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ABSTRACT

Context. Upcoming giant segmented mirror telescopes will use laser guide stars (LGS) for their adaptive optics (AO) systems. Two
options of wavefront sensors (WFSs) are the Shack–Hartmann wavefront sensor (SHWFS) and the pyramid wavefront sensor (PWFS).
Aims. In this paper, we compare the noise performance of the PWFS and the SHWFS. We aim to identify which of the two is best to
use in the context of a single or tomographic configuration.
Methods. To compute the noise performance, we extended a noise model developed for the PWFS to be used with the SHWFS. To do
this, we expressed the centroiding algorithm of the SHWFS as a matrix-vector multiplication, which allowed us to use the statistics of
noise to compute its propagation through the AO loop. We validated the noise model with end-to-end simulations for telescopes of 8
and 16 m in diameter.
Results. For an AO system with only one WFS, we found that given the same number of subapertures, the PWFS outperforms the
SHWFS. For a 40 m telescope, the limiting magnitude of the PWFS is around one magnitude higher than the SHWFS. When using
multiple WFS and a generalized least-squares estimator to combine the signal, our model predicts that in a tomographic system, the
SHWFS performs better than the PWFS (with a limiting magnitude that is higher by a 0.3 magnitude. When using sub-electron RON
detectors for the PWFS, the performance quality is almost identical for the two WFSs.
Conclusions. We find that when using a single WFS with LGS, PWFS is a better alternative than the SH. For a tomographic system,
both sensors would give roughly the same performance.
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1. Introduction
New giant segmented mirror telescopes (GSMTs) will use adap-
tive optics (AO) systems to deal with the degradation in angular
resolution given by atmospheric effects. With AO, it would
be possible to obtain angular resolutions close to the theoret-
ical limit, giving exciting opportunities to study small, distant
objects. With the help of coronagraphic instruments, it would
offer the capabilities of obtaining direct images of more exo-
planets than ever before, and be able to study their atmospheric
composition (Davies et al. 2016). As the GSMTs gather up to
ten times more light than their predecessors, they will allow us
to study fainter objects, unlocking new insights into the early
universe and its formation (Gilmozzi & Spyromilio 2007).

The AO systems require the use of a guide object. The
GSMTs will use laser guide stars (LGS; Davies et al. 2016;
Thatte et al. 2016; Ciliegi et al. 2022) to compensate for the
lack of natural guide stars (NGSs) that are bright enough to have
good sky coverage (Primmerman et al. 1991). These LGS are
generated by exciting sodium atoms present on a layer around
90 km above sea level (Foy & Labeyrie 1985). This layer is
around 20 km thick and has an evolving sodium density profile
(Pfrommer & Hickson 2014). To generate the LGS, a sodium
laser is used. For this, dedicated laser launch telescopes are
mounted at the side of the telescope that shoots beams of light
calibrated at 589 nm. Due to beam divergence and atmospheric
⋆ Corresponding author; francisco.oyarzun@lam.fr

distortions, the beam has a width of around 1 arcsec when going
through the sodium layer. Due to this width, and the thickness
of the layer, the LGS has a cylinder shape on the sky, which
generates a 3D focal volume after the telescope.

When using a Shack–Hartmann wavefront sensor (SHWFS),
each subaperture observes the LGS from a different perspective.
The subapertures closest to the laser launch telescope observe an
object whose size is limited by the width of the laser beam, and
the subapertures further away see an elongated shape, as they
see this cylinder from the side. For a 40 m telescope, the geom-
etry implies that the elongation on the furthest subaperture can
reach up to 20 arcsec. The measurements of the SHWFS rely
on finding the displacement of the images of the source each
subaperture generates. The extension of the source decreases the
precision of the measurements, as it increases the observed vari-
ance of the position of the source. The extension of the source
also means that large detectors have to be used to correctly
sample the spot. An 80 × 80 subaperture SHWFS for a 40 m
telescope would need a detector of around 1600 × 1600 pixels
(Fusco et al. 2019).

The pyramid wavefront sensor (PWFS; Ragazzoni 1996)
showed an interesting alternative to the SHWFS. It is from
the family of the Fourier Filtering Wavefront Sensor (FFWFS),
which uses the camera on the pupil plane. For this reason, an
equivalent 80 × 80 subaperture PWFS would need a detector
no bigger than 240 × 240 pixels. The PWFS also has a higher
sensitivity than the SHWFS when using an NGS in closed loop
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operation; however, as we showed in Oyarzún et al. (2024), the
extension of the LGS (both due to the width of the laser beam
and the thickness of the sodium layer) lowered the sensitivity to
a point where the performance of the AO loop was significantly
degraded. This decrease in sensitivity comes from the fact that
the extension of the source acts similarly to modulation.

In this paper, using the end-to-end physical optics models
from OOMAO (Conan & Correia 2014), we compare the perfor-
mance with respect to noise of the SHWFS and the PWFS to
determine which one is the best when using LGS. To this end,
in Sect. 2, we extended a sensitivity formalism from the PWFS
to the SHWFS, to be able to compare the same metrics for both.
Then, in Sect. 3 we show end-to-end simulations to validate the
predictions of the noise model and then use it to predict the noise
propagation for 40 m telescopes. We then extended the analysis
to compute the noise propagation for laser tomography adaptive
optics (LTAO) systems with multiple WFSs.

2. Noise and sensitivity

2.1. Pyramid wavefront sensor

In this work, we use the reduced intensity approach presented in
Chambouleyron et al. (2023) to compute the signal of the PWFS
and the noise propagation. This reduced intensity is obtained by
normalizing the intensity I(ϕ) recorded in the detector given an
input phase ϕ, by the number of photons in a frame Nph, and
then subtracting a reference intensity, I0 =

I(ϕ=0)
Nph

, that has been
chosen to represent the intensity for a flat wavefront. Thus, the
reduced intensity is:

∆I(ϕ) =
I(ϕ)
Nph
− I0. (1)

To reconstruct the phase from a given WFS measurement
we use an interaction matrix D = [δ(ϕ1), . . . , δ(ϕN)], calibrated
using a push-pull procedure inputting orthogonal modes (KL
modes) in the phase space [ϕ1, . . . , ϕN],

ϕ′ = D†∆I(ϕ). (2)

As we record intensity information for given known phases,
we have to invert the interaction matrix to recover the phase from
the intensity measurements. For this, a pseudo-inverse approach
is used, such thatD† = (DtD)−1Dt.

