Summary of lecture 1

* \We need to probe Standard model
extensions

12 elementary particles,
their interaction,
discrete symmetries C,P,T

* Inspired by atomic clock precision,
we would like to use atoms and
molecules to experimentally probe
‘new physics’

 Ramsey interference is the most
precise method of spectroscopy
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Atoms are held in a beam of light
Best atomic clock: ~10-18 (1 sec in 300 Billion year)




Part 2 - the electric dipole moment of the electron
and using molecules to probe it

* Precision measurements using molecules
* The electron’s electric dipole moment

 EXperimental approaches



What makes a clock tick?

The Standardmodel
of particle physics
. Neutrons, protons

)
Strong force

Weak force

neutrino

Electromagnetic force

Electron :Elee:ttrri?wg E I eC _t rO n S /
12 elementary particles,

their interaction, The forces and symmetries in the
discrete symmetries C,PT reflect those of the Standardmodel



Precision measurements with molecules
Complex guantum systems with an advantage
Example 2: Variation of constants -

inversion
splitting

umbrella angle

Very sensitive to proton / electron mass ratio

proposed experiment Theory



What makes a clock tick?

The Standardmodel
of particle physics
. Neutrons, protons

Strong force

Weak force

neutrino

Electromagnetic force

| et Electrons
12 elementary particles, .
their interaction. The forces and symmetries in the

discrete symmetries C,PT reflect those of the Standardmodel




The dipole moments of the electron

Besides its magnetic dipole moment (spin), an electron
could have an electric dipole moment (eEDM).

magnetic field electric field -100 V

EDM?

N
Y

spin

TA +100 V

an eEDM violates Time reversal symmetry (T)
and is direct proof of new physics!



An eEDM violates T (and P) symmetry
0-0

electron with
spin and EDM




Precision measurements with molecules

Complex guantum systems with an advantage
Example 3: The electric dipole moment of the electron

eEDM magnitude

(e cm)
An EDM would arise : 10-22
along the same axis as
the electron’s spin. - T e 10-24
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The charge cloud would | _ o | 10-32

be distorted, making
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negative than the other.
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The electron’s electric dipole moment (eEDM)

Effectively a backgrou

nd-free method to probe new physics
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Measuring zero Is something very special!

SUPPOSse you measure this:
fart/fhgt = 1.052871833148990438(55)

Did you discover new physics’?

SUPPOSse you measure this:
eEDM = 0.0000000000000000153(2)
This is direct proof of physics beyond the Standardmodel!



The dipole moments of the electron

Besides its magnetic dipole moment (spin), an electron
could have an electric dipole moment (eEDM).

magnetic field electric field -100 V

EDM?

+100V
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an eEDM violates Time reversal symmetry (T)
and is direct proof of new physics! DOOX XXXX;
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Quantum sensing!
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source: Quanta Magazine, 2015

Approximate and neglect: essential in physics. But with this
extreme precision we can measure new physics which
‘trickles through’ to these last significant digits!



So we want to measure the eEDM!

« Questions:

- How large is the interaction energy of a non-zero electron-EDM of order 1e-29 e*cm in d
strong laboratory electric field??

- How large is the interaction energy of the electron spin with the earth magnetic field?
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General approach:

Flip fields:

looking for an energy shift that correlates with the electric field switch

electric
field

electric
field

\4

atoms or molecules

magnetic
field

magnetic
field

Experiment 1 (do many times)

Experiment 2 (do many times)

| ook for a difference

Can we estimate the
magnitude of the

shifts?
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T=970K . T=620K
mixer

T=1000K sodium

down beam oven
| | |

History: EDM measurements with atoms

—T=1010K
New limit on the electron electric dipole moment upper beaml l
~ flag reflector photodiods
B. C. Regan,* Eugene D. Commins, Christian J. Schmidt,’ and David DeMille® / . 378 nm
Physics Depariment, University of California, and Lawrence Berkeley Nalional Laboratory, Berkeley, California 94720 “ 1 \J,\Z
(Dated: August 8, 2001) — — e
We present the result of our most recent scarch for T-violation in ***Tl, which is intcrpreted in —»RF loop ] 590 nm w\;\)
terms of an electric dipole moment of the electron d.. We find d, = (6.9 £ 7.4) x 10”**¢ cm. The 0i0 0il0 lightpipe
present, apparatus is a major upgrade of the atomic beam magnetic-resonance device used to set the g . *
: .. “ »
previous limit on d.. B E E 9 cm
> x/u
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A ~ 378 nm
, pre-collimators /" |, 2.54em | |ower beam flag
Ramsey interferometry |
upwest - Uup east
Intense beams atomic beam | 1™ - atomic beam
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Interference detection - just like the Cs experiment

mixer sodium

/'\_/'q\_/’\ /-\-/-\

This was the best experiment for over a decade!

