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Abstract

The circular velocity curve traced by stars provides a direct means of investigating the potential and mass
distribution of the Milky Way. Recent measurements of the Galaxy’s rotation curve have revealed a significant
decrease in velocity for Galactic radii larger than approximately 15 kpc. While these determinations have primarily
focused on the Galactic plane, the Gaia DR3 data also offer information about off-plane velocity components. By
assuming the Milky Way is in a state of Jeans equilibrium, we derived the generalized rotation curve for radial
distances spanning from 8.5 kpc to 25 kpc and vertical heights ranging from −2 kpc to 2 kpc. These measurements
were employed to constrain the matter distribution using two distinct mass models. The first is the canonical
Navarro–Frenk–White (NFW) halo model, while the second, the dark matter disk (DMD) model, posits that dark
matter is confined to the Galactic plane and follows the distribution of neutral hydrogen. The best-fitting NFW
model yields a virial mass of Mvir= (6.5± 0.5)× 1011 Me, whereas the DMD model indicates a total mass of
MDMD= (1.7± 0.2)× 1011 Me. Our findings indicate that the DMD model generally shows a better fit to both the
on-plane and off-plane behaviors at large radial distances of the generalized rotation curves than the NFW model.
We emphasize that studying the generalized rotation curves at different vertical heights has the potential to provide
better constraints on the geometrical properties of the dark matter distribution.

Unified Astronomy Thesaurus concepts: Milky Way Galaxy (1054); Milky Way mass (1058); Milky Way rotation
(1059); Milky Way stellar halo (1060); Milky Way disk (1050)

1. Introduction

The circular velocity curve of the Milky Way (MW) has been
measured using various tracers and methods, depending on the
range of Galactocentric radii (R) being considered (see, e.g.,
P. Bhattacharjee et al. 2014; Y. Sofue 2020 for recent reviews).
For R values smaller than the solar radius (Re∼ 8 kpc), the
rotation curve can be derived using the tangent-point method
that involves measuring the radio emission from H I and CO
lines of the interstellar medium (J. E. Gunn et al. 1979; M. Fich
et al. 1989; E. S. Levine et al. 2008; Y. Sofue et al. 2009). For
R> Re, specific samples of stars with measurable distances,
proper motions, and/or line-of-sight velocities have been used to
constrain the rotation curve. These include classical Cepheids
(F. Pont et al. 1997), red clump giants (J. Bovy et al. 2012;
M. López-Corredoira 2014; Y. Huang et al. 2016), RR Lyrae
stars (I. Ablimit & G. Zhao 2017; C. Wegg et al. 2019), and blue
horizontal branch stars (X.-X. Xue et al. 2009; P. R. Kafle et al.
2012). However, these stellar standard candles are often rare or
not bright enough to be observable at large distances, and
uncertainties in distance estimates can introduce significant
errors in the analysis of the circular velocity curve. Furthermore,
the full three-dimensional velocity information of the tracers is
generally not available, so the circular velocity has to be
estimated using only the measured line-of-sight velocity and
position. This estimation necessarily assumes that the emitter is
in a perfectly circular orbit.

To accurately determine the MW’s rotation curve without
relying on key assumptions about the kinematic of emitters,
precise measurements of the Galactocentric radius, tangential
velocity, and radial velocity for each star are necessary,
including the uncertainties in position and velocity in all three
spatial dimensions. These measurements enable the computa-
tion of the various terms in the Jeans equation, which,
assuming the Galaxy is close to a self-gravitating steady state,
provides a connection between the derivatives of the gravita-
tional potential, the mass density, and the moments of the
velocity components (see, e.g., J. Binney & S. Tremaine 2008).
The Gaia mission has recently provided a large sample of

stars with high-precision parallax and proper motion measure-
ments (Gaia Collaboration et al. 2016, 2018, 2021b). Addi-
tionally, the third data release of the Gaia mission (DR3) has
significantly increased the catalog of stars’ line-of-sight
velocities, with over 30 million stars included (D. Katz et al.
2023). The availability of all six dimensions for a large sample
of stars in the MW marks a new phase in determining its
rotation curve and a number of other kinematic properties (Gaia
Collaboration et al. 2021a, 2023; D. Katz et al. 2023).
Recently, several research groups have utilized the Gaia data

sets to determine the MW’s rotation curve, employing different
samples of stars (A.-C. Eilers et al. 2019; P. Mróz et al. 2019;
Ž. Chrobáková et al. 2020; H.-F. Wang et al. 2023; X. Ou et al.
2024). The measurements by A.-C. Eilers et al. (2019) and
P. Mróz et al. (2019) are based on samples of red giant stars
and Cepheids, respectively. H.-F. Wang et al. (2023) obtained
the rotation curve by applying a statistical deconvolution of
parallax errors using Lucy’s inversion method (LIM;
L. B. Lucy 1977) to the full sample of Gaia DR3 sources.
This method was first applied by M. López-Corredoira &
F. Sylos Labini (2019) to the Gaia DR2 data; the rotation curve
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was then determined by Ž. Chrobáková et al. (2020). Finally,
X. Ou et al. (2024) presented an updated circular velocity curve
obtained in a sample of red giant stars that was larger than the
one considered by A.-C. Eilers et al. (2019).