Overall, PWFSs can operate with small, subelectron read-
out noise (RON) detectors thanks to the limited number of
pixel required. Nevertheless, to have the same conditions to
compare with the SHWFS, we use a RON value of ΣRON =
2 e−/pix/ f rame. To avoid confusion in this work, we denote
ΣRON as the standard deviation of the electronic noise of the
detector, measured in e−/pix/ f rame, and σ2

RON the phase vari-
ance introduced due to RON.

Following Chambouleyron et al. (2023), it is possible to
define the sensitivity to RON, s(ϕi), and to photon noise, sγ(ϕi),
for each corrected mode, ϕi, such that the total phase variance
introduced by noise, σ2

RON+γ, at each measurement is:

σ2
RON =

∑
N

Nsap Σ
2
RON

N2
ph s2(ϕi)

,

σ2
γ =

∑
N

1
Nph s2

γ(ϕi)
,

σ2
RON+γ = σ

2
RON + σ

2
γ,

(3)

with Nsap the number of subapertures. As a remark, the name
sensitivity to RON (or photon noise) can be misleading; thus,
sensitivity “against” RON (or photon noise) might be a better
name in this regard. For consistency with the work developed by
Chambouleyron et al. (2023), we use the former. For the control
loop, we use the same one described in Oyarzún et al. (2024);
thus, the noise propagated through the loop is:

σ̂2
RON+γ = δσ

2
RON+γ, (4)

with δ = 0.33. In this work, we use the .̂ symbol to denote the
noise is propagated via the loop.

2.2. Extending the sensitivity analysis to the SHWFS

Several works have derived theoretical formulas to predict the
centroiding variance due to read-out and photon noise for a
SHWFS for different centroiding algorithms (Rigaut & Gendron
1992; Rousset 1999; Thomas et al. 2006). Some have specifically
focused on the prediction when using a laser guide star (Robert
et al. 2010). In these papers, it is generally assumed that the
source is diffraction-limited or it has a Gaussian profile. For both
of these cases, analytical formulas have been derived considering
the statistics of the noise.

These formulas are useful to observe the impact of the dif-
ferent design options of the AO system, but actual spot shapes
might differ from the theoretical expectations. For example, in
a real subaperture, a Gaussian object would not necessarily pro-
duce a Gaussian spot, as the image would also be convolved by
the diffraction-limited spot. Elongated images of a laser guide
star pose substantial difficulties, as each subaperture has a differ-
ent image of the source. Also, LGS spots themselves might differ
from Gaussian spots, given the density profile of the sodium
layer.

With these issues in hand, we extended the sensitivity
analysis developed for Fourier filtering WFS, presented in
Chambouleyron et al. (2023), to the SHWFS. The signal from
the SHWFS will be processed using the center of gravity (CoG)
or the weighted CoG (WCoG, Nicolle et al. 2004) algorithm.
We are interested in obtaining the same noise formalism as with
the PWFS for the SHWFS, to be able to compare both using the
same framework. We go on to consider the following operation
to reconstruct the phase using SHWFS measurements:

ϕ′ + ξ = D†S H CoG(I(ϕ) + b(ϕ)), (5)

where ϕ′ is the phase estimation, ξ the error in the phase recon-
struction due to noise, DS H is the interaction matrix, CoG() is
the CoG algorithm, I(ϕ) the noiseless intensity pattern in the
detector, and b(ϕ) the intensity due to RON and photon noise. If
we assume that the proportion of light each subaperture receives
is constant, it is possible to build a matrix, M, that performs
the CoG computation for all subapertures simultaneously if we
normalize the intensity in the detector by the total number of
photons in the frame

CoG(I(ϕ) + b(ϕ)) = M
(

I(ϕ) + b(ϕ)
Nph

)
. (6)

Note that for WCoG we can construct the same matrix, but
take into account the weighting mask, which can be different
for each subaperture if needed. Also, when using WCoG, optical
gains are needed to ensure a unitary response for all subaper-
tures (Thomas et al. 2006). For this, we performed a calibration
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step where optical gains for the X and Y axis were computed for
each subaperture, as this value changes depending on the elonga-
tion of the source. With the M matrix calibrated, we can express
the phase reconstruction of the SHWFS as a series of matrix
multiplications:

ϕ + ξ = D†S H M
I(ϕ) + b(ϕ)

Nph
. (7)

If we define n(ϕ) = b(ϕ)/Nph and G† = D†S H M, the expres-
sion for the error in the phase reconstruction due to noise is

ξ = G† n(ϕ). (8)

As we arrive at the same equation as Eq. (8) in Chambouley-
ron et al. (2023), we can therefore follow the same steps to define
both RON and photon noise sensitivities. For a given mode ϕi,
the RON and photon noise sensitivities can be computed as:

s(ϕi) =

√
Nsap(

G†G† t)
i,i
, (9)

sγ(ϕi) =
1√(

G† diag(I0) G†t
)
i,i

, (10)

with Nsap as the number of subapertures and I0 =
I(ϕ=0)

Nph
as the

raw reference intensity of the detector of the SHWFS. Here, we
did not use the approximation G†G† t = (Gt G)†; therefore our
expressions are slightly different, but carry out the same mean-
ing. With the sensitivities, we can then use Eq. (3) to compute
the total residual phase varianceσ2

RON+γ, introduced by RON and
photon noise at each measurement.

It is important to remark that σ2
RON+γ corresponds to the

residual phase variance introduced at each measurement of the
SHWFS and not the centroiding error at each subaperture. Nev-
ertheless, with this formalism, it is also possible to obtain the
centroiding variance at each subaperture. This is done by doing
the same statistical analysis, but without taking into account the
interaction matrix, so that it is possible to obtain the raw cen-
troids. We refer to Appendix A for the mathematical formalism
and examples comparing the theoretical formulas with the pre-
dictions using this model. This could be useful, for example, if
dealing with large simulations where the SHWFS model used is
geometrical (i.e., computing directly the signal from the gradi-
ent of the incoming phase) instead of diffractive. In this case,
the contributions of RON and photon noise to the centroiding
variance can be precomputed by using a single noiseless image
on the detector of the SHWFS.