FIG. 1: Schematic depiction of the experiment, not to scale.
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How can we do better?

The statistical sensitivity equation

Statistics

longer interaction times (T in Ramsey scheme) - cooling techniques

higher enhancement factors molecules to the rescue!

more atoms, longer measurement time

Systematics

v X E effect - molecules to the rescue!

reduced magnetic field sensitivity - molecules to the rescue!




Precision measurements with molecules
Complex guantum systems with an advantage
Example 4: The electric dipole moment of the electron

precision molecular spectroscopy

©Ra

9 Cs fountain

source of atoms,

molecules © GdFeG

ramsey interferometry
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eEDM experiments with molecules
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ACME, Harvard Imperial College London JILA, Boulder
beam of ThO molecules beam of YbF molecules trapped HffF+ ions

EDM measurements with molecules in a frozen noble gas:
* York University

|  Michi tate Universit
Bal: mo eCUleS N Search for eEDM in cryogenic crystals Ic_; |gen State Universi Y @
Gronlngen NI PHYDES/DOCET » University of Toronto
Para-Hydrogen and Diatomic for eEDM Study
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| | MICHIGAN STATE I

UNIVERSITY TORONTO EDM3 Collaboration



EDM statistical senstivity

PHYSICAL REVIEW A 111, 062815 (2025)

10727

Prospects for measuring the electron’s electric dipole moment with polyatomic
molecules in an optical lattice

10728
Roman Bause ©,*" Nithesh Balasubramanian ©,? Ties Fikkers ©,"? Eifion H. Prinsen ©,!* Kees Steinebach ©,>
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Anastasia Borschevsky @,"* and Steven Hoekstra @ ">
'Wan Swinderen Institute for Particle Physics and Gravity, University of Groningen, The Netherlands
Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands
SLaserLaB, Vrije Universiteit Amsterdam, The Netherlands
‘Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
SDivision of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
SInstituto de Modelado e Innovacién Tecnolégica (UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura,
Universidad Nacional del Nordeste, Corrientes, Argentina
'Department of Physical and Theoretical Chemistry, Comenius University, Bratislava, Slovakia

|
N
©

10

|
W
o

10

M (Received 1 November 2024, accepted 3 June 2025; published 17 June 2025)

We present the conceptual design of an experiment to measure the electron’s electric dipole moment (eEDM)
using **BaOH molecules in an optical lattice. The BaOH molecule is laser-coolable and highly sensitive to the
eEDM, making it an attractive candidate for such a precision measurement, and capturing it in an optical lattice
offers potentially very long coherence times. We study possibilities and limitations of this approach, identify the
most crucial limiring factors and ways to overcome them. The proposed apparatus can reach a statistical error of
10~°Y ecm by measuring spin precession on a total number of 5 x 10Y molecules over a span of 120 days.
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Extra slides with experimental details




Ingredients of all eEDM experiments:

molecules
/
electric magnetic
field | field
Versus
electric magnetic
field field

Flip fields:
looking for an asymmetry

laser pulse 1: laser pulse 2:
Creates a quantum superposition, Measures state of the molecules
triggers coherent excitation of all through interference
molecules

Resonance in
molecules

| 1 millisecond
.4—»'
'more time -> higher sensitivity

Frequency set by external reference,
tuned to molecular resonance

Ramsey interferometry



New labs in Groningen
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How to read out small energy shifts: spin interferometer
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£) = (|-Dx|+1)1/2

£1) = e*?| +1)

Molecular beam
20 Hz

initialize

How to read out small energy shifts: spin interferometer
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How to read out small energy shifts: spin interferometer
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How to read out small energy shifts: spin interferometer

£) = (|-Dx|+1)1/2
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How to read out small energy shifts: spin interferometer
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How to read out small energy shifts: spin interferometer

Pulsed laserlight
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Interferometer phase ¢ = (
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Interference data using fast molecular beam

to demonstrate control over systematic effects

Create molecular beam Quantum interference Readout by fluorescence Compare to theory that includes the
p = full interaction of the molecule with
light, electric and magnetic fields
(optical Bloch equations)
:\
Experiment
‘,;; 1 | |
£ June 26 2022
ol - =
e e —_— o 08 ; .
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Beautiful quantum interference!  Af,p 000

Contains all relevant experimental parameters
Crucial for reduction of systematic effects
(A.Boeschoten et al, NL-eEDM collaboration,

Phys. Rev. A 110, LO10801 (2024))
NL-eEDM




Some key experimental techniques

 INntense and slow molecular beam sources
- Hexapole lens and laser cooling
» Stark deceleration

- Combining it all: the ultimate experiment



An Intense beam of molecules

How-to: source

cryogenic source  guide decelerator
F 00000000000 00O
/ 00000000000 00O

SUPErsonic Cryogenic

Aims: Aims:

- Intense, fast beam (600 m/s) - slow beam (~180 m/s)

- Short pulse - High N: 4x109%/shot in the desired state
- Test lasers systems, state - Use for eEDM measurement

manipulation and interaction
zone




Why cold molecules?