The new measurements indicate that the MW’s rotation
curve vc(R) is not flat but exhibits a gradual decline,
transitioning from approximately 230 km s−1 at 5 kpc to around
170 km s−1 at 28 kpc. Specifically, both H.-F. Wang et al.
(2023) and X. Ou et al. (2024) found that the circular velocity
curve declines at a faster rate for large Galactic radii
(R> 20 kpc) than inner Galactic radii. A similar trend, albeit
not definitive, was observed by A.-C. Eilers et al. (2019), while
P. Mróz et al. (2019) found a slower decline at smaller radial
distances (i.e., R< 15 kpc). In their study, Y. Jiao et al. (2023)
compared different estimates of the MW’s rotation curve and
conducted a robust assessment of the systematic uncertainties.
They confirmed a significant decrease in velocity between 19.5
and 26.5 kpc, amounting to approximately 30 km s−1. They
have interpreted this observation as indicating a Keplerian
decline in rotation, which initiates at a distance of 19 kpc from
the Galaxy center and extends to 26.5 kpc. Moreover, they
rejected the hypothesis of a flat rotation with a statistical
significance of 3σ.

The fact that vc(R) decreases with increasing radius implies
that the mass estimated in a given Galactic mass model should
be lower than that for a flat rotation curve. However, a certain
amount of dark matter (DM) is required, as the stellar
components alone are insufficient to account for the observed
velocity profile (A.-C. Eilers et al. 2019; F. S. Labini et al.
2023; X. Ou et al. 2024), unless a modified gravity model is
invoked (M. Milgrom 1983; S. S. McGaugh et al. 2016;
M. López-Corredoira & J. E. Betancort-Rijo 2021). In this
regard, the best fit obtained with the canonical Navarro–Frank–
White (NFW) halo model (J. F. Navarro et al. 1997), which
assumes DM distributed approximately spherically, yields a
virial mass of Mvir= (6.5± 0.5)× 1011 Me and a virial radius
of Rvir= (180± 3) kpc (F. S. Labini et al. 2023). These values
are approximately 20% smaller than the estimation for this
same model provided by A.-C. Eilers et al. (2019), who had
data only up to 25 kpc. In addition, both data sets yield lower
mass estimates than several previous studies that used an
approximately constant vc(R) (see, e.g., J. Bovy et al. 2012;
G. M. Eadie & W. E. Harris 2016; G. Eadie et al. 2018).

More recently, X. Ou et al. (2024) fitted to their
determination of the rotation curve two different mass models
for the DM halo: a generalized NFW (gNFW) profile and an
Einasto profile (J. Einasto 1965; E. Retana-Montenegro et al.
2012). Both models introduce an additional free parameter
compared to the standard NFW so that they are more suitable to
fit a declining rotation curve. In particular, the gNFW profile
incorporates a parameter that modulates the inner and outer
asymptotic power-law slope of the standard NFW profile. The
halo virial mass obtained for this model is
Mvir= (5.17± 0.1)× 1011 Me, similar to the value found by
F. S. Labini et al. (2023) in the NFW case. The Einasto model
is described by a stretched exponential profile, with the
exponent playing the role of the additional free parameters
beyond the total mass and characteristic length scale; in this
model the density profile decays faster than in the NFW case,
and the best fit gives Mvir= (1.5± 0.04)× 1011 Me, which is
significantly lower than previous estimations.

Finally, F. S. Labini et al. (2023) found an MW mass of
(1.6± 0.5)× 1011 Me for a model that assumes DM to be
confined to the Galactic disk: this is named the dark matter disk
(DMD) model. The motivation for considering this model
stems from the “Bosma effect” (A. Bosma 1978, 1981), which
is an observation in external disk galaxies suggesting a
correlation between DM and neutral hydrogen (H I). Indeed,
there is substantial observational evidence indicating that
rotation curves of external disk galaxies, particularly at larger
radii, exhibit a rescaled version of those derived from the H I
distribution (R. Sancisi 1999; H. Hoekstra et al. 2001;
F. V. Hessman & M. Ziebart 2011; R. A. Swaters et al.
2012; F. Sylos Labini et al. 2024). Even in the case of the MW,
it is possible to fit the rotation curve by positing that the
distribution of H I serves as a proxy for DM (F. S. Labini et al.
2023).
The studies mentioned above primarily focused on determin-

ing the rotation curve within the plane of the Galaxy. Recently,
some data sets have allowed for exploration of off-plane regions
and the investigation of the vertical dynamics of the MW. These
analyses have primarily been undertaken to differentiate between
two main hypotheses: the existence of an approximately
spherical DM halo, such as the NFW model, and fitting the
rotation curve by assuming modified Newtonian dynamics
(MOND—see, e.g., M. Milgrom 1983; S. S. McGaugh et al.
2016; M. López-Corredoira & J. E. Betancort-Rijo 2021). The
latter hypothesis proposes that the flat rotation curves observed
in the outer regions of disk galaxies are not the result of a
massive DM halo, but rather indicative of MOND. C. Nipoti
et al. (2007) pointed out that that while these models can
produce nearly identical rotation curves within the disk, they
exhibit distinctive differences in terms of vertical dynamics. In a
recent study by Y. Zhu et al. (2023), the complete form of the
Jeans equations was employed to differentiate between various
mass models of the MW. This approach has been previously
discussed in studies such as R. Kipper et al. (2016) and
references therein. The authors utilized two independent Jeans
equations, namely the radial and vertical directional equations, as
discriminators to assess the consistency between gravitational
potential models and kinematic data. Under the assumptions of a
stationary system with zero average radial and vertical velocity,
and axisymmetry resulting in zero cross-terms of the velocity
dispersion tensor, the relevant kinematic quantities entering the
Jeans equations were identified.
To estimate these kinematic quantities, the study analyzed

velocity data from the LAMOST and Gaia red clump sample
compiled by Y. Huang et al. (2020). This sample consisted of
approximately 137,000 red clump stars within the range
4–16 kpc in Galactocentric distance and within a height of
4 kpc in vertical distance. The results of these analyses revealed
that these models were equally consistent with the data at
almost all spatial locations within the analyzed range.
In the present study, we employ both the original Gaia DR3

data and the extended kinematic maps obtained from Gaia
DR3 data, which were analyzed using the LIM technique
(M. López-Corredoira & F. Sylos Labini 2019; H.-F. Wang
et al. 2023), to explore the off-plane dynamics. Indeed, these
data enable us to derive velocity moments both within and
outside the Galactic plane. In particular, the direct Gaia DR3
data have an upper limit for the radial distance of R< 14 kpc,
whereas the extended kinematic maps cover a radial range
between 12 kpc and 22 kpc; in both cases the vertical range
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extends from −2 kpc to 2 kpc. Assuming the Galaxy is in a
steady state under its self-gravity and utilizing the complete
set of Jeans equations, we compare the generalized rotation
curves in the plane and off the plane to the predictions of the
standard NFW halo model and the DMD model. While we do
not perform a complete χ2 minimization over the free
parameters of these models for the off-plane case, we can
still obtain valuable insights regarding the compatibility of the
data with the two mass distributions considered.

