouds in the (r, δ) plane, where each point represents a particle located
at a distance r from the center of mass of the halo and δ is the local over-density at the point where the particle is located. The pink dots correspond
to particles belonging to substructures (see Section 3.2). In orange, we plot the average overdensity of the spherical shell at radius r. The local
density is not a one-to-one function of the distance to the center of mass. This again illustrates the asphericity of the halo. The substructures appear
in this representation as a set of particles grouped in the form of local density peaks that are superimposed on the spherical density profiles.

The ellipticity quantifies the deviation from sphericity while the
two others allow distinguishing two kinds of flattening: an oblate
(p→ −∞,T → 0) ellipsoid looks like a pancake while the shape
of a prolate ellipsoid (p → +∞,T → 1) is close to a filament.
For a perfect sphere, p vanishes and T is not defined. In practice,
the calculation of these dimensionless shape parameters for each
halo will thus consist of determining the sample of particles that
will be taken into account to calculate the inertia tensor, among
all the particles that make up this halo.

3.2. Measure of the shape parameters

3.2.1. Substructures removal

First of all, we need to deal with the substructures that can
make a significant contribution to the mass and shape of the
halos, but whose presence depends on the numerical resolution.
We have calculated the shape parameters of simulated halos in
boxes of different sizes L and with different numbers of par-
ticles N. We show in the following the results for prolaticity
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Fig. 4. Dependence of the shape of the FoF halos according to the
numerical resolution of the simulations in which they were formed. All
the simulations correspond to the same ΛCDM model. Each simula-
tion was performed with a specific computing box size L and contains
a specific number N of particles. Consequently, the particle masses mp
are specific to each simulation. We detected the FoF halos in each of the
simulations. We computed their FoF mass, and (without further process-
ing) their shape parameters. We plot the median prolaticity of the halos
in each mass range. We first notice that the shape of the FoF halos does
indeed depend on the numerical resolution. Halos of 1012 − 1013 M⊙/h
are more prolate in the simulation L = 162 Mpc/h with N = 10243 par-
ticles than in the less resolved simulation L = 162 Mpc/h with N = 5123

particles. We also note that this effect depends only on the ratio N/L3

(that is mp). The halos corresponding to the blue and purple curves
developed in boxes with different L and N, but with the same mass of
particles, have not a notably distinct median prolaticity.

p for the cosmological model ΛCDM using DEUS data with
cosmological parameters Ωm = 0.25, h = 0.72 and σ8 = 0.81.
The conclusions are unchanged with the cosmological models,
RPCDM and wCDM. If the inertia tensor is calculated from
all the particles of the FoF halo, its eigenvalues will depend
strongly on the numerical resolution due to the presence of
the substructures. For each of these simulations with different
numerical resolutions for the same cosmological model, we cal-
culated the median of the prolaticity p of all the halos in each
mass range. These results are presented in Figure 4. Several mass
domains, determined by the resolution N/L3 (the latter being
proportional to the mass of the particle, mp) are thus probed.
We observe that simulations with identical resolutions, such as
(L,N) = (2592, 10243) and (5184, 20483) produce halos that, for
the same total mass, have the same shape (in this case, the same
prolaticity). However, for a given halo mass, the higher the res-
olution of the simulation (the lower mp), the more prolate the
halos: for example, the 1013 M⊙/h halos are 15% more prolate
in the (L,N) = (2592, 20483) simulation than in the (L,N) =
(648, 10243) simulation. This effect is linked to the presence of
the substructures. The inertia tensor is mainly sensitive to par-
ticles located at the edge of the halo since their contribution is
equal to the square of their distance from the center of the halo.
Since substructures are, by nature, objects that are not well mixed
with the rest of the halo, many of them still fall and tend to be
located at the edge of the halo. At lower resolutions, fewer sub-
structures form and those that do contain a smaller number of
particles. The edge of the halo and its shape are therefore modi-
fied as a function of the presence and mass of the substructures.
As the numerical resolution in mass decreases, the halos formed

are measured as necessarily more isotropic and their prolaticity
is lower.

To better test such a hypothesis, we erased the substructures
in the halos and observed how this affects their shape as a func-
tion of resolution. Substructures are mainly abnormally dense
regions in a given halo. To locate them (and thus be able to erase
them), halos could be detected using the FoF algorithm but with
a lower percolation parameter (see Jing & Suto 2002). However,
whereas Jing & Suto (2002) uses extremely well-resolved halos
for his analysis (more than 106 particles per halo), we have "only"
a few thousand particles per halo (obviously we prefer to use
the number of halos available for our analysis, that is several
hundred thousand, unlike Jing & Suto (2002) which has only a
few halos). Consequently, we here prefer another procedure in
which we will compare the density at any point where a parti-
cle is located with the density of the spherical shell to which
it belongs. The procedure for erasing the substructures is then
divided into four stages: (i) We calculate the density δ at any
point where the particles are located. To do this we use an SPH
kernel (Gingold & Monaghan 1977; Lucy 1977) including 32
neighbors5 δ is calculated in units of 0.25ρc (and not Ωmρc) to
adopt an agnostic point of view on the exact value of Ωm, (ii)
We define the center of the halo as the position of the particle
with the highest δ. This center can generally be different from
the center of mass of the halo. From now on, it will be the origin
of the coordinates, (iii) The halo is then divided into 64 concen-
tric spherical shells; thus, for a particle at position r(i), we note
Dspherical(ri), the overdensity (wrt 0.25ρc) of the shell to which
this particle belongs and (iv) Finally, in the point cloud (r(i), δ(i))
(third line of Fig. 3 for example), the substructures correspond to
the peaks. Hence, the following definition of substructures: these
are particles such that δ(i) > η ·Dspherical(r(i)). This is because the
overdensity of a spherical shell is averaged over the angles and
is therefore much less sensitive to the presence of substructures.
The parameter η, which quantifies the rigor of substructure elim-
ination, has yet to be determined. There is a variant in which the
local density is compared with the mean local density and the
standard deviation in the shell, see Stapelberg et al. (2022). It is
important to note again that the fact that the point cloud r, δ does
not represent a single-valued function (the curve δ(r) is thick) is
a clear manifestation of the non-sphericity of the halo.