To compare the sensitivity model with end-to-end simula-
tions, we simulated 200 realizations with no atmosphere (i.e. a
flat wavefront) of an open loop AO system with no controller
for an SH with LGS for a 16 m telescope. We used the WCoG
algorithm with a noiseless image of the detector as the weighting
mask. For these simulations, we set the standard deviation of the
read-out noise to be 2 e−/pix/ f rame. Figure 1 shows with blue
markers the result of the end-to-end simulations and with solid
lines the expected residual variances predicted using the sensi-
tivity model, where we found a good agreement between them. It
is possible to observe that for low magnitudes the dominant term
is photon noise (in green) and that at lower photon counts RON is
the limiting factor (in red). We also repeated this for the regular
CoG algorithm and found good agreement between end-to-end
simulations and the predictions from the model.

Fig. 1. Evolution with respect to the magnitude of the guide star of the
residual phase due to noise in open loop for a SHWFS with LGS for a
16 m telescope. The solid lines correspond to the residual phase vari-
ance due to RON (red line), photon noise (green line), and the sum of
both (blue line), as predicted by the model. The markers correspond to
the mean of 200 end-to-end iterations, with the errorbar the standard
deviation of the residual variance. For reference, at 1 kHz and magni-
tude 10, Nph = 1.8 × 105 photons on the full pupil.

2.3. Comparing the sensitivities of both WFSs

A previous work by Plantet et al. (2015) explored the possibility
of comparing both WFS with the same formalism, by using the
Fisher information matrix. In it, the authors develop the relation-
ship between the Fisher coefficients and the noise propagation
coefficients, making it possible to compare different wavefront
sensors with the same metric. The main difference with this work
is that for the SHWFS, they use the centroids as signal and, for
the centroiding variances, they computed the theoretical values
given the desired centroiding algorithm and the shape of the spot.
In this work, we use as signal the raw image from the SHWFS;
therefore, we are not limited to the spot shapes the theoretical
formulas have closed solutions for. With our formalism, the cen-
troiding variance is a direct result (refer to Appendix A.7) that
is computed in parallel for all subapertures simultaneously. As
we do not make any assumptions on the shape of the source, the
sensitivity approach presented here is a more general formalism.

To compute these sensitivities we need access to the inter-
action matrix. For the PWFS, we used the same approach as in
Oyarzún et al. (2024), where we computed the interaction matrix
for the LGS by updating the optical gains of an interaction matrix
built using a point source. By doing this the interaction matrix
for the 40 m telescope with 81 × 81 actuators can be computed
in a couple of hours.

The interaction matrix for the SHWFS for a 40 m telescope
with 81 × 81 actuators can also take a long time to compute.
For this reason, we took a shortcut on how to compute it. We
assume that each actuator in the deformable mirror behaves iden-
tically, and the SHWFS has the same response to each actuator,
just shifted in position. We can simulate a single push-pull oper-
ation on the central actuator, and then shift the signal of the
WFS, according the position of each actuator. Once we have
this, we can gain access to the zonal interaction matrix. To get
a modal interaction matrix, we can use a zonal-to-modal matrix,
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Fig. 2. Sensitivity to RON (top plot) and photon noise (bottom plot)
for an SHWFS (solid line) and a PWFS (dashed line), both using an
LGS. The sensitivity was computed for telescopes of 8, 16, and 40 m in
diameter (red, green, and blue, respectively).

such that

Dmodal = DzonalM2C. (11)

The M2C matrix can be obtained by computing the modes of
the modal basis using the influence functions of the deformable
mirror. Partially illuminated subapertures may not be perfectly
modeled in this approach, but they still manage to recover the
wavefront accurately. With this approach, computing the modal
interaction matrix can take minutes instead of weeks. Once we
have the modal interaction matrix, we can compute the sensitivi-
ties to RON and photon noise for WCoG and compare them with
the ones for the PWFS. This is presented in Fig. 2, where we
compute the sensitivities for telescopes of 8, 16, and 40 m (red,
green and blue curves, respectively). For both WFSs, we used
the same number of subapertures, with a constant projected size
of 50 cm. This means that for the 8 m telescope, we used 16 × 16
subapertures, while for the 40 m, we used 80 × 80 subapertures.
The pixel size on the SHWFS was 0.5 arcsec (Nyquist sampling
as the non-elongated axis has 1 arcsec of FWHM). The weight-
ing mask of each subaperture had a specific weighting function
that corresponded to the convolution of a noiseless image from
the detector with a Gaussian with 1 arcsec of FWHM. This gives

a good balance of retaining sensitivity and giving robustness to
the system.

Regarding the sensitivity to RON (top figure), it is possible
to observe that both the SHWFS (solid lines) and the PWFS
(dashed lines) are more sensitive to higher order modes than to
lower-order ones. This is because both sensors are acting as gra-
dient sensors: the SH is, by nature, a gradient sensor, and the
PWFS (due to the size of the LGS) is acting in the gradient-
sensing regime (Vérinaud 2004). The first three modes used for
this work are tip, tilt, and focus, which allow us to filter them
out in the closed loop that is then to be corrected by an exter-
nal loop. The rest of the modes correspond to KL modes built
to be orthogonal to these three Zernike modes. When compar-
ing the sensitivity to RON of the SH and the PWFS, the latter is
consistently more sensitive, being (on average) three times more
sensitive for the 8 m telescope and up to five times more for the
40 m one. The sensitivity itself is not the whole picture, as the
detectors needed for the PWFS are small (only 240 × 240 pixels
for an 80 × 80 subaperture PWFS), it is possible to use subelec-
tron RON detectors (Gach et al. 2011). This means that the value
for Σ2

RON (and therefore σ2
RON) in Eq. (3) would be much lower

than for the SH.
Looking at the evolution of the sensitivity to RON with

respect to the size of the telescope, it is possible to observe
that both the SH and the PWFS have lower sensitivities as the
diameter of the telescope increases. This can happen for at least
two reasons: (1) for both WFS, to maintain the same equiva-
lent diameter of the subapertures, bigger telescopes need more
subapertures, which use more pixels. Increasing the number of
pixels in the detector then decreases the sensitivity, as there is an
increase in noisy measurements; (2) the elongation of the LGS
increases with the diameter of the telescope. For the SH, this
means that the field of view of each subaperture has to increase,
which increases the impact of noise on the measurement. For the
PWFS, the elongation acts in a similar way to modulation, which
reduces the sensitivity.