The paper is structured as follows: in Section 2, we recall the
basic elements of the Jeans equations that will be used in our
study and stress the underlying approximations. In particular,
we emphasize the features of the multicomponent mass models.
In Section 3, we discuss the determination of the kinematic
quantities from the Gaia DR3 data and make the best fits of the
mass models that we have considered. Finally, in Section 4, we
present our conclusions.

2. Jeans Equations and Mass Models

2.1. Jeans Equations

The problem at hand involves measuring kinematic
quantities and obtaining information about the density
distribution of luminous components (such as stars and gas,
i.e., the baryonic components) in order to constrain the total
mass based on a given mass model. To achieve this objective,
the self-consistent Jeans–Poisson system of equations is
employed, assuming that the Galaxy is in a steady state so
that all time derivatives are equal to zero (J. Binney &
S. Tremaine 2008). The Jeans equation provides a reasonable
approximation for astrophysical systems like galaxies, as the
timescale for collisions between stars is significantly longer
than the crossing timescale t r» -G 1, so that the funda-
mental dynamics is that of a collisionless system. This
treatment neglects any time-dependent physical processes.

Let us suppose that the system under consideration is
axisymmetric. The first Jeans equation relates velocity
moments to the radial acceleration:

( )⎛
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r r
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The second Jeans equation relates velocity moments to the
vertical acceleration:
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If the gravitational potential is generated only by the mass
density ρ then this is given by given by Poisson’s equation

( )p r F = G4 . 32

Equations (1)–(3) describe the self-consistent Poisson–Jeans
equations.

2.2. Dark and Baryonic Matter Distributions in the Two
Models

In both the NFW and DMD cases, DM is not observable, so
one must assume its spatial and velocity distributions. In the
NFW case DM is in a stationary and spherical configuration,
where the gravitational force is in equilibrium with the
isotropic velocity pressure. It is important to acknowledge that

the idealization of spherical halos and isotropic velocity
distributions is a simplification. In reality, halos formed in
cosmological simulations exhibit deviations from perfect
sphericity, and their velocity distributions are not strictly
isotropic. However, for the purposes of the subsequent
treatment, it is common to assume a spherical halo and an
isotropic velocity distribution. This simplifying assumption
allows for a tractable analysis and provides a useful starting
point for understanding the overall dynamics of the system. In
this condition the DM obeys the Jeans equation in spherical
coordinates (J. Binney & S. Tremaine 2008):
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where r2= R2+ z2, and the quantities ρdm, vR,dm
2 , βdm, and Φdm

are respectively the density, the radial velocity dispersion, the
velocity anisotropy parameter, and the gravitational potential of
the DM component. The last quantity is related to the density
by the Poisson equation:

( )p r F = G4 . 52
dm dm

Thus in this case Equations (1) and (2) become
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where ρbar, vR,bar, vz,bar, and vθ,bar are respectively the density
and the three components of the velocity of the baryonic matter
in the disk (i.e., stellar and gas components). The gravitational
potential of this baryonic matter is

( )p r F = G4 . 82
bar bar

In order to have a self-consistent Jeans–Poisson system of
equations, the total gravitational potential in Equations (1) and
(2) is

( )F = F + F . 9bar dm

As with the NFW case, the properties of DM in the DMD
model are also unknown and must be assumed. In particular,
the hypothesis in the DMD model is that DM is located in the
disk and follows approximately the same spatial and velocity
distributions as baryonic matter. Thus in this case in
Equations (1)–(3) we have that the source of the gravitational
potential is the whole matter density that is located in this disk,
i.e.,

( )r r r= + , 10dm bar

and vR= vR,dm= vR,bar (the same for other two velocity
components). The total gravitational potential Φ obtained from
Equation (3) with the density given by Equation (10) coincides
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with the gravitational potential of the disk. In this way the
Jeans–Poisson system of equations is again self-consistent.

In order to use a more compact terminology we define the
density in the disk ρdisk and the velocity components in the
disk, e.g., vR,disk, where

( )
r r=

=v v 11R R

disk bar

,disk ,bar

for the NFW case and

( )
r r r= +

= =v v v 12R R R

disk bar dm

,disk ,bar ,dm

for the DMD case.
By defining the quantities
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we can rewrite the Jeans equations as
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Equations (14) and (15) hold for both the NFW and the
DMD models, but the disk density is different in the two cases
(i.e., Equations (11) and (12) respectively).

In Equation (14) we have defined
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because it is observationally found that (see below)
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In Equation (14) we neglect hereafter the mixed terms (i.e.,
v vR z ) as they are subdominant. For instance, A.-C. Eilers et al.
(2019) estimated that the contribution of these terms is 2–3
orders of magnitude smaller than that of other terms. They
concluded that these terms introduce systematic uncertainties
only at the level of 1%. In the LIM analysis, estimations of
these terms from the data confirm that their contributions are
indeed negligible (M. López-Corredoira & F. Sylos
Labini 2019; H.-F. Wang et al. 2023).