We then calculated and diagonalized the mass tensor consid-
ering only particles that do not belong to substructures, i.e. all
particles such that δ ≤ ηD , with respectively η = 1000, 100, 10.
The median prolaticity of the halos (with or without substruc-
tures) is plotted as a function of the total FoF mass of each halo.
The results are shown in Figure 5: if the aforementioned res-
olution effect seems to be tempered with moderate (η = 100)
and strict (η = 10) removal of substructures, it survives when
removing only a few particles with η = 1000, hence confirming
our assumption. However, a too-aggressive suppression of sub-
structures with η = 10 tends to alter the ellipsoidal characteristic
of the halo itself, with many particles satisfying δ(i)

Dspherical(r(i)) ≥

10, without belonging to substructures. Their presence, and
more generally the thickness of the point cloud (r, δ), is then
simply a manifestation of the non-sphericity of the halo, as men-
tioned above. In Figure 6, we see the median prolaticity for
different η, in simulations with 648Mpc/h computing box and
10243 particles. The prolaticity of halos with η = 100 is only
10% different from the prolaticity deduced from the full FoF
halo, however, it reduces to half the original prolaticity when
5 They are contained in a sphere of radius r32. The smoothing radius is
then h = r32/2.

A10, page 6 of 21



Alimi, J.-M., and Koskas, R.: A&A, 691, A10 (2024)

Fig. 5. Removal of substructures and resolution effect. For the ΛCDM model, we consider several simulations with different computational box
sizes and different numbers of particles. In each FoF halo, we remove substructures at a certain η level (the larger the η, the smaller the number
of particles designated as belonging to the substructures – see main text). The prolaticity is then calculated on these treated halos where the
substructures have been removed. It is plotted as a function of halo mass. For η = 1000 (left), the resolution effect mentioned above is still present:
in a given mass range, increasing the mass resolution increases the median prolaticity of the treated halos. This effect is strongly attenuated when
we choose η ≤ 100 (middle): the mass-prolaticity curves corresponding to the different resolutions are superimposed in the common halo mass
domains. This allows us to attribute the numerical resolution dependence of the FoF halo shapes to the presence of substructures. However, at
η = 10 (right), the overall prolaticity collapses: a too large fraction of the particles in the halo were considered as belonging to substructures and
were removed. The ellipsoidal nature of the resulting halos is then strongly altered, and they are about half as prolate as they were before the
substructures were removed. A reliable level, independent of the numerical resolution of the substructure suppression, can be considered when
η = 100.

Fig. 6. Effect of the stringency of substructure removal according to
the η parameter on the overall prolaticity of halos. In the simulation
L = 648 Mpc/h,N = 10243, we plot the median mass-prolaticity curves
for halos treated with different substructure removal parameters η. By
choosing η = +∞, no substructures are removed. The corresponding
curve is only about 10% larger than that of the halo shapes at η =100,
whereas it is twice as large as the halo prolaticity treated with η =10.
The treatment of halos with η = 100 thus seems to be the most reason-
able and does not artificially reduce their shape measurements to that of
a sphere.

η = 10 - a reasonable definition of substructures should not
lead to such a drastic sphericization of the halo when they are
removed. As a conclusion, we will consider halos without the
so-called “η = 100” substructures (i.e., without the particles
such that δ(i)

Dspherical(r(i)) ≥ 100). This is a good compromise between
the need to attenuate resolution effects on the one hand and to
preserve the shape of the halo on the other hand.

3.2.2. Isodensity selection

The inertia tensor is dominated by particles located near the
halo’s edge, which is precisely sensitive to the halo detection
method. In particular, while the FoF algorithm applies without
any a priori on the shape of the halos, this is not the case for the
SOD algorithm which, by construction or by definition, favors
significantly more spherical halos, which ultimately biases the
measurements of the shape distributions of the detected halos.
More precisely still, to obtain an estimate of the halo shape that
is independent of the detection algorithm, we need to attenuate
the contribution of particles located very close to the edge of the
halo.

To achieve this, some authors have proposed normalizing
the contribution of particles to the inertia tensor by the square
of their distance from the center (Bailin & Steinmetz 2005),
but in this case the inertia tensor normalized in this way no
longer has the physical dimension of a classical inertia ten-
sor. Other authors (Allgood et al. 2006; Despali et al. 2013)
have developed shape calculation methods with multiple itera-
tions during the diagonalization of the inertia tensor until these
successive iterative measurements converge. Zemp et al. (2011)
show that this method favors the contribution of particles very
internal to the halo, which can again bias the calculation of the
overall shape of the halo. We finally preferred a third method,
used in particular by Jing & Suto (2002). This one begins by
calculating an initial estimate of the inertia tensor from the par-
ticles included in the shell around a chosen iso-density δ = δ0
of the halo, that is, in practice, the set of particles for which
0.8δ0 ≤ δ ≤ 1.2δ0. The connectedness of surfaces of a given den-
sity is guaranteed by the prior elimination of substructures. All
the particles belonging to this thick shell contribute to the cor-
responding mass tensor,MS0 . By diagonalizing it, we obtain an
ellipsoidal fit of this shell. The lengths of the semi-axes of this
ellipsoidal shell are aδ0 =

√
3λ1, bδ0 =

√
3λ2, cδ0 =

√
3λ3 where
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λ1 ≥ λ2 ≥ λ3 are the eigenvalues of MS0 . Then, to reduce any
noise, we add an integration step where we consider all the par-
ticles in the halo that are interior to the ellipsoidal shell (defined
by aδ0 , bδ0 , cδ0 ). All these particles fill the ellipsoidal volume (and
not just an ellipsoidal shell). To obtain the best-fitting parame-
ters, we then calculate the mass tensor ME0 from the positions
of the latter particles. By diagonalizingME0 , we obtain the new
(and final) measure of the lengths of the half-axes of the halo:
aδ0 =

√
5µ1, bδ0 =

√
5µ2, cδ0 =

√
5µ3 where µ1 ≥ µ2 ≥ µ3 are

the eigenvalues ofME0 .
The last values obtained of a, b, c are only slightly differ-

ent from the previous ones (which were calculated using the
MS0 eigenvalues), as shown in Zemp et al. (2011). However,
by proceeding in this way, we are assured that the estimate of
the halo half-axis lengths will be less sensitive to details of the
very outer shape of the halo and in particular to particles that
belong to the (thick) isodensity δ = δ0, but are located far from
the corresponding ellipsoidal fit. Finally, this method is relatively
insensitive to the halo detection algorithm (FoF or SOD) used,
as long as the edge of the halo does not intersect the chosen
isodensity.