The sensitivity to photon noise (bottom plot in Fig. 3) is
almost the same for both the SH and the PWFS for the 8 m tele-
scope, and as the diameter increases the difference grows, as for
the 16 m telescope the PWFS is around 1.2 times more sensitive
and for the 40 m approximately 1.7 times more sensitive. For
the 8 m telescope, the main structure of the laser beam that is
limiting the sensitivity for both the PWFS and the SHWFS is the
width of around 1 arcsec, as the largest elongation is only around
2–3 arcsec. As the telescope increases in diameter, the elongation
of the spot of the laser is more pronounced in the SHWFS than
in the PWFS given the depth of field: the subapertures of the
SHWFS have the depth of field of a 50 cm diameter telescope,
which is able to have almost all of the image of the LGS in focus.
On the other hand, the PWFS has the depth of field of the full
aperture, meaning that the image of the LGS quickly gets defo-
cused, leaving the central focused spot as the limiting structure.
For the 40 m telescope, this is around 2.5 arcsec (Oyarzún et al.
2024).

The use of the WCoG algorithm is a trade-off between RON
and photon noise, as increasing the size of the weighting mask
reduces the propagation of photon noise, but it increases that of
the RON (Nicolle et al. 2004). If the RON value of a detector is
known, it is possible to use this sensitivity analysis to optimize
the size of the weighing mask. For example, if using a detector
with low RON, it could be useful to use a weighing mask sub-
stantially larger than the noiseless spots. Not only it would help
reduce the overall noise propagation, but also it could increase
the linearity of the sensor.
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Fig. 3. Comparison of the sensitivities of a PWFS (red) and a SHWFS
(blue) with 80 × 80 subapertures, and a single SHWFS designed for
HARMONI (green).

By observing both sensitivities, the advantage of the PWFS
is mainly in the higher sensitivity to RON, as both have simi-
lar sensitivities to photon noise. The higher sensitivity to RON
allows the PWFS to use more subapertures to measure the wave-
front to mitigate aliasing, without sacrificing performance (as it
would be limited by photon noise).

In the case of the High Angular Resolution Monolithic Opti-
cal and Near-infrared Integral field spectrograph (HARMONI;
Thatte et al. 2016), technological constraints forced the design-
ers to lower the amount of subapertures from 80 × 80 to 68 ×
68, and reduce the sampling from 0.5 arcsec/pix (i.e., Nyquist
assuming a 1 arcsec spot) to 1.15 arcsec/pix. Cropping of the
most elongated laser spots could also have an impact on the noise
propagated, but it cannot be represented by the model; therefore
we have not taken it into account in the present study. We used
the sensitivity method to compare how noise behaves in a single
SHWFS of HARMONI against an 80 × 80 subaperture SHWFS
with 0.5 arcsec pixels. Further analyses are presented in Sect. 3.2
for the LTAO system; however, as a first step, we discuss the
effects on a single WFS in a single conjugated adaptive optics
(SCAO) configuration. Figure 3 shows the sensitivities to RON
and photon noise for a 40 m telescope using LGS with an 80 ×
80 subaperture PWFS, an 80 × 80 subaperture SHWFS, and a
single 68 × 68 SHWFS designed for HARMONI in the SCAO

configuration. As expected, the one designed for HARMONI has
a higher sensitivity to RON, as it uses fewer subapertures and
fewer pixels to make its measurements. In contrast, it has a lower
sensitivity to photon noise. This could be due to the use of larger
pixels, therefore leading to undersampling, as well as subsequent
non-linearities and a loss in terms of sensitivity (Thomas et al.
2006).

3. Closed loop systems

3.1. End-to-end simulations

To observe the predictive capabilities of the sensitivity method,
we performed closed-loop simulations with 8 and 16 m tele-
scopes for both a SHWFS and a PWFS. We then compared the
results with those predicted by the model. The simulation param-
eters are found in Table 1. Here, we chose a static atmosphere,
such that the temporal errors due to wind did not affect the mea-
surement of the contribution of RON and photon noise to the
wavefront error. For the same reason, we chose the atmosphere
to have a single ground layer, such that the cone effect would not
affect the simulations, given that it is not correlated with noise.
The cone effect will have a significant impact on the performance
of the ELT, but to deal with this effect LTAO is planned to be
used, but tomographic reconstruction of the wavefront is out-
side the scope of this work. We used the same sodium density
profile for both WFS that was presented in Fig. 2 of Pfrommer
& Hickson (2014). We used a simple integrator in the feedback
path with two frames of delay for the correction and a loop gain
of 0.3. We also chose to include a simulation of a PWFS with an
NGS, modulated at 4λ/D, to have a comparison for the LGS. The
modulation radius was chosen to have a good trade-off between
sensitivity and dynamic range. As the LGS can’t measure global
tip or tilt and has difficulties measuring focus, a separate, noise-
less AO loop was used to correct for these modes. For the science
wavelength, we chose the same as the one used for the sensing,
as the difference between the performance curves and, therefore,
the comparison between the WFS is independent of wavelength.

One disadvantage that both WFSs would have in common
when using an LGS is the optical gain tracking (assuming a
WCoG for the SHWFS), as the evolving structure of the sodium
layer and changing seeing conditions will impact these val-
ues. Extra complexity both in software and hardware has to be
included to compute the optical gains in real time. As LGS
wavefront sensing is (mostly) blind to tip-tilt, a SHWFS sys-
tem might introduce a tip-tilt mirror to modulate the LGS spots
with a known displacement (Saddlemyer et al. 2004), such that
it would be possible to estimate the optical gains by taking
the ratio of the measured and known displacements. For the
PWFS, the introduction of a gain scheduling camera as pro-
posed in Chambouleyron et al. (2021) could allow for the online
estimation of the optical gains.

We tested several magnitudes for the guide stars and plot-
ted the Strehl ratio obtained with the closed loop for each case
in Fig. 4. For the residual phase due to fitting and aliasing, we
simulated 20 phase realizations of a noiseless PWFS with NGS
and averaged the variance of the residual phase. The low perfor-
mance is due to the low number of KL modes used to correct
the wavefront. The fitting error alone limits the performance to
around 20%, while the aliasing and reconstruction errors further
reduce it to the 10–15% range.

