Broadband spectral analysis of the most extreme gamma-ray blazars

https://arxiv.org/abs/2502.11888

(Submitted to A&A)

María Láinez

(IPARCOS & Department of EMFTEL, Universidad Complutense de Madrid)

M. Nievas Rosillo, A. Domínguez, J.L. Contreras, J. Becerra González, A. Dinesh & V. S. Paliya

Padova, 3rd April 2025

la Unión Europea

AGENCIA Estatal de Investigación

- Introduction to blazars
- Motivation of the project
- Blazar sample selection and reconstruction of the broadband SEDs
- Broadband SED modelling
 - Host galaxy emission
 - Synchrotron and Inverse Compton emission
- Results
- Detectability predictions with CTAO
- Summary and conclusions

accreting material and emitting radiation across the whole electromagnetic spectrum

 \circ so bright emission that it can outshine the rest of the galaxy

variable at different flux- and time- scales

Unified model: jetted radio-loud AGNs classified in different types based on their jet viewing angle

 \Rightarrow **blazars**: AGNs with their jets pointing towards the Earth (most dominant source type in the extragalactic y-ray sky)

Introduction to blazars

Active galactic nucleus (AGN):

Introduction to blazars

Classification of blazars based on their optical spectra:

Introduction to blazars: broadband SED

Broadband spectral energy distribution (SED):

- dominated by non-thermal emission from radio to y rays
- double-peaked structure:
 - lower energy peak (IR to X-rays) attributed 0 to synchrotron emission from relativistic electrons
 - higher energy peak: debated origin (both Ο hadronic and leptonic processes proposed)

→ synchrotron-self-Compton (SSC) model attributes the peak to inverse Compton (IC) **scattering** of the electron population with photons produced by the synchrotron process

Blazars classification based on their synchrotron peak frequency (v_{SP}):

- LSPs (low-synchrotron peaked): $v_{sp} < 10^{14} \text{ Hz} (E_{sp} < 0.4 \text{ eV})$
- ISPs (intermediate-synchrotron peaked): $10^{14} \le v_{sp} < 10^{15} \text{ Hz} (0.4 \text{ eV} \le E_{sp} < 4.0 \text{ eV})$

Introduction to blazars: spectral classification

- HSPs (high-synchrotron peaked): $10^{15} \le v_{sp} < 10^{17} \text{ Hz} (4.0 \text{ eV} \le E_{sp} < 0.4 \text{ keV})$
- EHSPs (extremely high-synchrotron **peaked)**: $v_{SP} \ge 10^{17}$ Hz ($E_{SP} \ge 0.4$ keV)

 $\log(\nu)$

Extremely high synchrotron-peaked (EHSP) blazars:

- the least luminous but most energetic blazars (end of the blazar sequence)
- essential to understand non-thermal emission and acceleration processes in jets
- very high energies reached \rightarrow cosmological studies (EBL, blazar evolution, EGB, IGMF)
- very heterogeneous group (EHSPs with very hard VHE spectra, blazars becoming EHSPs only when flaring, EHSPs with energetic synchrotron peaks but moderate TeV spectra,...)
- potential very-high-energy (VHE, E > 100 GeV) emitters → targets for IACTs
- a few dozens of sources of this class known

<u>Aim</u>: **search for EHSPs** within a wide selection of blazars and blazar candidates by studying their broadband SED + **examine the multi-wavelength properties of EHSPs** by considering a large sample with a broad spectral coverage

Blazar sample selection

Base catalog: **2BIGB catalog** (Arsioli et al. 2022), a catalog of 1160 γ -ray emitting blazars from the 3HSP catalogue (largest collection of HSPs, EHSPs). Cuts:

- have redshift estimate
- flux measurements in all bands
- outside the galactic plane (|*b*| > 10°)

Blazar sample selection

•

Additional cuts to select sources with low variability across different energy bands:

γ rays: variability index (4FGL-DR4) < 27.69 (source with variability index > 27.69 variable at a significance >99%)

Blazar sample: 4FGL-DR4 classification

- The selected sources (mostly BL Lacs) have harder spectra than FSRQs

Multi-wavelength data

- Swift-XRT and Swift-UVOT data (data analysis)
- 4FGL-DR3 catalog (*Fermi*-LAT 12-year Source Catalog)
- STeVECat: the Spectral TeV Extragalactic Catalog (Gréaux et al. 2023)
- Space Science Data Center ASI SED builder* (archival data)