From Equations (14) and (15) it follows that the determina-
tions of both vc and az from the kinematic data require
knowledge of the density distribution of the disk, as the
quantities ( )h R z,R and ( )h R z,z are involved on the right-hand
side of Equations (14) and (15), respectively. However, the
circular velocity is primarily influenced by the tangential

velocity qv
2 , and the terms involving ( )h R z,R represent only

second-order perturbations. On the other hand, the vertical
acceleration strongly depends on ( )h R z,z , because it appears in
the denominator of Equation (15).
Let us now consider a simple case: we approximate the

density of the disk as a double exponential
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then, from Equations (13), we simply have
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In general, the density of the disk can be approximated as the
sum of Nc different contributions that decay approximately
double-exponentially with different characteristic scales; we
have
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where hR,i and hz,i are respectively the characteristic radial and
vertical length scales of the ith component. In this case we have
that
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By inserting the values of Equations (20)–(22) into
Equation (13) we can compute the values of ( )h R z,R and
of ( )h R z,R .

2.3. Baryonic Components

Let us discuss in more detail the properties of the baryonic
disk components, which are assumed to be known. These
components enter both the NFW and DMD mass models. The
total gravitational potential of the baryonic components can be
written as

( )F = F + F + F + F 23bar tn tk bulge HI

where Φtn, Φtk, ΦH I, and Φbulge are respectively the potentials
of the thin disk, the thick disk, the H I disk, and the bulge.
Similarly the total density of the baryonic components is

( )r r r r r= + + + . 24bar tn tk bulge HI

The functional behavior of each of the four baryonic
components is given below.

2.3.1. Bulge

The density of the spherical bulge is typically described by a
Hernquist profile (M. Jurić et al. 2008):
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where r2= R2+ z2 is the 3D radius and rb the characteristic
scale of the bulge. The total bulge mass is

( )pr=M r2 26b bbulge
0 3

and the gravitational potential is

( )F = -
+

GM

r

1

1
. 27b

b
r

r

bulge

b

The characteristic length scale is Rb= 0.25 kpc and the mass is
Mbulge= 2× 1010 Me (M. Jurić et al. 2008).

2.3.2. Thin Disk

The density of the thin disk can be approximated by a double
exponential:

( ) | |
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R z
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where ρtn,0 is a constant and the vertical thickness htn,z(R)
depends on the radius, i.e., there is a flare whose radial
behavior can be fitted as (Ž. Chrobáková et al. 2022)

( ) ( )= - +h R R R0.14 0.0037 0.0017 . 29ztn,
2

The radial characteristic length scale of the thin disk is
htn,R= 4.5 kpc and its mass is Mtn= 3× 1010 Me: these are the
same parameters as used by A.-C. Eilers et al. (2019) and
F. S. Labini et al. (2023).

2.3.3. Thick Disk

Even for the thick disk the density can be approximated by a
double exponential:
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where ρtk,0 is a constant and the vertical thickness htn,z(R)
depends on the radius. The flare in this case is described as
(Ž. Chrobáková et al. 2022)

( ) ( )= - +h R R R1.21 0.19 0.015 . 31ztk,
2

The radial characteristic length scale of the thick disk is
htk,R= 2.3 kpc and its mass is Mtk= 2.7× 1010 Me, where
even in this case we have adopted the same parameters as
A.-C. Eilers et al. (2019) and F. S. Labini et al. (2023).

2.3.4. The Neutral Hydrogen Disk

We assume the density of the gaseous disk to be the one
derived for H I, which is the dominant gas component.
P. M. W. Kalberla & L. Dedes (2008) found that this can be
approximated as

( ) ∣ ∣
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and where the length scale of the gaseous disk flare is
hR,fg= 9.8 kpc. The relative error on hg,z is about 20%
(P. M. W. Kalberla & L. Dedes 2008). The total H I mass is
Mg= 0.5× 1010 Me. The flares of the gas and thin disks are
similar to each other but smaller than that of the thick disk.

2.4. Dark Matter in the NFW Model

The DM halo is assumed to have the canonical NFW density
profile that is defined by two parameters, a characteristic length
rs and amplitude rh

0:

( )
( ) ( )r

r
=

+
r

1
. 34

r

r

r

r

dm,halo
h
0

2

s s

Sometimes different shapes are used: for instance, X. Ou et al.
(2024) considered a generalized NFW and an Einasto profile
that have an additional parameter. For simplicity we will
consider Equation (34) only, because even the DMD model is
characterized by two free parameters that must be constrained
from the best fit to the data.
The two free parameters of the NFW can be expressed in

terms of the virial radius and mass (J. F. Navarro et al. 1997).
The virial radius rvir is defined as the radius at which the
average density within this radius is Δ= 200 times the critical
or mean density of the Universe. By defining c= rvir/rs as the
concentration parameter, the virial mass, M(rvir), i.e., the mass
inside the virial radius rvir, is

( ) ( ) ( )⎛
⎝

⎞
⎠

pr= + -
+

M r r c
c

c
4 log 1

1
. 35svir h

0 3

Given the spherically symmetric nature of the halo, the
gravitational potential can be analytically calculated
(J. F. Navarro et al. 1997).