In Figure 7, we represent the median prolaticity of the
ΛCDM halos, calculated in three different ways: (i) the blue
curve is obtained from all the particles in the FoF halo, (ii) from
all the particles in the FoF halo, we calculate the mass tensor,
keeping only the particles belonging to the mean spherical den-
sity ball defined by ∆ = 200, the resulting prolaticity is the green
curve and is about 100 times weaker than the previous estimate
(blue curve). In other words, forcing the halo’s edge by identi-
fying it as a sphere, even though the particles are not uniformly
distributed in it, induces a spherical bias in the measurement of
the shape which artificially tends p to approach 0. This inval-
idates (de facto) such an approach. Finally (iii) among all the
particles in the FoF halo, we select the particles after extrac-
tion of the substructures and according to the δ = 200 isodensity
mode as explained above. We then obtain the orange curve,
which provides a very good measure of the shape of the over-
all halo, insensitive to resolution, which is ultimately quite close
to but differs precisely from the estimate of the shape deduced
from all the particles in the FoF halo.

4. Cosmological origin of the DM halos’ shape

4.1. Cosmological imprints on the DM halos’ shape

We plot in Figures 8 and 9 the median value in each mass range
of the dimensionless shape parameters (p, T , E, axis ratio) as a
function of their mass, for the three cosmological models. These
indicators were calculated using the procedure presented previ-
ously, which ensures that our measurements are robust to the
numerical resolution and the halo detection algorithm used while
respecting their triaxialities. They are represented as a function
of the total mass (FoF) of the halo6.

First of all, we observe the more massive the halos, the less
spherical they are, p(M) and E(M) increase, while b/a and c/a
decrease. Moreover, the curves obtained depend on the cosmol-
ogy: for the halos considered, the median p varies from 0.020
(low-mass halos) to 0.048 (high-mass halos) for the RPCDM

6 The mass contained in the region delimited by the shell δ0 = 200 is
very close to the total FoF mass of the halo (MFoF ≃ Mδ=200), which is
particularly true for halos whose spherical overdensity mass is greater
than 80% of the FoF mass, the criterion used in the original selection of
our halos (see Section 2.2).

Fig. 7. Effect of the spherical prior on shape measures. We consider FoF
halos of ΛCDM Universe simulated in a L = 648Mpc/h,N = 20483

cube. Their prolaticity is computed: by diagonalizing the mass tensor of
halos treated in three ways: through the procedure described in the text
(substructures removal and isodensity selection) – this is the p200 curve
(orange); by simply ignoring particles out of the sphere whose spherical
overdensity is ∆ = 200. This boils down to introducing a spherical prior,
and the corresponding curve is denoted pS (green); or with no treatment
on FoF halos - pFoF (blue). It turns out that computing shapes of halos
truncated by spheres considerably bias the measure of prolaticity (and
of the other shape parameters), artificially bringing it closer to p = 0.

Fig. 8. Median prolaticity as a function of the halo mass for each tested
cosmological model. The more massive are the halos, the less they col-
lapse and the higher their prolaticity. One notices that both the slope
and intercept of the curves depend on the cosmological model: RPCDM
halos are more prolate than the ΛCDM model. This flows from the
fact that σ8 is lower in the chosen Ratra-Peebles cosmology than in
the ΛCDM one; the halos of the first have thus collapsed more recently
and are therefore less spherical.

model, and it ranges from 0.015 to 0.034 for the ΛCDM model
and from 0.014 to 0.033 for the wCDM model. On average, the
median p for ΛCDM is about 25% lower than that for RPCDM
and 6% higher than that for wCDM. A similar observation is
made for triaxiality T and b/a curves.

Secondly, the curves are ranked in ascending order of σ8.
The curves corresponding to the RPCDM model are far from the
other curves, while the curves associated with the wCDM and
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Fig. 9. Dependence of the other halo shape parameters on cosmology and halo mass. The halos of cosmological models with a lower σ8 that
have collapsed more recently are less spherical. Upper-left panel: median middle-to-major axis ratio versus halo mass. Upper-right panel: median
triaxiality versus halo mass. Lower-left panel: median minor-to-major axis ratio versus halo mass. Lower-right panel: median ellipticity versus halo
mass.

ΛCDM models are very close, which corresponds to the differ-
ences in their respective σ8 values (see Table 1). When the σ8
are small, the fluctuations at large redshift are small and halos
tend to form more later. As halos tend moreover to sphericalize
with time (due to the relaxation process, when the mass accretion
process more or less stops) σ8, halos formed later will therefore
be less spherical. When σ8 is low, the ellipticity, prolaticity, and
triaxiality of the halos will therefore be higher, and the ratios
of their axes b/a and c/a will be low. This is indeed what is
observed in Figures 8 and 9, the curves E, p and T correspond-
ing to the RPCDM model are systematically above the curves
corresponding to the ΛCDM, which are themselves above the
curves corresponding to the wCDM.

Since the shape parameters of DM halos depend on the mass
of the halos, but also on the cosmology according to the linear
fluctuations of the cosmic matter field smoothed at 8 Mpc/h, it
thus seems reasonable to express such parameters, more gener-
ally as a function of the fluctuations of the cosmic matter field
smoothed on the scale of the mass of the halos. We explore this
hypothesis in the next section.

4.2. Shape of DM halos and linear fluctuations

Despali et al. (2014); Bonamigo et al. (2015); Vega-Ferrero et al.
(2017) have studied the shape of halos at different redshifts, in
theΛCDM model. They expressed in this model, the halo shapes
in terms of νL(M, z) = δc(z=0)

σL(M,z) , where σL(M, z) is the amplitude
of the mass-scale linear fluctuations of these halos at redshift z
and δc(z = 0) is the critical spherical overdensity at z = 0. In
this work, the coefficients δc(z = 0) of our three models are
very close (see Table 1) to each other (we can use the usual
fit δc(z = 0) = 1.686Ω0.0055

m to verify this). To test in the same
way such universality, in terms of νL(M, z), at the same red-
shift (z = 0) but this time for different cosmological models
(cf. Table 1), it thus is sufficient to consider in our case the
variable σL

7. But, there are still two differences between our
analysis and that of previous authors. Firstly, we have evaluated

7 We invite the reader to consult the results of Koskas & Alimi
(2023) where different models of modified gravity are studied with very
different δc(z = 0).