Only **non-variable sources** selected for our study → we can combine **non-contemporaneous datasets**

*<u>https://tools.ssdc.asi.it/SED/</u>

Broadband SED modeling: host galaxy emission

- Host galaxy's thermal emission often prominent in the optical range of EHSPs' SED (low non-thermal flux at optical/UV + synchrotron peak at high frequencies)
- 4 different host galaxy models*: elliptical galaxies of 2 Gyr, 5 Gyr, and 13 Gyr, and a lenticular galaxy
- Negligible contribution to the EC emission at high energies (not a significant source of seed photons for the EC process) →not included in the broadband SED modelling

*SWIRE Template Library (Polletta et al. 2007)

María Láinez, 3rd April 2025

Broadband SED modeling

- **One zone SSC model** (higher-energy peak due to IC of electrons with photons produced in the synchrotron process) + **best-fit host galaxy model**
- No EC component (simple environments, no dusty torus/ BLR to supply photons for the EC)
- Emission produced in a single spherical region or blob of radius R located within the jet filled with ultra-relativistic electrons moving with bulk Lorentz factor Γ (both synchrotron and IC originate from the same region)
- Electron population modelled with a broken power-law distribution: a lower energy population with spectral slope p₁ and a higher energy population with spectral slope p₂

Broadband SED modeling

- Some parameters fixed to typical EHSP values: R=10¹⁶cm, R_H=2×10¹⁸cm (distance blob - BH), Γ=20
- 7 free parameters: B, N, p_1 , p_2 , γ_{max} , γ_{break} , θ
- Data fitted in the range [5×10¹⁰ Hz, 10²⁷ Hz], excluding radio emission (believed to originate from a region much larger than the compact region responsible for the rest of the SED + significant synchrotron self-absorption)
- Applied EBL attenuation using model from Saldana-Lopez et al. 2021, Domínguez et al. 2024a.
- Modeling done using JetSeT (Tramacere A. 2020)

We exclude sources with poor fitting results (χ^2 /dof > 1.5) \Rightarrow **113 surviving sources**

Broadband SED modeling results

113 sources

No significant differences in the redshift distribution of EHSPs and HSPs/ISPs ⇒ **no clear evidence of an evolutionary connection**

Jet viewing angle: **θ<12°**, 85% of the sources with θ<8° ⇒ Doppler factors between ~2 and 40, typical for blazars (**jets closely aligned with our line of sight**)

Compton dominance (CD): relative strength of inverse Compton emission compared to synchrotron emission in the SED (CD = L_{IC} / L_{sync})

Results comparison with other works

17

28 overlapping sources with **Paliya et al. (2021)**, which catalogues 1077 γ-ray blazars/BCUs detected by *Fermi*-LAT

- our v_{SP} values are systematically higher by a factor ~ 6 \rightarrow impact on CD (no host galaxy component in their model, potentially increasing their synchrotron component)
- less deviation in $v_{ICpeak} \rightarrow$ less sensitive to modelling assumptions

Results comparison with other works

9 overlapping sources with Nievas Rosillo et al. (2022), whose sample contains 22 2BIGB catalogue sources classified as BCU in 4FGL

- better agreement than with Paliya et al. (2021), likely due to Nievas Rosillo et al. (2022) including a blackbody component to account for host galaxy emission
- our v_{SP} values remain systematically a factor of 3 higher

Number of sources

Compton Dominance

- Paliya et al. 2021:
 - absorption-line blazars: primarily BL
 Lacs, whose spectra show absorption lines attributed to the stellar population of the host galaxy
 - emission-line blazars: typically FSRQs
- Sources selected for this work are at the **high** end of the absorption-line blazar sample
- Our predominantly EHSP sample shows **higher CD than absorption-line blazars**, suggesting greater radiative efficiency (yet high synchrotron peak values)

María Láinez, 3rd April 2025

Compton Dominance classification

- Paliya et al. (2021) found a correlation between accretion luminosity and CD in blazars:
 - emission-line blazars: generally CD > 1 and L_{disk}/L_{Edd} > 0.01
 - \circ **absorption-line blazars**: generally CD < 1 and L_{disk}/L_{Edd} < 0.01
- Most EHSPs in our sample have $CD \leq 1 \rightarrow L_{disk}/L_{Edd} \leq 0.01 \rightarrow$ low-Compton-dominated (LCD) objects