2.5. Dark Matter in the DMD Model

As previously mentioned, in the analysis of external galaxies, it
is assumed that the DM profile is a rescaled version of those
derived from the H I distribution (R. Sancisi 1999; H. Hoekstra
et al. 2001). The rationale behind this choice is as follows: in the
context of external galaxies, it is observed that the surface density
of H I decays at a slower rate than that of the stellar component.
Consequently, the rotation curve attributed to the gas alone
exhibits a much slower decay than that of the stellar component.
Typically, the characteristic length scale for the exponential decay
of the gaseous component can be around five times larger than
that of the stellar component. Therefore, when appropriately
rescaled, the rotation curve of the gas allows for a range of
observed shapes of the rotation curve. This includes nearly flat
rotation curves, as well as cases where the rotation curves decay
similarly to that of the MW, or even increase with radial distance.
The mass of additional matter that needs to be postulated to align
with the observed rotation curves, especially at sufficiently large
radii, is approximately tens of times greater than that of the
neutral H I.
In addition, some of the DM can also be associated with the

stellar component. Indeed, it has been shown that the Bosma
effect can provide highly accurate fits to the rotation curve for
several disk galaxies, by using both the observed stellar disk
and H I gas as proxies, with different weights, for DM
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(F. V. Hessman & M. Ziebart 2011; R. A. Swaters et al. 2012;
F. Sylos Labini et al. 2024). Thus, in general the DMD fits uses
two free parameters corresponding to the weights associated
with the stellar and gas components.

Here, we consider the radial length scale, hR , and the dark
matter mass, Mdm,disk, as free parameters of the DMD model.
This approach assumes that the properties of the stellar
components, which have been accurately measured for the
MW, are fixed, and that DM is associated only with the neutral
hydrogen component. In this case, the parameter hR is expected
to be of the same order as the H I length scale. However, it is
treated as a free parameter because the observed H I distribution
exhibits a more complex behavior than a simple exponential
function (P. M. W. Kalberla & L. Dedes 2008; F. S. Labini
et al. 2023). These two parameters can be determined by fitting
the rotation curve in the plane. The vertical density distribution
needs to be computed numerically once the values of hR and
Mdm,disk have been fixed.

3. Results

We begin by discussing the estimation of the kinematic
moments using data from Gaia DR3. In particular, we briefly
describe the methodology and techniques employed to extract
the necessary information from the Gaia data, including the
selection criteria for the sample, data processing, and
measurement techniques for obtaining the kinematic moments.
We then present the on-plane fits achieved with the two mass
models that we have chosen. By using the Jeans equations, we
compare the derivative of the gravitational potential derived by
these models with the observed kinematic moments.

3.1. Lucy’s Inversion Method

The Gaia DR3 stellar sample is limited to R= 14 kpc in
radial distance and consists of ∼1.6 million stars with the 6D
coordinates. Indeed, for R> 14 kpc the relative error in the
distance becomes larger than 20% (Gaia Collaboration et al.
2021b). This sample, with a cut in the vertical height to
|z|< 2 kpc, is useful for studying the Galactic region close to
the Sun. To explore larger radial distances we will use
kinematic maps reconstructed by M. López-Corredoira &
F. Sylos Labini (2019). In particular, they have obtained
extended kinematic maps of the Galaxy using Gaia DR2 data,
specifically targeting the region where the relative error in
distance ranged from 20% to 100%. To achieve this, they
employed LIM (L. B. Lucy 1977), developing a statistical
deconvolution algorithm for parallax errors. By applying LIM
to the Gaia DR2 data set and incorporating line-of-sight
velocity measurements, they extended the distance range for
kinematic analyses by approximately 7 kpc compared to the
results presented by Gaia Collaboration et al. (2018). This
extension included Galactocentric distances ranging from 13 to
20 kpc, providing valuable insights into the kinematics of the
MW in those regions. H.-F. Wang et al. (2023) applied the
same LIM to the Gaia DR3 sources and reached radial
distances of 30 kpc. Their findings were consistent with the
results obtained from applying LIM to Gaia DR2 sources,
confirming that LIM yields convergent and more accurate
results by improving the data set’s statistics and reducing
observational errors. The kinematic maps reconstructed using
LIM, covering distances up to approximately 30 kpc, revealed
asymmetrical motions with significant velocity gradients in all

components. These observations highlight the complex and
dynamic nature of the MW.
The LIM provides estimates of the velocity components,

along with their corresponding errors and rms values, for a
certain number of cells (Ncells) into which the Galactic region is
divided. The deconvolution process includes all stars that have
parallax errors smaller than the parallax itself and are located
within a Galactic latitude range of |b|< 10°, i.e., the anticenter
region. To ensure a sufficient number of stars for reliable
estimates, the Galactic region meeting the above criteria is
further divided into 36 line-of-sight cells. Each of these cells
has a size of Δℓ= 10° in Galactic longitude. The deconvolu-
tion technique discussed earlier is then applied to each of these
cells. It is important to note that only cells with a number of
stars greater than six (i.e., N> 6) are considered in the
subsequent analysis. This criterion ensures that there is a
minimum number of stars available in each cell to obtain
meaningful and statistically robust results.
H.-F. Wang et al. (2023) divided the anticenter region into

24,448 cells of size ΔR=Δz= 0.15 kpc: with respect to that
sample we have eliminated high-velocity stars, imposing the
following limits on the velocity components vθ ä (0,
400) km s−1, |vR|< 100 km s−1, and |vz|< 100 km s−1: for this
reason we have fewer cells, i.e., 14,101, which cover a smaller
range of radial and vertical distances. In addition, we require
that −2 kpc�z� 2 kpc and that 8.5 kpc �R� 25 kpc: with
these constraints we are left with 3201 cells. H.-F. Wang et al.
(2023) determined the rotation curve in the range of vertical
heights up to 2 kpc: here we reduce the the radial range of
distances in order to have more robust statistics in the four
slices with different vertical heights that we are going to
consider, i.e., |z| ä [0, 0.5], [0.5, 1], [1, 1.5], and [1.5, 2] kpc. In
what follows, each vertical slice is identified by its mean
vertical height, i.e., |z|= 0.25, 0.75, 1.25, and 1.75 kpc.