A10, page 9 of 21



Alimi, J.-M., and Koskas, R.: A&A, 691, A10 (2024)

Fig. 10. Median prolaticity as a function of logσL(M)−1. The curves
corresponding to the different dark energy models are closer to each
other, comparatively to Figure 8 in which median prolaticity was plotted
against halo mass. This proves that the linear power spectrum only partly
explains the cosmological dependence of the relationship between halo
mass and prolaticity.

the shape properties of the DM halos detected by the FoF algo-
rithm, whether relaxed or not, and secondly, the procedure used
in Despali et al. (2013) to evaluate the shape of the halos in
Despali et al. (2014); Bonamigo et al. (2015) differs from the one
we use, as explained earlier in Section 3. The results presented
below can thus be considered as a robustness test, to the modifi-
cations mentioned above, of the proposal made by Despali et al.
(2014) or Bonamigo et al. (2015), of the universality of shape
properties in terms of the linear fluctuations of the cosmic matter
field,

From MFoF (the mass directly deduced from the FoF
algorithm) of each halo, we calculated the linear fluctuation,
σL(MFoF). After arranging the halos in σL bins and measuring
the median prolaticity for the halos in each of these bins, we
plot in Figure 10 the median prolaticity of the halos as a func-
tion of σL(M) for each cosmology. We observe that the curves
approach but do not merge. The linear fluctuations σL(M) are
therefore not sufficient to “encode” all the cosmological depen-
dence of the shape measurements in the case of our cosmological
models where the dark energy model varies strongly through the
coefficients w, σ8 and Ωm.

4.3. Universality of the shape of DM and nonlinear
fluctuations

Reexpressed in terms of σL(M), the cosmological dependence
of the halo shape parameters has only been partially absorbed.
However, since the shape properties were calculated not only on
the particles inside the halos, which moreover evolved according
to nonlinear dynamics, it seems appropriate to reexpress these
properties not in terms of linear fluctuations of the total cos-
mic field but in terms of the nonlinear fluctuations of the matter
inside the halos, as introduced by van Daalen & Schaye (2015);
Pace et al. (2015). We have therefore calculated the power spec-
trum of the density field smoothed over the mass scale of the
halos (the smoothing chosen is again Gaussian smoothing, the
density field was calculated from the particles inside the halos
alone on a CIC grid of 35003 cells) and we deduce the nonlinear
fluctuations σNL,IH .

Fig. 11. Nonlinear power spectra computed using all z = 0 particles
(dotted lines) or only those belonging to FoF halos, whose mass exceeds
2.3 · 1012 M⊙/h (solid lines). In the inner panel, the corresponding non-
linear power spectra.

The nonlinear fluctuations of the total matter field (σNL)
and the nonlinear fluctuations of the cosmic matter inside
halos (σNL,IH), respectively PNL and PNL,IH , are represented on
Figures 11 and 12, as a function of masses MFoF , respectively
wavelengths k. Clearly, σNL dominates over σNL,IH on mass
scales corresponding to halo masses greater than 1013 M⊙, and
the fluctuations associated with cosmic matter inside the halos
account for only eighty percent of the fluctuations of total matter
field. This ratio varies with mass and the cosmological depen-
dence does not reduce to a constant factor of proportionality. We
then plot on Figure 13 the median halo prolaticity as a function
of σNL,IH for the ΛCDM, RPCDM and wCDM cosmological
models. The curves corresponding to the different cosmologi-
cal models are then fully superimposed very precisely, less than
3% of difference. The relationship between the median p of the
halos and σ−1

NL,IH become thus universal, it no longer depends on
the cosmological model. σNL,IH or, in other words, the nonlin-
ear power spectrum of matter inside the halos contains all the
cosmological dependence of the shape properties of the halos.

Figure 14 shows that this conclusion is also very well veri-
fied for b/a and T . We also plot the curves for E and c/a. This
time, a slight deviation appears at low masses, particularly for
the RPCDM model. We do not consider this to be significant,
as the low number of particles along the third axis of the inertia
tensor (c), precisely for low-mass halos, biases the measurement
of these shape parameters and artificially favors a higher ellip-
ticity. We discuss in Appendix B, the influence of the number of
particles per DM halo on the accuracy of the measure of shape
parameters.

We now wonder whether the universality in terms of σNL−IH
persists in terms of the nonlinear fluctuations calculated over the
entire cosmic field.

Figure 15 now shows the prolaticity of the halos in terms of
the nonlinear fluctuations σNL calculated on the whole cosmic
matter field for the ΛCDM, RPCDM, and wCDM cosmological
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Fig. 12. Relative contribution of the matter inside the halos to the vari-
ance of the total nonlinear power spectrum, σNL,IH/σNL. Manifestly, this
ratio heavily depends on cosmology. It is worth noticing that even for
low-mass halos, the matter inside the halos explains only 80 percent of
the variance. In the inner panel, the corresponding ratio for the power
spectra.

Fig. 13. Median prolaticity as a function of logσNL,IH(M)−1. The curves
corresponding to the different dark energy models superpose, which
means that all the cosmological information contained in (median) halo
shape exactly corresponds to that carried by the nonlinear power spec-
trum PNL,IH .

models. The different curves are again fully superimposed. The
results are similar for the other shape parameters: Figure 16
shows that their median values also do not vary with cosmology
in terms of σNL.

Since the prolaticity p[σNL,IH] and p[σNL] in terms ofσNL,IH
andσNL respectively are both independent of cosmology, there is
necessarily a cosmology-independent correspondence between
the nonlinear fluctuations of matter in halos, σNL,IH and the
nonlinear fluctuations of all cosmic matter σNL.

We plot in Figure 17, in the mass domain M ∈ [2 ·1012, 1014],
the nonlinear fluctuations of the total cosmic matter field as a

function of the nonlinear fluctuations of the interior matter field
of the halos. We again clearly observe that the three curves coin-
cide, which confirms the existence of a cosmology-independent
relationship between σNL,IH and σNL. We also note that the
correspondence is very well approximated by a power law.

A similar comparison is presented in the internal panel of
Figure 17 for PNL and PNL,IH . Here again, there is a universal
relationship between these two quantities as long as PNL,IH <
102, which corresponds to k ≥ 2 hMpc. The lower modes corre-
spond to a distance greater than 6 Mpc/h, they describe correla-
tions between the DM halos. On these last scales, a cosmological
dependence appears.

Up to now, the universal and cosmology-independent rela-
tion between the shape properties of DM halos and the nonlinear
fluctuations of the cosmic matter field has been highlighted for
the median quantities calculated on the set halos with a given
σNL. It would be worthwhile to know if the rest of the halo pro-
laticity distribution of DM halos can also be determined by the
nonlinear fluctuations. To answer this question, we calculated the
cumulative distribution function (CDF) of the halo prolaticity for
given σNL slices. We chose sufficiently large σNL intervals to be
sure of having enough halos and therefore sufficient statistics.
Figure 18 shows that, in each bin, the CDF of all cosmologi-
cal models coincides again. In terms of the rms of the nonlinear
power spectrum of the cosmic matter field, the whole cumula-
tive distribution function of p is therefore well independent of
cosmology. We also plot, for example, the seventh decile of the
prolaticity distribution as a function of σNL. The curves of this
seventh decile are again superimposed for all cosmologies, as we
can see in Figure 19.