Regarding aliasing, it has been shown that when using an
NGS, the PWFS has lower residual phase variance due to alias-
ing than the SH (assuming the same number of subapertures),
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Table 1. Simulation parameters

Telescopes
Diameter 8.0, 16.0
Throughput 100 %
Central obstruction None

Natural guide star
Zenith angle 0o

Magnitudes 5–16
Zero point 8.96 × 109 photons/s/m2

Modulation 4 λ/D

Laser guide star
Launch geometry Side launch
Zenith angle 0◦
Magnitudes 5–14
Zero point 8.96 × 109 photons/s/m2

Number of samples 10 000
Sodium profile TopHatPeak

Atmosphere
r0 15 cm
L0 25 m
Layers 1
Altitudes 0 m
Wind speed 0 m/s

WFS
Order for 8 m telescope 16 × 16 subapertures
Order for 16 m telescope 32 × 32 subapertures
Frequency 1 KHz
λsens 589 nm

SHWFS specific parameters
Pixel scale 0.5 arcsec/pix
Subaperture FoV for
8 m telescope 5 arcsec

Subaperture FoV for
16 m telescope 10 arcsec

DM
Order for 8 m telescope 17 × 17 actuators

(200 KL modes)
Order for 16 m telescope 33 × 33 actuators

(700 KL modes)

AO loop
Delay 2 frames
Gain 0.3

Science
λsci 589 nm

given its flattening sensitivity curve (Vérinaud 2004). Neverthe-
less, for extended objects, the size of the guide star has the same
effect as modulation, which makes the PWFS operate as a gradi-
ent sensor. Therefore, we would expect to see a similar behavior
here as we would for the SH.

To obtain the curves shown in Fig. 4, we first had to obtain
the interaction matrices for each case. For the PWFS, we took

Fig. 4. Performance of the AO loop for a SHWFS (green curves) and
a PWFS (red curves) using LGS for an 8 (top) and 16 m telescopes
(bottom). A PWFS using NGS (blue curve) was added as a reference for
the performance.

the convolutional approach as in Oyarzún et al. (2024), where we
computed the interaction matrix for an NGS and then used a con-
volutional model (Fauvarque et al. 2019) to compute the optical
gains (Korkiakoski et al. 2008; Deo et al. 2018; Chambouleyron
et al. 2021) to optimize the interaction matrix for the LGS. With
the interaction matrix, we could directly compute the sensitiv-
ities to RON and photon noise. For the SH, we computed the
interaction matrix assuming that each actuator has the same
signal footprint in the detector, just shifted depending on the
position of the actuator. Then, we computed the optical gains
to ensure a unitary response across all subapertures and finally
build the matrix that performs the centroiding, which took the
optical gains into account. With the interaction matrix and the
centroiding matrix we could use Eqs. (9) and (10) to compute
the sensitivities to RON and photon noise, respectively.

Let us start analyzing only the theoretical performance
expectations, represented as the curves in the figures and not
the E2E results, represented as the markers. Figure 4 shows two
curves for each tested case: the performance limited only by
photon noise with a dashed curve and the performance limited
by both RON (2 e−/pix/frame) and photon noise as a solid line.
This distinction was made to understand which noise source is
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limiting the system. If the solid curve is close to the dashed, then
the system would mainly be photon noise limited. On the other
hand, if the solid curve deviates from the dashed, then the system
would be limited mainly by RON. It is important to keep in mind
that the evolution of noise propagated for RON and photon noise
is different. For RON, residual phase variance goes as N−2

ph and
for photon noise it goes as N−1

ph . This means that once the drop
in performance starts (the “knee” in the plot), the fall is much
steeper for RON than for photon noise.

Being limited by one or the other noise has different impli-
cations. If the system is limited by photon noise, it means that
it is possible to increase the number of pixels in the detector to
improve aliasing or linearity, without degrading the noise perfor-
mance; however, improving the detector technology would not
have a big impact on the noise propagated. On the other hand,
if the system is limited by RON, then improving the technology
(i.e., lowering the RON) would have a positive impact on the
performance.

Specifically, for the SH, if RON were dominating, then nar-
rower weighting functions could be used at each subperture to
increase the performance. On the other hand, if it was limited by
photon noise (e.g., using a detector with less RON), increasing
the size of the weighting mask could improve the performance
and linearity.

For the 8 m telescope, the PWFS with NGS (represented with
the color blue) has the best noise performance. It can operate
without a significant loss in performance up to magnitude 12. In
this scenario, the solid line deviates from the dashed, meaning
that RON is the limiting factor. In a real scenario, this would
not be the case, because the low number of pixels allows for the
use of subelectron RON detectors. Therefore, by improving the
technology the performance can be similar to the dashed blue
curve.

For the LGS, both the PWFS (in red) and the SH (in green)
have a similar performance with respect to photon noise, as both
dashed curves are nearly on top of each other. Nevertheless,
even though both have the same RON, the higher sensitivity to
RON of the PWFS makes it perform better than the SH. Using
a detector with lower RON would not directly improve the noise
performance of the PWFS with LGS, but it would allow us to use
more pixels (and, thus, more subapertures) to better sample the
wavefront and help mitigate aliasing effects. The limiting source
of noise for the SH is not as straightforward as with the PWFS.
In this case, at high flux, the performance is limited by pho-
ton noise, as it is possible to observe that the beginning of the
drop in performance follows the dashed curve. Then, as the pho-
ton flux diminishes, RON, with its steeper decrease dominates.
This means that improving the technology of the detector would
not improve the limiting magnitude, it would just improve the
performance once it has already been affected by the return flux.

For the 16 m telescope, the performance of the PWFS with
NGS has almost the same evolution with magnitude as with the
8 m telescope. Having a bigger telescope gives a higher col-
lection of photons, which reduces the overall noise propagated.
Nevertheless, the bigger telescope needs more subapertures to
reach the same pitch as the smaller one. These two effects cancel
out each other, making the overall performance approximately
independent on the telescope size.

For the LGS, the expected performance of both the PWFS
and the SH are similar to that of the 8 m telescope, but the
curves are shifted to the left around 1 magnitude. Given the same
arguments as for the NGS, bigger telescopes gather more light,
but need more pixels and subapertures to maintain the same

Fig. 5. Expected performance of the AO loop for a SHWFS and a PWFS
using LGS for a 40 m telescope. A PWFS using NGS was added as a
reference for the performance.

pitch. On top of that, the elongation of the LGS is increased by
the size of the telescope: the larger the elongation, the lower the
sensitivity; therefore, this leads to a worse performance. Look-
ing only at the PWFS, we can observe that the solid curve is
almost the same as the dashed one; therefore, photon noise is
evidently the limiting factor. This means that increasing the num-
ber of pixels and therefore subapertures is a possible options to
help mitigate aliasing. For the SH, again the limiting magnitude
is given by photon noise, as the “knee” in the plot is the same
as the dashed curve and, later, RON starts to dominate at lower
photon fluxes.