3.2. Estimation of Kinematic Moments from Gaia DR3

The average values of the three velocity components are
consistent with the determinations of H.-F. Wang et al. (2023):
their behavior aligns with other results available in the
literature, and we refer the interested reader to that work for
further details. As an additional test, let us consider the
comparison between the direct measurements in the Gaia DR3
sample and the measurements derived from the LIM-recon-
structed data in the same region of the Galaxy. Figure 1 shows
the case of the tangential velocity vf(R, z) and Figure 2 presents
the behavior of the radial velocity dispersion ( )s R z,vr : both
have been computed as a function of the radial distance in bins
ofΔz= 0.5 kpc. Figure 3 shows the vertical velocity dispersion

( )s R z,vz versus |z| in bins of ΔR= 2 kpc.
In the case of the Gaia DR3 sample the error bars on the

radial and vertical velocity dispersions have been computed
using bootstrap resampling whereas for the case of the LIM
results this was done by propagating the errors given by the
reconstruction method (H.-F. Wang et al. 2023). It is
noteworthy that these measurements are consistent with each
other within the error bars for vf(R, z) and ( )s R z,vz , whereas
the difference between the two determinations of ( )s R z,vr

in
the first distance bins is due to the different limits on the
maximum value of the radial velocity used in the two samples
(i.e., no limits versus |vr|< 100 km s−1).
We observe that vf(R; z) shows a clear transition from a

decreasing to an increasing trend in the range R< 15 kpc,
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moving from measurements in the Galactic plane (i.e.,
z< 0.25 kpc) to regions above it (i.e., z= 1.75 kpc). Further-

more, we note that the results for s » vv R,disk
2

r approximately
coincide with the findings of A.-C. Eilers et al. (2019) and
X. Ou et al. (2024) in the Galactic plane, who have fitted the
behavior with the exponential function

( )⎜ ⎟
⎛
⎝

⎞
⎠

µ -v
R

exp
25 kpc

. 36R,disk
2

Even determinations of the vertical velocity dispersion
( )s R z,vz versus z in radial bins of width ΔR= 2 kpc show

reasonable agreement, in the range of radii where they overlap,
of the direct measurements in the Gaia DR3 catalog and in the
LIM analysis.
Figure 4 shows the behavior of ( )s R z,vz versus z in bins of

ΔR= 3 kpc centered on R= 8.5, 11.5, 14.5, 17.5, and 20.5 kpc
and Δz= 0.3 kpc. One may note that ( )s R z,vz grows
approximately linearly with z and that its amplitude at low z
increases slightly with R.
We have fitted to the estimated values of svz versus z the

function

( ) ( ) ( ) ( )s = +R z C R C R z; , 37v 0 2
2

z

where the functional behavior is chosen so that the first
derivative of ( )s R z;vz for z= 0 is zero because of symmetry
reasons. The values of the coefficients and their standard errors
are reported in Table 1.

Figure 1. Behavior of vf(R, z) vs. R in bins of Δz = 0.5 kpc. Black circles are
the direct measurements in the Gaia DR3 sample (which are limited to
R < 12 kpc), while red squares are the determinations through the LIM-
reconstructed data in the same region of the Galaxy.

Figure 2. Behavior of ( )s R z,vr vs. R in bins of Δz = 0.5 kpc. Black circles are
the direct measurements in the Gaia DR3 sample (which are limited to
R < 12 kpc), while red squares are the determinations through the LIM-
reconstructed data in the same region of the Galaxy.

Figure 3. Behavior of ( )s R z,vz vs. |z| in bins of ΔR = 2 kpc. Black circles are
the direct measurements in the Gaia DR3 sample (which are limited to
R < 12 kpc), while red squares are the determinations through the LIM-
reconstructed data in the same region of the Galaxy.

Figure 4. Behavior of ( )s R z,vz vs. |z| in bins of ΔR = 3 kpc centered on
R = 8.5, 11.5, 14.5, 17.5, and 20.5 kpc and Δz = 0.3 kpc.

Table 1
The Values of the Coefficients, along with Their Respective Errors, for the

Second-order Polynomial Used to Fit ( )s R z;vz as a Function of z (see
Equation (37))

R (kpc) C0 C2

11.5 19.7 ± 2.0 2.1 ± 0.2
14.5 20.4 ± 1.2 1.6 ± 0.1
17.5 24.3 ± 1.2 1.5 ± 0.1
20.5 26.5 ± 1.4 1.5 ± 0.1
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Figure 5 shows the behavior of C0(R) and C2(R) of
Equation (37) with their linear fits

( ) ( ) ( )
( ) ( ) ( ) ( )

=  + 
=  - 

C R R
C R R

9.8 2.0 0.80 0.14
2.6 0.4 0.86 0.06 . 38

0

2

3.3. Numerical Determination of the Gravitational Potential

The best fit to either the DMD or NFW model in the Galactic
plane was obtained by adjusting two free parameters. As
mentioned above, for the DMD model, these parameters are the
characteristic length scale of the radial exponential decay, hR ,
and the mass of the DM component, Mdm,disk. By varying their
values, the DMD model can be adjusted to achieve the best fit to
the observed data in the Galactic plane. On the other hand, for
the NFW model the two free parameters are the characteristic
length rs and the amplitude rh

0 (see Equation (34)). While the
expression for the halo potential can be analytically computed
for any value of the spherical distance, the contribution of the
disk components can be easily computed only in the plane.

When it comes to fitting the off-plane behavior of the
generalized rotation curves vc(R, z) and the vertical acceleration
az(R, z), the task becomes more challenging due to the lack of
analytical expressions for these quantities in the baryonic or
DMD disks. As a result, two different approaches can be
employed. (i) One approach is to compute the derivative of the
gravitational potential through numerical integration, as imple-
mented by Y. Zhu et al. (2023). (ii) Another approach is to
perform numerical realizations of the DMD disk or halo model
and calculate the potential in such particle distributions. In this
study, the second approach was adopted, although it does not
allow for a complete best-fitting procedure. Instead, multiple
realizations of the DMD disk or halo model were run by varying
the two free parameters to find the best fit to the data.