4.4. Universality of the relations between the shape
parameters

Finally, Despali et al. (2014) also notes that there is a relation-
ship, independent of z, between the median ellipticity E and
the median prolaticity p of the DM halos they have studied.
We obtain a similar result but this time at redshift z = 0 fixed,
for different cosmological models. Indeed, Figure 20 presents
for the population of halos of our three cosmological models at
z = 0, the median p in each bin of E (resp. T ), the relations
again obtained do not depend on the cosmological model. How-
ever, the results of the previous section now easily explain such
a result. The median prolaticity and median ellipticity (respec-
tively the triaxiality T ) of our halo populations are, expressed
in terms of σNL, invariant functions according to the cosmol-
ogy, and these functions are strictly monotonic and therefore
bijective, necessarily implies that there is a universal relation
between prolaticity and ellipticity (respectively triaxiality) as
observed in Figure 20. Formally, this can be rewritten as follows:
if f and g are the median functions of prolaticity and elliptic-
ity (respectively triaxiality) in terms of σNL, then the universal
relation of prolaticity as a function of ellipticity (respectively tri-
axiality) is effectively universal p(E) = g( f −1(E)) (respectively
p(T ) = g( f −1(T ))).

5. Reconstruction of the nonlinear fluctuations
from the DM halos’ shape

5.1. Reconstruction of rms nonlinear fluctuations

We have shown that it is sufficient to reexpress the distribu-
tion of DM halo shape parameters in terms of nonlinear σNL
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Fig. 14. Dependence of the other halo shape parameters on cosmology and rms of the nonlinear fluctuations. Upper-left panel: median middle-
to-major axis ratio versus logσNL,IH(M)−1. Upper-right panel: median triaxiality versus logσNL,IH(M)−1. Lower-left panel: median minor-to-major
axis ratio versus logσNL,IH(M)−1. Lower-right panel: median ellipticity versus logσNL,IH(M)−1.

Fig. 15. Median prolaticity as a function of logσ−1
NL. The curves corre-

sponding to the different cosmological models superpose, as they did
when binning in logσ−1

NL,IH . This suggests the existence of a cosmo-
logical independent mapping between variances of total and in-halo
nonlinear power spectra.

fluctuations in the cosmic matter field to remove any cosmolog-
ical dependence. Based on this invariance and the dependence
of the distribution of DM halo shape parameters on their mass,
which can otherwise be measured, we will now reconstruct the
nonlinear fluctuations of the cosmic matter field in which these
DM halos formed.

From the masses and prolaticity (or any other shape param-
eter) of a set of DM halos, we deduce the median prolaticity in
mass bins of these halos as it has been done in Figures 8 and 9.
As the relationship between median prolaticity and σNL is uni-
versal, i.e. cosmologically invariant, we deduce σNL(M) from
a simple inversion of the latter relationship, after reexpressing
prolaticity in terms of mass as measured previously. In other
words, from the universal relation p(σNL) we deduce σNL(p),
we then reexpress this relation in terms of mass, using the spe-
cific relation of each cosmological model, which was measured
previously p(M) and we thus deduce σNL(p(M)) ≡ σNL(M).

We have applied this procedure to our sets of DM halos. In
practice, the universal curve p(σNL) is chosen by averaging the
three almost indistinguishable Figure 13 curves. From measur-
ing prolaticity as a function of mass for all halos of a particular
cosmological model, we deduce σNL(M) for that model. We
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Fig. 16. Dependence of the other DM halo shape parameters on the nonlinear fluctuations of the cosmic matter field inside the halos for the
three cosmological models. Upper-left panel: median middle-to-major axis ratio versus logσNL(M)−1. Upper-right panel: Median triaxiality versus
logσNL(M)−1. Lower-left panel: median minor-to-major axis ratio versus logσNL(M)−1. Lower-right panel: median ellipticity versus logσNL(M)−1.

repeat this procedure for our three cosmological models, and the
results are given in Figure 21. The dotted lines correspond to the
expected σNL(M) deduced from the nonlinear power spectrum
computed on the CIC density field at z = 0. The correspondence
between the expected mass dependence and the mass depen-
dence of σNL deduced from measurements of the shape of the
halos (contiguous lines) is very satisfactory.

5.2. Reconstruction of nonlinear power spectrum

We now deduce the nonlinear power spectrum of the cosmic
matter field from the previous reconstruction ofσNL(M). Assum-
ing a Gaussian window as the filter for the cosmic matter field,
σNL(M) is then defined as follows

2π2σ2
NL(R) =

∫ +∞

0
k2PNL(k) exp

(
−

R2k2

5

)
dk. (3)

We now apply the change of variable

f (x) = 2π2σ2
NL(
√

5x), y = k2 and g(y) =
√
y

2
PNL(

√
y).

As a result, f is then the Laplace transform of g:

f (x) =
∫ +∞

0
g(y) exp(−xy)dy ≡ L[g](x). (4)

By supposing σNL(M) as a power law in terms of M, i.e.
σNL(M) = 10αMβ (which is a very good approximation as it can
be observed in Figures 1 and 21), we obtain

f (x) = 2π2 · 102v5uxu, (5)

where u = 3β < 0, v = α + β log10(vol) and vol = 4π
3 ρcΩm.

The parameters α and β are estimated from the σNL that
we had reconstructed solely from the data, as presented in
Section 5.1 (Figure 21). These parameters are listed in Table 3.
We deduce

g(y) = L−1[ f ](y)
= 2π2 · 102v5uL−1[x 7→ xu](y)

= 2π2 · 102v5u ·
y−1−u

Γ(−u)
,

and finally, we get,

PNL(
√
y) = 4π2102v5u y

−u−3/2

Γ(−u)
, (6)
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Fig. 17. Mapping between variances of total and in-halo nonlin-
ear power spectra. For the mass scales probed by the simula-
tion, M ∈ [2.3 · 1012, 1014]M⊙/h, it consists in the scatter plots
{(logσ−1

NL,IH(M), logσ−1
NL(M))} for each cosmology. Those superpose,

meaning that σNL is a single-valued universal function of σNL,IH . This
function is manifestly a power law.

Fig. 18. Dependence of prolaticity distribution on cosmology and
logσ−1

NL. We define four bins of logσ−1
NL and then compute the cumu-

lative distribution function of prolaticity, in each bin. The curves
correspond to three cosmological models superposes, not only for
F = 0.5 (median prolaticity) but all along the distribution (between the
first and ninth decile). Hence, one can say that the whole prolaticity
distribution is related to the nonlinear fluctuations in a non-cosmology-
dependent way.