Now observing the markers, for the PWFS with NGS it is
possible to observe a good agreement between the theoretical
expectations and the E2E simulations. The drop in performance
is around 0.3 magnitudes less for the E2E simulations than what
was expected with the model. This can be explained as the
sensitivity model does not take into account the non-linearities
of the PWFS, which are known to decrease the sensitivity
(Chambouleyron et al. 2020). For the extended objects, both
the PWFS and SH show good agreement between the E2E
simulations and the theoretical curves.

3.2. Prediction of the performance of the 40 m telescope

Having shown that the sensitivity model accurately predicts the
performance of the AO loop, we can now use it for the 40 m tele-
scope for both WFS. These correspond to 80 × 80 subapertures,
with an 81 × 81 deformable mirror with 5100 actuators. The sam-
pling of the SHWFS is 0.5 arcsec/pix with a field of view of
25 arcsec. A detector of this size and noise characteristics is not
available, but (as we show in Figure 3) we would expect a similar
performance as if using the detector designed for HARMONI.
The weighting mask used was a noiseless image of the detec-
tor, convolved with a 0.5 arcsec FWHM Gaussian for purposes
of robustness and linearity. Figure 5 shows the expected perfor-
mance for both the SHWFS and the PWFS for a 40 m telescope.
A yellow vertical stripe was included in the plot as a reference
for the expected return of the LGS.

Considering the chosen design parameters, the PWFS is pho-
ton noise limited, and the SH is mainly photon noise limited, but
RON has an impact at lower fluxes. The PWFS has a limiting
magnitude that is around one magnitude higher than the SH, and
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Table 2. Average variance of the signal coming from the SHWFS and PWFS for a 40 m telescope with six LGS using the generalized least squares
estimator.

Wavefront sensor Normalized average signal Normalized average signal
variance due to RON variance due to Photon noise

6 SH + 6 LGS 0.81 0.24
6 PWFS + 6 LGS 0.70 0.50

Notes. The variances are normalized by the variance obtained by using a 1-arcsec spot as a guide source.

the fact that it is photon noise limited means that increasing the
number of pixels could increase the performance with respect to
aliasing, without sacrificing performance with respect to noise.
Nevertheless, at the expected return fluxes for the LGS (mag-
nitudes of between 7 and 9), both the PWFS and the SH are not
only in a low-performance region, but small changes in the return
flux would also result in sizeable variations in performance. Con-
sidering the SH designed for HARMONI, as it has a higher sen-
sitivity to RON and a slightly lower sensitivity to photon noise
than the SH tested here (refer to Fig. 3), we expect it to behave
in a similar way to the well-sampled, 80 × 80 subaperture SH.

3.3. Expected noise performance in a tomographic
configuration for a 40 m telescope

In general, the use of LGS for wavefront sensing is not done
with a single guide source, but several of these are implemented
to, for example, use wide-field adaptive optics, or mitigate cone
effect. For this, laser tomography adaptive optics (LTAO) or
multi-conjugate adaptive optics (MCAO) systems are used.

In the following discussion, we estimate the noise perfor-
mance of an LTAO system. Tomographic reconstructors pose
substantial difficulties in estimating the propagation of noise;
therefore, we chose to use only a simplified version. We will
assume each WFS observes the same atmosphere and has uncor-
related RON and photon noise. This approach is not useful for the
tomographic reconstruction of the atmosphere, but it can give
insights into the expected performance with respect to noise.
Using LTAO also allows for the use of super-resolution (Oberti
et al. 2022), which could help mitigate aliasing. This will not be
taken into account for the discussion; therefore, the value of the
Strehl ratio at high fluxes is not representative of a full LTAO
reconstruction, however, the evolution with respect to noise is.

Let us assume an LTAO system with six LGS and six WFS.
For both wavefront sensors, each subaperture sees a different
perspective of the LGS, elongated and oriented given the posi-
tion of the subaperture in the pupil and the location of the laser
launch telescope. This implies that each subaperture will pro-
duce a measurement (centroiding for the SH and slopes for the
PWFS) with a variance that is dependent on its position in the
pupil. Similar to what has been done in Tallon et al. (2010)
and Béchet et al. (2012), in Appendix C we show that by using
a Generalized least square estimator (GLSE) to combine the
measurements at each subaperture produced by the LGSs, the
overall variance of the signal at each subaperture is better than
using a single WFS with a non-elongated 1-arcsec spot. Table 2
shows the average signal variances for both wavefront sensors
using 6 LGS, combining the signal using the GLSE. The vari-
ances are normalized by the signal variance of a non-elongated
1 arcsec spot. We used the results from the GLSE for the noise
propagation as an approximation of the multiple LGS system.

Figure 6 shows the expected performance of these approxi-
mated systems. The increase in performance of the SHWFS is

Fig. 6. Performance of the AO loop for the best case LTAO using PWFS
(in black) and SHWFS (in cyan). In red and green is the performance of
a single PWFS and SHWFS, respectively.

drastic, as the limiting magnitude of the best-case scenario (cyan
curve) is 4.4 magnitudes greater than for the single WFS case.
For the PWFS, the increase in performance is of 3.2 magnitudes
(black curve). By combining the measurements, the SHWFS
could be capable of outperforming the PWFS by 0.3 magni-
tudes, requiring about 25 % less photons to achieve the same
performance. Nevertheless, both WFS would be able to oper-
ate without any significant loss in performance at the expected
return fluxes of the LGS. As the SH is affected more by RON
than the PWFS, we increased the value and found that the PWFS
system (in a multiple WFS configuration) can perform better
than the SH system if RON is higher than 7 e−/pix/frame. How-
ever, as the pixel requirements of the PWFS are low, it can use a
sub-electron RON detector; in that case, the performances would
be almost identical (dashed black curve in Figure 6).

A pyramid-like WFS could be used with the geometry of
the LGS into consideration, as, for example, in the Ingot WFS
proposed by Ragazzoni et al. (2024). Since it follows the height
extension of the LGS, it could operate as if it were a regular
PWFS with a 1 arcsec spot. In this ideal scenario, the equivalent
6 Ingot + 6 LGS with the generalized least square estimator could
outperform the SH system by around one magnitude.

4. Conclusion

In this work, we compute the expected performance of the AO
loop for the SHWFS and the PWFS, using an analytical model.
To do so, we extended a sensitivity analysis developed for the
PWFS to the SHWFS by expressing the centroiding algorithm
as a matrix multiplication. This allowed us to use the same
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formalism for both wavefront sensors and also use the same
metrics for a fair comparison between the two.