In each realization particles are spatially distributed accord-
ing to the density distributions corresponding to the two
models. More specifically, the density of the baryonic disk
components is described by Equation (24) while the DM
component is given by Equation (34) for the NFW halo case or
by Equation (32) for the DMD case. Each realization of the
whole baryonic+DM system consists of Np≈ 5× 106 particles

of equal mass m. The gravitational potential (for unit mass) of
the ith particle at the position xi is computed as

( )
| |

( )åF =
-= ¹

x
x x

Gm
, 39i i

j j i

N

i j1;

p

where G is Newton’s constant. The mean gravitational potential
is then calculated as

( ) ( ) ( )åF D < < = F
=

xR R z z z
N

; ;
1

40
s i

N

i i1 2
1

s

where the sum is extended to Ns in the bin of size ΔR centered
at R and with z ä [z1, z2]. The radial derivative of Equation (40)
gives an estimation of the total gravitational potential of a given
mass model that enters in Equation (14) (the same reasoning
applies for the vertical derivative that enters in Equation (15)).
The kinematic moments in both Jeans equations are computed
in the same R, z bin of the gravitational potential.

3.4. Effect of the Flare on the Radial and Vertical
Accelerations

To numerically determine the gravitational potential and
its radial and vertical derivatives for computing the expected
vc(R, z) and az(R, z), we initially considered, as an illustrative
example, a simplified disk with a total density described by a
double exponential decay in the radial and vertical density
distributions described by Equation (18), instead of the full
baryonic density components (see Equation (24)). This
example is useful to single out the effect of the flare.
The parameters used, which are not chosen to fit the Gaia

DR3 data, are Mdisk= 10× 1010 Me, hR= 5 kpc, and hz=
0.3 kpc. Additionally, we explored a scenario where the flare
was determined using the expression for the flare in the thick-
disk case (Equation (31)), resulting in the largest flare among
those of the thin, thick, and gas disks.
Figure 6 illustrates the behavior of vc(R, z) in vertical slices

with a thickness of Δz= 0.5 kpc, centered at z= 0.25, 1.25,
and 2.25 kpc. In all cases, the behavior of vc(R, z= 0.25 kpc)

Figure 5. Behavior of the two coefficients describing the behavior ( )s z R;vz as
a function of |z| (see Equation (37)). Best fits with a linear function (red lines)
are reported (see Equation (38)).

Figure 6. Behavior of vc(R, z) for a disk of mass M = 10 × 1010 Me with a
double exponential decay with hg,R = 5 kpc and hg,z = 0.3 kpc (black circles)
and for the case where there is a thick-disk-like flare (red circles). The plot is in
terms of the radial distance R and is divided into vertical slices of thickness
Δz = 0.5 kpc centered at |z| = 0.25 kpc, ..., z = 1.75 kpc. Additionally, the
behavior of the exponential thin disk model with the parameters of the disk is
shown as a reference (represented by a green line). Error bars are reported but
not visible in the figure.
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closely resembles that of the exponential thin disk (ETD)
model (see J. Binney & S. Tremaine 2008, Equation (2.165)),
with parameters Mdisk= 10× 1010 Me and hR= 5 kpc. How-
ever, the presence of the flare becomes particularly noticeable
around the maximum value of the rotational velocity, which
occurs for » »R h2 10 kpcRmax .

This difference is the reason behind the distinct best-fit
parameters for the DMD model obtained in the present work
(see below) compared to those obtained by F. S. Labini et al.
(2023). It is worth mentioning that as z increases beyond
0.25 kpc, the behavior of vc(R, z) deviates for <R Rmax,
exhibiting a faster decay at smaller radii. However, for

>R Rmax, the behavior converges to the ETD model.
Figure 7 presents the behavior of the vertical acceleration,

obtained as

( ) ( ) ( )=
¶F

¶
a R z

R z

z
,

,
41z

mod

as a function of z in different radial slices of thickness
ΔR= 1 kpc. Note that az

mod has been normalized to

( )=a
GM

h
. 42

R
0

disk
2

The amplitude of az
mod decreases as the radial distance R

increases. Specifically, it follows a decay proportional to R−2,
which is in line with the expected behavior. Furthermore, it
presents a slow growth with z, and it shows a difference by a
factor not larger than 1.5 between the cases with and without
the flare. In brief, the effect of the flare is to deform the
behaviors of vc(R, z) and az(R, z) with respect to the case of a
simple double exponential decay. The vertical acceleration is
primarily determined by the disk alone as the contributions
from the spherical halo are negligible for distances |z|< 2 kpc,
due to fact that the halo is spherically symmetric.

The mass of the disk in the case of the DMD scenario is
approximately twice that in the NFW scenario. This is because,
in the NFW case, only the baryonic components contribute to
the disk’s mass, whereas in the DMD case, there is an
additional contribution from DM, which is approximately twice
the mass of the baryonic component (as described below).
Since the vertical acceleration (az) scales with the mass of the

disk, we expect the acceleration in the DMD scenario to be
approximately twice that in the NFW scenario.
We stress that Figures 6 and 7 present a simple example

aimed at illustrating the trends when varying the range of
vertical and radial distances for the generalized rotation curve
and vertical acceleration, respectively. As mentioned above,
since the main contribution to these trends in both the DMD
and NFW models comes from the disk, we expect similar
behaviors in these models. The only difference lies in the
amplitudes of vc(R, z) and az(R, z), which are determined by the
mass of the disk.