Fig. 19. Seventh decile prolaticity as a function of logσNL(M)−1. The
curves corresponding to the different dark energy models superpose,
meaning the universality is not only verified for median prolaticity but
for the whole of prolaticity distribution.

Table 3. α and β power law parameters (see text) modeling the rms
nonlinear fluctuations σNL of the Figure 21.

Cosmology α β n bn

ΛCDM 4.39818 −0.31243 −1.12541 361.332
RPCDM 4.05868 −0.29685 −1.21889 179.451
wCDM 4.50881 −0.31787 −1.09276 444.412

Notes. The parameters n and bn are calculated from Section 5.2 by
supposing a common value Ωm = 0.25 for all cosmological models.

or,

PNL(k) =
(2π · 10v)2

5−uΓ(−u)
k−2u−3 ≡ bnkn, (7)

with

n = −6β − 3 and bn =
4α+1π252α+3β

(
4π
3 ρcΩm

)2β

Γ(−3β)
. (8)

The nonlinear power spectrum PNL is obviously a power law in
terms of modes k. The power law exponent, n, is unchanged
whatever the window shape as the filter for the cosmic matter
field. n and bn are specific to each cosmological model. n is
deduced only from data, bn is deduced from data and from some
prior on Ωm. n and bn are presented in Table 3.

The comparison between the reconstructed power spectrum
of the cosmic matter field deduced from the shape of DM halos
(solid lines) and the power spectrum deduced directly from
the cosmic matter field of numerical simulations (dotted lines)
are presented in Figure 22 for the three cosmological models.
The thickness of the solid line reflects an imprecision of 5%
on the true value of the density parameter Ωm assumed from
independent measurements. The power spectrum on the scale
corresponding to DM halos is precisely reconstructed for the
three cosmological models.

5.3. Estimation of σ8 cosmological parameter

We now estimate σ8. First, we remark (Figure 1) that σL(M) =
σNL(M) for M > 1015 solar mass. Second, from the linear
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Fig. 20. Median prolaticity as a function of ellipticity (left) or triaxiality (right). The relationships between the various shape parameters do not
depend on the cosmological model. It is a direct consequence of the fact that there exists a variable (logσ−1

NL) to which median shape parameters
are universally related (see main text).

power spectra obtained by using CAMB software (Lewis &
Challinor 2011) for cosmological models, where we considered
w0 ∈ [−1.5,−01.75], wa ∈ [0, 0.5], 1 − ΩΛ ∈ [0.2, 0.3] and, the
parameters that are common to our three models unchanged,
Ωbh2 = 0.02258, ns = 0.96 and H0 = 72 km/s/Mpc, we deduce

σL(M8) = σL(M15)(−0.74086Ω2
m + 1.17774Ωm + 1.28147), (9)

where M8 =
4π83Ωmρc

3 . Such an adjustment (Figure 23) is a func-
tion of Ωm because the ratio σL(M8)/σL(M15) is a ratio of two
integrals of the transfer function, which itself depends on Ωm.
Around w ∼ −1 the dependence of the transfer functions is very
low (Ma et al. 1999). Such an adjustment holds to less than one
percent.

If one admits moreover, the extension to M = M15 of the
relationship σNL(M) = 10αMβ i.e.

σNL(M15) ≈ 10α
(

4π
3

153ρcΩm

)β
, (10)

we get

σ8[Ωm] = 10α
(

4π
3

153ρcΩm

)β
(−0.74086Ω2

m + 1.17774Ωm

+1.28147),

where σ8[Ωm] is thus very weakly dependent on Ωm varying
in the range (0.2–0.3) because β ≃ −0.3 and consequently we
can affirm that halo shapes are then a probe of σ8 but cannot
be used for constraining Ωm. We plot in Figure 24 the function
σ8[Ωm] estimated through median p[M] and universal p[σNL]
linear regressions.

By supposing a homogeneous prior of Ωm over the range
[0.2, 0.3], one gets an estimated σ8 = 10

∫ 0.3
0.2 σ8[Ωm]dΩm.

Compared to the “exact” σ8 (computed through direct linear
power spectrum measure), the result is extremely satisfying, see
Table 4.

6. Conclusions

In this article, we present a study concerning the fundamen-
tal relationship between the morphology of DM halos and the

Table 4. Estimation of σ8 parameter from mass and shape measures in
dark energy simulations (see main text).

Model ΛCDM RPCDM wCDM

Exact σGauss
8 0.83 0.68 0.88

Estimated σGauss
8 0.79 0.62 0.85

Notes. The exact value, taken from direct integration of the linear power
spectrum is also reported for comparison.

cosmological models in which they formed, using data from
the dark energy universe simulations of three different realistic
dark energy models. The cosmological models of the DEUS
simulations are a flat ΛCDM model, a quintessence model with
Ratra-Peebles potential (RPCDM) or equivalently to a constant
equation of state w = −0.8, and a phantom dark energy model
with w = −1.2 (wCDM).

We first present a method for evaluating the shape of DM
halos detected in numerical simulations, which corrects for the
effects due to the presence of numerical resolution-dependent
substructures and adopts an isodensity measure to characterize
the shape of DM halos, thus extending its applicability to other
methods of detecting DM halos than the FoF algorithm. As long
as the edge of the detected halos does not intersect the isoden-
sity under consideration (in practice δ = 200), any algorithm is
suitable. Using such a robust method, we have shown that the
shape of the halos is strongly influenced by the underlying cos-
mology. Halos tend to be more oblate and spherical in high σ8
models, i.e. for a more structured cosmic matter field with more
collapsed halos.