*more Compton-dominated blazars (mainly FSRQs) typically classified as high-Comptondominated (HCD) objects

⇒ our blazar sample mainly consists of LCD objects, with no emission lines and low accretion activity

• **FSRQ** (4FGL J0132.7-0804/ PKS 0130-083): CD = 0.27

*FSRQ blazars typically have CD \gtrsim 1 \rightarrow 4FGL J0132.7–0804 probably misclassified as FSRQ, but likely a BL Lac (very narrow emission lines)

• **Radiogalaxy** (4FGL J1518.6+0614/ TXS 1516+064): CD = 0.12

 \rightarrow **CD** < 1 \rightarrow low accretion activity or emission site located far from the core (i.e., the strong radiation fields weakened by the time they reach the emitting region)

 29 BCUs in the sample: all but two have CD < 1, showing similar emission properties to those of BL Lacs → remaining two BCUs: 4FGL J0611.1+4325 (CD = 1.4) and 4FGL J1719.3+1205 (with CD = 1.5)

María Láinez, 3rd April 2025

Host galaxy results

- Best-fit host galaxy model (host galaxy template with lowest χ^2 value):
 - elliptical galaxy: 54 sources Ο
 - lenticular galaxy: 59 sources Ο
- No significant differences between the two types of galaxies → **negligible impact of the host galaxy emission** on the blazar's non-thermal emission

 \rightarrow host galaxy generally **not a significant source of seed photons for EC** (even in galaxies with high star formation rates, unlikely to impact the high-energy regime)

Host galaxy temperatures: from 3200 to 6400 K

elliptical galaxy of 2 Gyr: 17 sources

elliptical galaxy of 13 Gyr: 27 sources

elliptical galaxy of 5 Gyr: 10 sources

María Láinez, 3rd April 2025

Energy budget

- **Ratio** U_B/U_c: energy density of the magnetic field to that of the relativistic electrons
 - critical parameter to understand the physical conditions and energy balance in blazar jets
 - reveals jet's magnetisation + balance between magnetic fields and particle energies in producing the observed radiation
 - crucial to understand the interplay between synchrotron and IC processes + energy budget of the system
- Jet close to equipartition $(U_{\rm B}/U_{\rm p} \sim 1)$: energetically efficient (minimizes energy losses during the acceleration/transport of particles)

María Láinez, 3rd April 2025

Energy budget

- Our results suggest a relation between the U_B/U_e ratio and the synchrotron peak frequency \rightarrow most extreme sources closer to the line $U_R \approx U_a$
- To verify if there is a dependence of U_B/U_e on the synchrotron peak frequency, we divide our sample into three subsamples with different ranges of v_{SP} + fit each distribution of U_B/U_e to a Gaussian function

⇒ the most extreme sources are generally closer to equipartition than the sources with lower synchrotron peak frequencies

Energy budget: comparison with other works

- Agreement with the results obtained by Nievas Rosillo et al. (2022) → most sources in their sample close to equipartition (the two potential VHE emitters in their sample have the smallest U_B/U_p ratios)
- Differences with Zhao et al. (2024) and Tavecchio & Ghisellini (2016) → most sources from their samples far from equipartition, with U_B << U_e, clustering mainly around the line U_B = 10⁻² × U_e

María Láinez, 3rd April 2025

Energy budget: comparison with other works

SAMPLE SELECTIONS:

- **Tavecchio & Ghisellini 2016**: 45 BL Lac objects, 12 detected in the TeV γ-ray band
- Nievas Rosillo et al. 2022: 22 2BIGB sources classified as BCU in 4FGL → 17 EHSP candidates
- **Zhao et al. 2024**: 348 HSP blazars (all 4FGL HBL blazars with $v_{SP} \ge 10^{15}$ Hz in their modelling)

Energy budget: comparison with other works

SAMPLE SELECTIONS:

- Tavecchio & Ghisellini 2016: 45 BL Lac objects, 12 detected in the TeV y-ray band
- Nievas Rosillo et al. 2022: 22 2BIGB sources [erg/cm³] classified as BCU in 4FGL \rightarrow 17 EHSP candidates
- Zhao et al. 2024: 348 HSP blazars (all 4FGL HBL blazars with $v_{SP} \ge 10^{15}$ Hz in their modelling)