We found that the main difference between the two wavefront
sensors is in the sensitivity to RON, where the PWFS has an
advantage. Sensitivity to photon noise is the same for both in an
8 m telescope and 1.7 times higher for the PWFS at 40 m.

As photon noise is evidently limiting the performance of the
PWFS, it could be possible to increase the number of subaper-
tures to mitigate aliasing. For the SHWFS, both RON and photon
noise are limiting its performance; therefore, it is not advisable
to increase the number of subapertures.

Approximating the noise propagation of the LTAO system
by using a generalized least-squares estimator, we found that the
multiple SH system has a limiting magnitude up to 4.4 mag-
nitudes higher than the single WFS system. For the PWFS, it
would increase the limiting magnitude by 3.2. In this scenario,
the SH system has a limiting magnitude 0.3 higher than the
PWFS system. If using a sub-electron RON detector for the
PWFS, both systems would perform almost identically. Never-
theless, if a WFS designed specifically for the LGS geometry
would be capable of achieving the performance of a PWFS with
a non-elongated 1 arcsec spot, it could outperform the SH sys-
tem by one magnitude. If the LTAO reconstruction were capable
of performing as well as the approximated model, either WFS
would display almost the same performance with respect to
noise.
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Appendix A: Analytical method of computing the
centroiding variance

With the matrix formalism to express the CoG algorithm, it is
possible to compute the expected centroiding variances given
RON and photon noise. We consider Eq. (7), but expressed to
compute the centroid X and the centroiding error Ξ as follows:

X + Ξ = M
I(ϕ) + b(ϕ)

Nph
, (A.1)

defining n(ϕ) = b(ϕ)/Nph we can express the centroding error
as

Ξ = M n(ϕ). (A.2)

With this we can now compute the covariance matrix of the
CoG:〈
ΞΞt

〉
= M

〈
n(ϕ)n(ϕ)t

〉
Mt, (A.3)

By using the statistics of the noise, we can compute the
centroiding variance due to RON and photon noise. For RON,
denoted as ΣRON to avoid confusion, we have that

〈
n(ϕ)n(ϕ)t

〉
=
Σ2

RON

N2
ph

I, (A.4)

with I the identity matrix. We can replace this in the cen-
troiding covariance matrix to obtain

〈
ΞΞt

〉
=
Σ2

RON

N2
ph

M Mt. (A.5)

The diagonal of the centroiding covariance matrix would
then correspond to the centroiding variance due to read-out
noise. For photon noise, we have that the statistics of it follow a
Poisson distribution given the light distribution on the detector.
For an NGS, the spot shape changes considerably in operation,
but for an LGS, its shape remains approximately constant. If we
consider I0 to be the noiseless raw image on the detector of the
SHWFS, normalized by the number of photons for the measure-
ment to be independent of the intensity, the statistics of the noise
is

〈
n(ϕ)n(ϕ)t

〉
=

diag(I0)
Nph

I, (A.6)

The centroiding covariance matrix for photon noise can then
be expressed as

〈
ΞΞt

〉
=

1
Nph

M diag(I0) Mt. (A.7)

When computing the theoretical expectations for the cen-
troiding variance, it is generally assumed that the source is
diffraction-limited or it has a Gaussian profile. For both of these
cases, analytical formulas have been derived considering the
statistics of photon noise. For a diffraction-limited spot, Thomas
et al. (2006) showed that the centroiding error due to photon

Fig. A.1. Centroiding error for CoG due to photon noise for a
diffraction-limited source with 100 photons per subaperture per frame.
The markers correspond to the E2E simulations, the green line to the
theoretical expectation and the blue line to the prediction using the
extended sensitivity model.

noise is dependent on the field of view (FoV) of the subapertures,
given by

σ2
γ ≈ 2

W
nph
, (A.8)

where W is the FoV of the subaperture expressed in λ/d
units, and nph is the number of photons per subaperture per
frame. The approximation becomes better for bigger FoV of sev-
eral λ/d. For a well-sampled Gaussian profile (i.e., over 2 pixels
per FWHM), with its FWHM sampled using NT pixels, and
Nsamp the number of pixels used to sample a diffraction-limited
spot, the formula for the centroiding error due to photon noise is

σ2
γ =

π2

2 ln 2
1

nph

(
NT

Nsamp

)2

. (A.9)

Figure A.1 shows the evolution of centroiding variance due
to photon noise for a diffraction-limited spot with varying FoV,
which is accurately predicted by both the theoretical and the
new model. The markers correspond to the centroiding vari-
ance simulation of 105 independent iterations, the solid red line
corresponds to the theoretical expectation using Eq. (A.8), con-
sidering 100 photons per subaperture and per frame, and the
yellow line corresponds to the new method corresponding to the
extension of the sensitivity analysis.

For the Gaussian spots, we set the FoV of the subaperture
at 3 arcsecs and then varied the FWHM of the spot and did the
same number of simulations as with the diffraction-limited case.
Figure A.2 shows the results from the E2E simulations, theory
and the new model, again with good agreement between them.
We intentionally set the FoV of the subaperture comparable to
the biggest FWHM tested, to emphasize the fact that the theoret-
ical formula assumes that the FoV is much bigger than the spot,
but in reality, this spot gets cropped, an effect that is not taken
into account by the theoretical formula, but is better predicted by
this new model.

Theoretical predictions of the centroiding variance cannot
reach much further than these two cases: there are no closed for-
mulas for when the light distribution is not one of these cases.
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Fig. A.2. Centroiding error for CoG due to photon noise for a Gaus-
sian source with 100 photons per subaperture per frame. The markers
correspond to the E2E simulations, the red line to the theoretical expec-
tation and the yellow line to the prediction using the extended sensitivity
model.

Fig. A.3. Centroiding error for CoG due to photon noise for the convo-
lution of a Gaussian source with the diffraction-limited spot with 100
photons per subaperture per frame, a field of view of 15 λ/D and a pixel
scale of 0.12 arcsec/pix. The markers correspond to the E2E simula-
tions, the red line to the theoretical expectation and the yellow line to
the prediction using the extended sensitivity model.