The temperature describes the
statistical distribution of the
motional degrees of freedom, but also the
internal degrees of freedom

binding energy

structure (conformers)
vibrations
rotations
nuclear spin
. . . . . ~ [Kelvin]
104 102 1 1072 104 10 1078 1010
1 km/s 1 m/s 1 mm/s

Most probable speed of a CO molecule



electronic state

structure (conformers)
vibrations
rotations
nuclear spin
. . . . . ~ [Kelvin]
104 102 1 1072 104 10  10°® 1010
IRIE 1 m/s 1 mm/s

Most probable speed of a CO molecule

hot cold ultracold

't Is a big challenge to extend the control and
porecision of atomic physics to molecules.



BaF supersonic beam

I ' . 14.000 : ] E : — ................. ..........
Su perSOr”C bea S | |- Translational Temp ~1 K it g
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O [ al d 1 |- Average velocity 600 m/s ‘
10000._. : X x Ty (TS P T T L LR Ry
* . .
3 - - - - - -
I I IO eC u eS 8 8000_ ................. ................. ................. ................. ................ ..........
. S - | § é § é z
Fluorescence detection o e S e S SN S S ) I S
a z s ; z s z
4000 ................. ................. ................. ................. ..........
Barium ‘
0 | . | . | . | . | . I . |
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Ablation laser Detection laser e 3 “
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P. Aggarwal et al. A supersonic laser ablation beam source with narrow 1 o | i e
velocity spreads. Rev Sci Instrum 92, 033202 (2021). NEEEEE— WW M
Lowest three rotational states [F— LR P

P. Aggarwal et al. Lifetime measurements of the A 2[112 and A 2 132
states in BaF. Phys Rev A 100, 0562503 (2019). pOPUIated

laser frequency (arb.units)




Cryogenlc beam

Evaporating Sr metal target
- Neon carrier gas + SFe
- Absorption,1 cm from cell
- Fluorescence, 30 cm from cell
- Translational Temp ~10 K
- Velocity 150-200 m/s

Based on design from Stefan
Truppe, Mike Tarbutt @ Imperial

Goal: make the most
Intense slow source of BaF
molecules

1 in Groningen (BaF, production)
1 in A'dam (BaF, optimisation)
1 in Groningen (BaOH, exploration)

Maarten Mooij, Rick Bethlem @ VU Amsterdam

Mooij et al, New Journal of Physics, vol. 26, 2024, p. 053009
Mooij et al, J. Phys. B: At. Mol. Opt. Phys., vol. 58, 2025, p. 015303
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A Touwen et al 2024 New J. Phys. 26 073054
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BaF in electric fields: the hexapole lens

Simulation Measurement
| L 0kV 10
T
|
E | 2kV 10 8
£ ——
| =
= : — =
= i = Of 1 |6 &
, |
E i g or 1 2
8 I > _5 B
= _10- | i 5
10 - | i _10 o
0 L
—10- | . . 10 =5 0 5 10 ~-10 =5 0 5 10
0 200 400 600 800 Horizontal (mm) Horizontal (mm)

Distance from source (mm)

Focus molecules with +-5 m/s into a relatively small area, and then...

A Touwen et al 2024 New J. Phys. 26 073054
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Transverse laser cooling




Beam collimation using Doppler laser cooling

A Force

Force down

—
_-___--

Net force

Force up

Consequence: force opposing molecule’s transverse
velocity.

Lets apply it to our BaF molecule!