TG16 and Z24 include variable sources + sources detected in TeV (typically detected during flares) \rightarrow during certain observations, may be **far from equilibrium** \rightarrow higher electron energy injection \rightarrow lower magnetisation \rightarrow lower U_R/U_R ratio 10^{-3} 10^{-2} 10^{-1} 10^{-4} Sources in our sample characterised by **low variability** \rightarrow **closer to equipartition**

The blazar sequence and the role of EHSPs

Blazar sequence: anti-correlation between luminosity and ν_{SP} (EHSPs at the lower-luminosity, high-peak regime)

- **low CD among EHSPs** → synchrotron/SSC processes dominant + absence of strong external photon fields
- **large number of EHSPs identified** (66/113): challenge their presumed rarity and suggest many were missed due to instrumental limitations and selection biases
 - \rightarrow EHSPs more common than previously thought?
- Most extreme EHSPs, with the highest v_{SP} and CD \ge 1, challenge traditional models \rightarrow **revised model**?

The blazar sequence and the role of EHSPs

Blazar sequence: anti-correlation between luminosity and ν_{sp} (EHSPs at the lower-luminosity, high-peak regime)

- **low CD among EHSPs** → synchrotron/SSC processes dominant + absence of strong external photon fields
- **large number of EHSPs identified** (66/113): challenge their presumed rarity and suggest many were missed due to instrumental limitations and selection biases
 - \rightarrow EHSPs more common than previously thought?
- Most extreme EHSPs, with the highest v_{SP} and CD \ge 1, challenge traditional models \rightarrow **revised model**?

⇒ observations of EHSPs with CTAO can test these ideas, observations of EHSPs at high redshifts or with unexpected luminosities could further refine the blazar sequence

Detectability predictions with CTAO

- EHSPs regarded as promising VHE emitters (spectra extending to extremely high frequencies), but very few detected at VHE, < 20 detected by IACTs (low fluxes + relatively steady emission + EBL attenuation)
- Higher-energy peak of the SED in VHE for many EHSPs
 → essential to study these sources at VHE to
 understand the acceleration processes in their jets
- Cherenkov Telescope Array Observatory (CTAO): next generation of IACTs, which detect the Cherenkov light produced by the interaction of γ rays with the atmosphere (low duty cycles) → selection of promising targets to optimise the observation time

Detectability predictions with CTAO

Using the spectral shape resulting from the SED modelling, we estimate the **expected detection** significance with CTAO assuming 20-hour observations (same procedure as in Dominguez et al. 2024b)

- Significance estimation done using the **CTAO** instrument response functions (IRFs) for the Alpha Configuration (13 telescopes in the north, 51 in the south) \rightarrow produced for 3 different ZD (20, 40, 60 deg) for the north and south arrays
- CTAO-North/South IRFs for sources with positive/negative declination
- IRF configuration corresponding to the closest ZD used for the significance estimation \rightarrow ZD determined by assuming observations around culmination time

EBL absorption → **assumed spectral shape**

From the sensitivity curves, we derive the differential flux, and the number of excess and background events required to generate a 50 signal in each energy bin: f5, n_exc5, n_off5

Best-fit model extrapolated to TeV energies +

- Number of excess events obtained by scaling linearly the ratio of the differential fluxes in each bin: n_exc = sum(n_exc5*f/f5), f differential flux in each energy bin for the assumed spectral shape
- **Expected detection significance**: estimated using Li & Ma (1983) (eq 17)

Detectability predictions with CTAO

Detectability predictions with CTAO: results

- 9 potential VHE emitters (out of 113): expected CTAO detection significance ≥ 5σ after 20 hours of exposure with CTAO
- 11 additional sources with expected detection significance ≥ 3σ that could be detected with a longer exposure
- 20 sources detectable above 3 σ :
 - 12 sources have $v_{sp} \ge 10^{17} \text{ Hz}$
 - all characterised by low magnetisation:
 B ranging from 0.0084 to 0.74 G
- No clear relation between the U_B/U_e ratio and their detectability predictions with CTAO