While it is true that the linear power spectrum, through σ8,
basically controls the asphericity of the halos, we have shown
that it is possible to completely reduce the cosmological depen-
dence of the distribution of the shape of the halos by taking
into account the nonlinear dynamics that led to their forma-
tion. Indeed, the distributions of the prolaticity, triaxiality, and
ellipticity of DM halos at a given level of nonlinear fluctua-
tions in the cosmic matter field are perfectly independent of
cosmology. Thus, while these shape parameters are cosmology-
dependent when considered as a function of mass, they are
cosmology-independent when considered as a function of the
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Fig. 21. Reconstruction of nonlinear fluctuations in the rms of the cos-
mic matter field. The solid curves represent logσ−1

NL as a function of M
and are reconstructed from measurements of median prolaticity deduced
from the shape of the halos (as a function of the halo mass) and from
the universal relations between median prolaticity and logσ−1

NL. The
agreement with the expected nonlinear fluctuations (dotted lines) of the
cosmic matter field derived from simulations and calculated with Power-
grid at z = 0 is excellent. We have also plotted (dashed lines) logσ−1

L (M)
for comparison: the shape measurements undoubtedly give information
about the nonlinear fluctuations of the cosmic matter champ that are
distinct from the linear fluctuations on the scale of the DM halo.

variance of the power spectrum of the cosmic matter field,
smoothed at the scale of the halos. This reflects the central role
of nonlinear dynamics in the evolution of the sphericity of DM
halos. In fact, the higher the variance of nonlinear fluctuations
in the cosmic matter field, the more structured the Universe and

the more collapsed the halos that have formed. Since Newtonian
iso-potentials are systematically more spherical than the iso-
densities of the tri-axial halos that form, the halos become more
spherical as they collapse. The resulting cosmological invariance
relation is not subject to the selection of relaxed halos. We have
also shown that this universality result persists if we substitute
the variance of the nonlinear fluctuations of the cosmic matter
field contained only in the halos for the variance of the non-
linear fluctuations of the total cosmic field. This then leads to
a correspondence between these two measures of variance and
the two associated power spectra, again independent of cosmol-
ogy, which disappears, however, at the scales corresponding to
the distribution of the DM halos between them, which again
becomes dependent on cosmology.

We then show that the distribution of the shape parameters
of the DM halos according to their mass is sufficient to recon-
struct the nonlinear power spectrum of the cosmic matter field in
which these halos formed. The excellent agreement between the
reconstructed power spectrum and the nonlinear power spectrum
measured directly in the numerical simulations demonstrates the
robustness of the invariance on the shape of the halos that have
been highlighted. We also find, with a good approximation, the
value of the cosmological parameter σ8 of the cosmological
model in which the cosmic matter field evolved and the halos
formed.

The results presented in this article have therefore high-
lighted the importance of analyzing the shape of DM halos
as a powerful tool for probing the nonlinear dynamics of the
cosmic matter field. They have shown the central role of non-
linear dynamics in the increase in the sphericity of DM halos
during their formation. They also open up prospects for future
developments.

It is of interest to determine whether this cosmological
invariance persists within the framework of modified gravity
models, which are alternatives to Newton’s and Einstein’s the-
ory of gravity. A generalization or, conversely, a break in this
invariance could reveal new aspects of it, thereby enriching our
understanding of the fundamental laws that govern the universe.
This question will be examined in greater detail in a forthcom-
ing paper (Koskas & Alimi, in prep.). On the other hand, a more
original nature of DM, which would imply a different formation
process of cosmic structures on the scale of DM halos, could also
constitute fertile ground for testing the robustness and scope of
the cosmological invariance demonstrated for the wCDM models
tested in this article. It is therefore pertinent to enquire whether
the universality of invariance, or conversely its breakdown in
fuzzy DM models, may provide insights into the intrinsic nature
of DM and the processes of cosmic structure formation in this
context. In addition, it would also be essential to consider the
influence of the presence of baryons, more particularly in lower-
mass galactic structures where the complex interaction between
DM and baryonic matter and its impact on the morphology of
cosmic structures could reveal unexplored aspects of a possible
cosmological invariance.

Recent works (Schneider et al. 2019) tend to show that the
power spectrum is sensitive to baryonic feedback (for certain
feedback models only), including for scales k ∼ 0.1Mpc/h. But
as long as the presence of baryons does not strongly modify the
isotropization of the collapse of cosmic matter, it is possible that
this presence should not modify the universality result estab-
lished in our work. Either, as shown by other work (Chua et al.
2022), because the baryonic feedback modifies the shape of the
halos in a way equivalent to the impact that these baryons induce
on the power spectrum of cosmic matter, or because the presence
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Fig. 22. Reconstruction of nonlinear power spectrum. For each model, we reconstruct PNL(k) (solid lines) from the estimation of σNL(M) deduced
from shape measures of DM halos at z = 0. The thickness of the solid line reflects an imprecision of 5% on the true value of the density parameter
Ωm assumed from independent measurements. The expected nonlinear power spectrum and linear power spectrum deduced from the cosmic matter
field of numerical simulation are respectively in dotted line, and dashed line. The agreement between the nonlinear power spectrum and the
reconstructed power spectrum is excellent.

Fig. 23. σL(R = 8Mpc/h)/σL(R = 15Mpc/h) for various Ωm, from
CAMB. Only Ωm was varied, the other cosmological parameters
ns,Ωb... are taken identical to WMAP7 constraints, see Table 1. The
result is almost insensitive to DE parameters (w0, wa).

Fig. 24. Estimation of the linear cosmological parameter σ8 from
prolaticity measures, assuming different values of Ωm in the range
[0.2, 0.3].

of the baryons does not sufficiently modify the isotropization
of the collapse and therefore leaves the power spectrum and the
shape of the halos almost unchanged. The relationship between
shape and power spectrum then remains independent of (non-
baryonic) cosmological parameters, but the question remains
effectively open for halos with masses less than 1012M⊙.

To sum up, this article not only charts a new course in our
understanding of DM and its cosmic dynamics, but it also lays
the foundations for a profoundly rewarding multidisciplinary
exploration of the universe. The prospects offered by the exten-
sion of our study to alternative cosmological models and the
DM-baryon interaction promise exciting advances in our quest
to understand the universe. It is an invitation to push back the
frontiers of cosmology, embrace complexity, and boldly pursue
our exploration of the mysteries of cosmic space.

In terms of prospects, it is also crucial to develop robust
methodologies for testing this cosmological invariance on obser-
vational data. The difficulty lies in accurately measuring the
shape of galaxy clusters and other cosmic structures, as well as
their DM halos. In this respect, weak gravitational lensing tech-
niques probably offer a promising way forward. By analyzing
the distortions undergone by the light from background galax-
ies, weak gravitational lensing can reveal the mass distribution
of foreground structures such as the DM halos of galaxy clus-
ters. This method therefore provides an indirect but powerful
means of mapping the distribution of the cosmic matter field
and thus testing the cosmological invariance highlighted in our
study. In addition, maps of the gas in galaxy clusters, obtained
by X-ray observations or by the Sunyaev-Zel’dovich effect, may
represent another promising approach. These methods could also
provide complementary information on the distribution of matter
in the universe, offering a unique perspective for understanding
the shape and distribution of DM halos and retesting a possible
fundamental cosmological invariance.