In Appendix B, we show that it is possible to express the CoG
variance of the convolution of two sources (e.g. the convolution
of the diffraction-limited spot and a Gaussian object), as the sum
of the centroiding variances of each separately. To test this, we
simulated using E2E propagation the spot for a Gaussian object,
that was affected by the size of the optics, meaning that it was
convolved with the diffraction-limited spot. We then varied the
FWHM of the Gaussian object and recorded the evolution of
the centroiding error due to photon noise, as can be observed
in Fig. A.3. Both the theoretical predictions and the new model
can predict the behavior of the simulation.

We have shown that the new method using Eq. (A.7) can
replicate the results predicted by the theory. The benefit of this
new method is that it can predict the centroiding variance for
any shape of the spot. This is particularly useful for its use with

Fig. A.4. Centroiding error for WCoG due to RON and photon noise for
an LGS with an 8 m telescope and a 16 × 16 subaperture SH with 100
photons per subaperture per frame. The black curve corresponds to the
E2E simulations, the red line to the predicted centroiding variance due
to RON, the blue line to the predicted variance due to photon noise and
the green line the sum of the two. Both X and Y centroiding variances
are shown in the same plot. the left part of the plot is for the variance
along the X axis and the right part of the plot is the variance along the
Y axis

LGS, as each subapertures has a different spot shape, and
depending on the sodium density profile, the spots themselves
can differ from Gaussian objects. Also, as the orientation of
the spot depends on the physical position of the subaperture,
we don’t need to assume that the object’s elongation is along
one of the axes. Finally, this model allows to predict the cen-
troiding variance when using WCoG, a task that can be too
complicated to do in theory. Figure A.4 shows a simulation
of 10, 000 independent iterations of centroiding for a 16 × 16
subaperture SH with an LGS for an 8 m telescope. We added
RON of 2 e−/pix/ f rame and computed the expected centroid-
ing variance for both RON and photon noise. The total expected
centroiding variance accurately predicted the one obtained in the
independent simulation. We plotted both the centroiding in the
X and Y direction in the plot, and there is a clear difference in
behavior between the two, given that the elongation of the LGS
is along the Y axis.

Appendix B: Centroiding variance for convolved
images

An image P(x, y) in the detector can be expressed as the
convolution of two images f (x, y) and g(x, y), for instance,
diffraction-limited and Gaussian spots, as follows

P(x, y) = nph f (x, y) ∗ g(x, y), (B.1)

with nph the number of photons in the image. Here the
images have to be normalized such that

"
f (x, y)dxdy =

"
g(x, y)dxdy = 1. (B.2)
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Consider the following expressions to compute the CoG and
the centroiding variance due to photon noise:

xP =

!
x P(x, y)dx dy!
P(x, y)dx dy

=

"
x f (x, y) ∗ g(x, y)dx dy,

σ2
xP
=

!
(x − xP)2 P(x, y)dx dy!

P(x, y)dx dy
,

=

"
(x − xP)2 f (x, y) ∗ g(x, y)dx dy.

(B.3)

Let us consider both f and g as probability density functions
(PDF). If we sum the two PDF, the resulting PDF is obtained
by the convolution of f and g, which is what we are interested
in. The resulting PDF will have a mean (or CoG) equal to the
sum of the means of each independent PDF, and the variance of
the new PDF will be equal to the sum of the variances of f and
g. Therefore, considering the expressions for the CoG and the
centroiding variances given in B.3, for the convolution of two
images we have

xP = x f + xg,

σ2
xP
= σ2

x f
+ σ2

xg .
(B.4)

This derivation is not possible is using WCoG, as then cross-
correlation terms appear in the expression that do not allow us
to separate the contribution to the centroiding variance of each
image that is convolved.

Appendix C: Estimating the centroiding variance
for multiple LGS systems

If we have knowledge about the centroiding covariance matrix, it
is possible to combine the measurements of multiple LGS with
a Generalized least squares estimator. If we have N LGSs, for
each subaperture we have N measurements x′1, x

′
2, . . . , x

′
N and N

measurements y′1, y
′
2, . . . , y

′
N . Given the direction of the elonga-

tion of the LGS, x′i and y′i might be correlated, and instead of
measuring along the regular x/y axis, a rotated axis might be
used to align the measurements with the elongation direction. If
we combine all the measurements into a single linear system, in
matrix notation we have



x′1
x′2
...

x′N
y′1
y′2
...
y′N


=



cos(θ1) sin(θ1)
cos(θ2) sin(θ2)
...

cos(θN) sin(θN)
− sin(θ1) cos(θ1)
− sin(θ2) cos(θ2)
...

− sin(θN) cos(θN)



(
x
y

)
, (C.1)

with θi the rotated angle of the axis in which the measure-
ments are made, and x, y are the unknown centroid coordinates.
In matrix form, the equation can be written as

x′ = Bx. (C.2)

Fig. C.1. SH centroiding variances in X and Y direction for a 40 m tele-
scope resulting from the combination of 6 LGSs with the Generalized
least square. The variances are normalized by the variance of a 1 arcsec
spot.

If we have the centroiding covariance matrix Σ of the N x′i
y′i measurements, the solution to the Generalized least squares
problem is

x = (BTΣ−1B)−1BTΣ−1x′, (C.3)

from which the covariance of the estimates x is:

Cov(x) = (BTΣ−1B)−1. (C.4)

In this work, we use six LGSs around the primary mirror.
Figure C.1 shows the centroiding variance in the X and Y direc-
tion at each subaperture, resulting from the combination of the
measurements from each LGS. The variances are normalized by
the variance of a 1 arcsec spot. For RON, the average centroiding
variance in both X and Y directions is 0.81 times the centroiding
variance of a 1 arcsecond spot, meanwhile, for photon noise it
corresponds to 0.24 times the variance of a 1 arcsecond spot.

For the PWFS, it is possible to follow the same formalism as
the SH shown in App. A.7 to obtain the X-slopes and Y-slopes
covariance matrix for RON and photon noise. By using the gen-
eralized least square, it is possible to obtain the variance of the
combined X-slopes and Y-slopes of the six LGSs, as shown in
figure C.2. The variances are normalized by the variance of a 1
arcsecond spot. For RON, the average variance is 0.70 times that
of the 1 arcsecond spot and for photon noise is 0.50 times that of
the 1 arcsecond spot.
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Fig. C.2. PWFS variances in X and Y direction for a 40 m telescope
resulting from the combination of 6 LGSs with the Generalized least
square. The variances are normalized by the variance of a 1 arcsec spot.
16 x 16 subapertures are used here for visualization purposes.
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