Summary and conclusions

- Systematic search for EHSPs by modelling broadband SEDs of 124 blazars using a one-zone SSC model + host galaxy model → 66 EHSP candidates
- Low CD values (CD < 1) in EHSPs → **SSC-dominated emission** with few external photon fields
- No significant differences in the radiative properties of sources hosted by different galaxy types (S0/ell) → host galaxy has a negligible impact on the high-energy emission
- Higher v_{sp} sources (EHSPs) closer to energy equilibrium/ equipartition (U_B/U_e ~ 1) than less extreme blazars, possibly due to finely balanced particle acceleration and magnetic fields
- Differences in the U_B/U_e distribution with other works highlight the **importance of sample selection and variability criteria** in shaping the physical properties of EHSPs
- CTAO detectability predictions using the modelled SEDs: **9 strong VHE γ-ray candidates** in 20-hour observations, 11 extra sources detectable at 5σ with slightly longer exposures
- Catalog with our results to be published soon!

Thanks for your attention!

Acknowledgements

The research here presented has been partially supported by the MICIU/AEI/10.13039/501100011033 and by ERDF/EU, under grant PID2022-138172NB-C42

IPARCOS

backup

Masquerading BL Lacs

• FSRQ-like behaviour but no emission lines in their optical spectra

→ intrinsical FSRQs with an efficient accretion disk and prominent optical emission lines which appear very faint due to a a very bright, Doppler-boosted jet; in contrast, *real* BL Lacs are instead intrinsically weak-lined

• This is the case for many FSRQs while flaring, and also might be the case with other weaker sources but with hidden (for some not-so-clear reasons) gas structures.

Optical spectrum of PKS 1424+240 (masquerading BL Lac object):

Masquerading BL Lacs

Sheng et al. 2024

Blazar sample: redshift distribution

- Sources:
 - 44 (35.5%) are from 4LAC:

spectroscopic/photometric

- 38 (30.6%) from 2BIGB: all **photometric**
- 33 (26.6%) from Paliya et al. (2021): all spectroscopic
- 9 (7.3%) from Goldoni (2021): all spectroscopic
- Most of the sources in our sample (~86%) have a redshift of **z < 0.5**
- Farthest blazar in the sample located at z = 2.075 (1RXS 1032342.6-011131) → uncertain

Host galaxy templates

- We are considering 4 different templates*:
 - lenticular galaxy
 - elliptical galaxy of 13 Gyrs
 - elliptical galaxy of 5 Gyrs
 - elliptical galaxy of 2 Gyrs
- We get nu and nuFnu from the templates, and we apply a frequency correction to the nu values which depends on the redshift of the source: nu*1/(1+z)

Broadband SED modeling results

MAXIMUM LORENTZ FACTOR γ_{max} : values ranging from 2.9 × 10⁵ to 4.6 × 10⁸

highest γ_{max}

Determining γ_{max} is challenging due to the lack of measurements between 10^{18} Hz and ~ 10^{20} Hz (gap between NuSTAR and *Fermi*-LAT energy ranges) which may result in γ_{max} values larger than expected.

CTAO: 3 main telescope types

- Larged-Sized Telescopes (LSTs): reflector of 23 m of diameter and a field of view (FOV) of ~ 4.3°, designed to detect the lowest-energy gamma rays.
- **Medium-Sized Telescopes (MSTs)**: diameter of 12 m and a FOV of ~ 8°, will cover the mid-energy range (gamma rays with energies from ~ 150 GeV to 5 TeV)
- **Small-Sized Telescopes (SSTs)**: diameter of 1.8 m and a FOV of ~ 9°, will be able to detect the highest energy gamma rays (above 5 TeV)

María Láinez, 3rd April 2025

CTAO Northern array: 13 telescopes (4 LSTs + 9 MSTs) CTA distributed over an area of about 0.5 km²

• **CTAO Southern array**: 51 telescopes (14 MSTs + 37 SSTs) distributed over a ~3 km² area

CTAO Alpha Configuration

Source detected at VHE

Only source in our blazar sample already detected by an IACT: 4FGL J0013.9–1854/SHBL J001355.9–185406

- expected detection significance: 3.9σ, calculated for 20 hours of CTAO observations
- previous detection by H.E.S.S., which required 41.5 hours of exposure (observations performed at a medium ZD of 12.9 deg)
- The source's steady emission across all wavelengths and the possibility of it undergoing a mild γ-ray flare during the H.E.S.S. observations further highlight its potential as a strong candidate for VHE detection with CTAO