Finally, the study presented in this article opens up prospects
for observational and physical cosmology. It calls for an inter-
disciplinary theoretical and observational study to overcome the
technical challenges associated with measuring the shape of
halos and to fully exploit the potential of DM halo shape anal-
ysis as a powerful tool for probing some of the mysteries of
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the universe through the fundamental cosmological invariance
presented in this paper.
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Appendix A: Two-dimensional projections and
Redshift evolution

The cosmological invariance of the shape properties of the halos
as a function of nonlinear fluctuations in the cosmic field is
also found at all redshifts: From halos in the three cosmological
models wCDM, ΛCDM and RPCDM but this time at redshifts
z = 1, 0.4, 0 (see table A.1), we have calculated the median pro-
laticity according to the mass of the halos and according to
σNL(M, z). The prolaticities were calculated by considering all
the particles belonging to the halos as identified by FoF. Indeed,
the main purpose of the substructure removal procedure (and the
resulting selection criteria, section 3) was to remove the effects
of resolution on the shape of the halos. If we reason with fixed
resolution, these steps are no longer strictly required, and the
shape of the FoF halos without treatment is still a function of
σNL independent of the cosmology (although necessarily depen-
dent on the resolution).
The result is presented in figure A.1.

Once again, cosmological invariance is found. σNL cal-
culated at the adapted redshift contains all the cosmological
dependence of the shape properties of the DM halos.

The cosmological invariance of the shape properties of DM
halos as a function of nonlinear fluctuations in the cosmic matter
field is preserved in the two-dimensional projected halos. Indeed,
from the FoF halos of the numerical simulations, we have only
retained the projection of the particles making up these halos
in the (x, y) plane of the simulation (the choice of the plane
is not important and the result obtained is preserved whatever
the plane). From these projected positions, we then calculate
the associated two-dimensional inertia tensor. Let a2 ≥ b2 be
its eigenvalues, the square of the eccentricity is then given by
E2D

cc = 1 −
(

b
a

)2
. The median of E2D

cc according to the bins of
mass and the bins of logσ−1

NL are represented in figure A.2. The
invariance is again found, the measurements on all the simula-
tions, whatever the cosmological model, of this shape parameter
as a function of the (tridimensional) nonlinear fluctuations of the
cosmic field are very precisely superimposed. Such a cosmolog-
ical invariance allows, again, to reconstruct the power spectrum
of the 3D cosmic field.

Appendix B: Accuracy of shape parameters
measurements of low mass DM halos

There are two possible types of uncertainty in measuring the
shape parameters of DM halos. The first one is statistical. It
is determined by the number of halos from which the medians
of the shape parameters are calculated. This statistical error is
always negligible because there is always a very large number
of halos in each catalog and for each mass bin. A second uncer-
tainty in the measurement of the shape parameters is systematic.
It is fixed by the number of particles on which the inertia tensor
and therefore the shape parameters of each DM halo are calcu-
lated. This uncertainty is linked to the bounded or unbounded
nature of the shape parameters of the DM halos and dominates
at low masses, for which the number of particles making up the
halo is smaller. To estimate the magnitude of this uncertainty, we
calculated the shape parameters (ellipticity and prolaticity) and
the axis ratios (b/a and c/a) for a set of particles distributed uni-
formly in a sphere. In principle, the shape parameters for such a
distribution should be zero, and the axis ratios equal to 1.

We present in figures B.1, the measurements of these quan-
tities of a set of N particles varying between 100 and 10000

distributed in a sphere, for each value of N we make the aver-
age of 10000 independent measurements. Since ellipticity is
bounded below zero, it is always, at finite N, strictly greater than
zero. The average of E calculated over the 10,000 repetitions at
N is therefore systematically positive. For halos of 1000 particles
(corresponding, in our simulation, to halos of mass 2 · 1012), the
ellipticity is estimated in particular, on average, at 10−2 (instead
of 0), i.e. of the same order of magnitude as the deviation from
universality observed for these halos in the lower-right panel of
figures 14 and 16.

Prolaticity, on the other hand, is always less than 10−4 (pos-
itively or negatively), which is very low compared with the
typical prolaticity of halos of mass 1012M⊙/h observed in fig-
ures 13 and 15. This ensures that the prolaticity is insensitive
to this systematic bias. The same applies to triaxiality, which is
of course bounded in the segment [0,1], but whose typical val-
ues for halos of any mass are very far from the values of these
bounds and which we have not reproduced here to lighten this
appendix. The values of b/a and c/a ratio remain strictly below
one.

The shape measurements for low-mass halos close to the
sphere are thus biased toward an overestimation of ellipticity
and an underestimation of axis ratios. Such uncertainties are
sufficient for low-mass halos, made up of a smaller number of
particles, to correct the discrepancies observed in the ellipticity
and c/a ratio in figures 14 and 16, in order to remain in agree-
ment with the universal cosmological invariance highlighted in
this work.
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Table A.1: Number of halos at the various redshifts.

Cosmology Redshift halos ≥ 100 particles halos ≥ 1000 particles
ΛCDM z = 1.0 2,888,709 309,507
ΛCDM z = 0.4 3,056,944 399,708
ΛCDM z = 0.0 3,045,305 441,934

RPCDM z = 1.0 2,518,366 223,845
RPCDM z = 0.4 2,926,349 338,873
RPCDM z = 0.0 3,066,884 405,050
wCDM z = 1.0 2,980,683 329,397
wCDM z = 0.4 3,075,878 413,170
wCDM z = 0.0 3,015,407 446,818

Fig. A.1: Median prolaticity for all cosmologies and various redshifts, as a function of halo mass (left) and nonlinear variance (right). The variable
change M → logσ−1

NL compensates for the cosmological and redshift dependence, and all the curves coincide. Universality according to the cos-
mology implies universality in redshift.

Fig. A.2: Median squared eccentricity as a function of mass (left), linear variance (middle), and nonlinear variance (right). After projecting all
the halos onto the simulation (x, y) plane, we diagonalize the two-dimensional mass tensor of each projected halo. The median eccentricity is still
invariant according to cosmology when expressed in logσ−1

NL bins.
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Fig. B.1: Shape parameters (ellipticity and prolaticity) of a set of particles uniformly distributed in a sphere. These two parameters have to be
equal to 0. In practice, the ellipticity decreases with the number of particles, the prolaticity tends toward 0 when the number of particles tends
toward infinity. The axis ratios (b/a and c/a) tend toward 1 when the number of particles increases. The accuracy of the ellipticity measurement
is approximately 10−2, which is sufficient to correct the ellipticity measurement observed in the lower-right panel of figures 14 and 16 to reach
the value corresponding to cosmological universality. The accuracy of the measurement of the c/a ratio is sufficient to explain the discrepancy
observed in the lower-left panel of figures 14 and 16 and thus again reestablish cosmological universality.
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