Joost van Hofslot - CCMI 2024

Red detuned
laser light

T

Transverse
velocity v

Red detuned
laser light



Complexity of laser cooling BaF

Vibrational branching, B2S+
v=0
hyperfine structure, (N=0,+) =y
dark Zeeman state remixing,... : ’@-5)\\\ ":
A°T] 1/2 : i

Complicate closing the cycle (=124 e
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Hao et al, J. Chem. Phys. 151, 034302 (2019)
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Recent results!
arXiv:2506.19069v1

2D transverse laser cooling of a hexapole focused beam of cold BaF molecules

1,2.|*

J.W.F. van Hofslot,"»? .LE. Thompson,' A. Touwen,'->> N. Balasubramanian,'? R. Bause,
H.L. Bethlem,"* A. Borschevsky,"? T.H. Fikkers,"? S. Hoekstra," > T|S.A. Jones,"-? J.E.J. Levenga,">
M.C. Mooij,>* H. Mulder,"? B.A. Nijman,"? E.H. Prinsen,"? B.J. Schellenberg,"? L. van Sloten, >
R.G.E. Timmermans,!*> W. Ubachs,? J. de Vries,** and L. Willmann,!2 for the NL-eEDM collaboration

'Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, The Netherlands
*Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands
IDepartment of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands
*Institute of Physics and Delta Institute for Theoretical Physics, University of Amsterdam, The Netherlands
(Dated: June 25, 2025)
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Molecule decelerator




Uniform field leads to torque -> rotation
What about a non-uniform field”

Polar molecule aligned along electric field lines,
but still a force on the molecule!

Depending on orientation, force is towards or
away from electric field maximum

2mmI

Basis of Stark deceleration technigue,
breakthrough in ‘cold molecule’ research

— -, ==

[E-[QDE 5 Baq(dE= FI)E

The force on a dipole is proportional to
the gradient of the electric field



A slow beam of molecules

A traveling-wave with a tunable velocity




Iraveling-wave decelerator

| OOOOOOOOOOOOOOOOOOOOO r
| OOOOOOOOOOOOOOOOOOOOO L

Main aims:

.. = Capture as many molecules as possible from molecular beam
- "= Bring average beam velocity from ~190 to ~30 m/s
- Maintain N during deceleration



.;’"]

Voltage amplitude (kV)
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Challenge: Stark curves of heavy diatomic molecules

Limited force, because only low fie
At higher fields, the trajectories in the dece

o0
)

~
in
Q
g
>
o10)
—
O
-
O

&
o

0 2 4 8 10x10° 8 10x10°

ds can be used.

erator become unstable.

8 10x10° 4 6 8 10x10°

electric field strength (V/m) electric field strength (V/m) electric field strength (V/m) electric field strength (V/m)
2 2 1
NDj3 OH “ll3/- SrF “Y SrO %
3.5 Debye

Limited force: -> a long decelerator



Traveling-wave decelerator

Fluorescence detection

Molecular beam source Decelerator

Challenges for heavy diatomic molecules:

- Heavy -> long decelerator
- Rotational structure -> limited Stark shift

Deceleration, trapping, collision studies, lifetime measurements

Demonstrated for light molecules: OH, CO, NH3, NH
PRL 98, 133001 (2007), Science 313 5793 (2006), PRL 110, 133003 (2013)



Modular traveling-wave
decelerator
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A slow beam of molecules

SrF: First combination of deceleration and cryogenic source
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Fluorescence signal (arb. units)
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A slow beam of molecules

Deceleration to standstill

Deceleration to standstill in 4.2 m,
hold there for some time,
accelerate out again to 50 m/s to
detect

Deceleration and trapping of SrF molecules
Parul Aggarwal, Yanning Yin et al (NL-eEDM)),
PRL 127 173201 (2021)
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Photon counts/bin

Stark deceleration

> 20 clohds of trapped SrF fnolecules
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Towards longer coherent interaction times

fast beam

T ~ 1-2ms
L ~0.5m

v ~ 250-500 m/s

Mair

challe

how to maintal

nge:

slow beam

T ~ 15 ms
L ~05m

v ~ 30 m/s

N N while increasing t

Strongly connected to choice of molecule!

fountain

T ~ 100 ms

L ~05m

slow vertica

beam

trap

T~ 1-10 s
L ~0.5mm

e

e

molecules trapped In
laser focus



EDM statistical senstivity
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Prospects for measuring the electron’s electric dipole moment with polyatomic
molecules in an optical lattice
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We present the conceptual design of an experiment to measure the electron’s electric dipole moment (eEDM)
using **BaOH molecules in an optical lattice. The BaOH molecule is laser-coolable and highly sensitive to the
eEDM, making it an attractive candidate for such a precision measurement, and capturing it in an optical lattice
offers potentially very long coherence times. We study possibilities and limitations of this approach, identify the
most crucial limiring factors and ways to overcome them. The proposed apparatus can reach a statistical error of
10~°Y ecm by measuring spin precession on a total number of 5 x 10Y molecules over a span of 120 days.
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Table-top precision tests

New experimental approaches to study fundamental physics

NL-eEDM: Hendrick Bethlem, Anastasia Borschevsky, Steven Hoekstra, Steven Jones, Rob Timmermans, Wim Ubachs, Jordy de Vries, Lorenz Willmann
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