3.5. A Simple Exponential Disk Model

F. S. Labini et al. (2023) considered the fits to the rotation
curve in the plane with two different models: both have the
same baryonic components that are described by Equation (24)
with total baryonic mass Mbar,disk= 8.2× 1010 Me. Addition-
ally, in the NFW model the halo component has the best-fit
parameters i.e., rs= 12.6 kpc and r = ´ -9.4 10h

0 25 g cm−3,
which correspond to a virial mass of Mvir= 6.5× 1011 Me
whereas for the DMD the additional DM mass is
Mdm,disk= 8.9× 1010 Me.
Figure 8 shows, within the range of radial distances [8.5,

25] kpc and vertical distances |z|� 0.25 kpc, a fit using a much
simplified disk model. This model consists of an exponential
thin disk characterized by two parameters: the mass and the
radial length scale, with the best-fit parameters found to be
Mdisk= 17.1× 1010 Me and hR= 5.1 kpc respectively.
These parameters differ slightly from the best fit obtained by

F. S. Labini et al. (2023) for several reasons. First, in their
study, the disk was modeled using the full stellar components,
whereas in our case, we employ a different modeling approach
consisting in the ETD approximation. Additionally, the range
of radial distances considered in their study was different,
spanning from 5 kpc to 27.5 kpc. In contrast, we limit our
analysis to the range 8.5–25 kpc. This narrower range is chosen
because it allows us to compute the generalized rotation curves
at different vertical heights in the same range of radial
distances.
Concerning the vertical acceleration, this is determined by

two parameters: the mass of the disk and its vertical

Figure 7. Behavior of ( )a R z,z
mod in units of a0 (see Equation (42)). The plot is

in terms of the vertical height |z| and is divided into radial slices centered at
R = 10 kpc, R = 13 kpc, R = 16 kpc, and R = 19 kpc. The thickness of each
radial slice is ΔR = 1 kpc.

Figure 8. Best fit to the Gaia DR3 data in the range of radial distances [12,
22] kpc and for vertical distances |z| � 0.25 kpc with the exponential thin-disk
approximation. Best-fit parameters are Mdisk = 17.1 × 1010 Me and
hR = 5.1 kpc.
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characteristic length scale, hz . The disk mass in the DMD case
is about twice that in the NFW model and is fixed by fitting the
on-plane rotation curve. Thus, for az(R, z) in the example
considered, the only free parameter is hz . We find that for

=h 0.1 kpcz the DMD model agrees with the data, while the
NFW model does not. It is worth noting that if we had
considered =h 1 kpcz , the situation would be reversed.
Indeed, as discussed in the next section (see Figure 9), the
amplitude of the vertical acceleration decreases with increas-
ing ( )h Rz .

This discussion highlights the importance of the vertical
height as a key parameter in assessing the agreement between a
model and the vertical acceleration data. Additionally, the
presence of different flares in the various components of the
disk further complicates the problem, as we will discuss in the
following paragraphs. Therefore, it is necessary to construct a
realistic model in which all parameters are carefully con-
strained based on the available data. At small radial distances, it
is necessary to have a very careful characterization of the flares
in the different mass components. However, at large radial
distances, i.e., R> 15 kpc, the generalized rotation curves are
weakly dependent on the details of the flares. Thus, this is the
more robust radial range in which to fit theoretical mass
models.

3.6. Determining the Observed Vertical Acceleration

As mentioned above, the two free parameters of the DMD
model, hg,R and Mdm,disk, and of the NFW model, rs and ρ0, can
be determined from the fit of vc(R, z) in the plane. In the first
Jeans equation, which gives vc(R, z), the model-dependent term
that includes the radial characteristic length scale can be treated
as a perturbation. On the other hand, in the second Jeans
equation (Equation (15)), which provides az(R, z), the term

( )h Rz becomes crucial and needs to be determined for a specific
mass model.

For the NFW model, ( )h Rz does not depend on the
parameters of the fit but only on the assumed mass of the
baryonic components and on their vertical distributions, which
are all known. In the case of the DMD model, ( )h Rz depends
on the total mass of the disk, which includes both baryonic and
dark matter, as well as on its vertical density distribution,
specifically influenced by the characteristics of both the

baryonic and DM flares. Given that the baryonic properties
are known, ideally, the shape of the DM flare should be
determined through a best-fit procedure. However, in this
study, a complete best-fitting procedure is not employed.
Figure 9 shows the variation in az

obs when fixing the mass of the
disk and allowing ( )h Rz to vary. It can be observed that
transitioning from ( ) =h R hz g z, to ( ) =h R hz tk z, causes az

obs to
change by a factor 10.

3.7. The DMD Model

The best-fit results to the generalized rotation curves vc(R, z)
of the Gaia DR3 sample obtained using a DMD disk model are
presented in Figure 10 in the range [8.5, 25] kpc. The DM disk
has Mdm,disk= 9× 1010 Me and hg,R= 5 kpc. Note that the
baryonic components have mass Mbar= 8.2× 1010 Me so that
the total mass is very similar to that of the single disk,
Mdisk= 17.2× 1010 Me, of the ETD fit presented in the
previous section as it has similar hg,R. A safe estimate of the
uncertainty in the mass estimation is about 10%.
The upper panels of Figure 11 show that the agreement

between ( )a R z,z
obs and ( )a R z,z

mod is less good but still
reasonable. Given that the DM disk is the heavier one, it is not
surprising that the vertical height giving the best accordance
with the data is closer to that of the gaseous disk, i.e.,

( ) »h R hz z g, , than that of the thick disk: this is indeed the case
(see the bottom panel of Figure 11). In the discussion section
below we report the χ2 values of the fits.

3.8. The NFW Halo Model

For the case of the halo model the vertical density
distribution in the disk depends solely on the baryonic
components, as the free parameters in this case describe the
NFW halo. Figure 12 shows the results for the case in which
ρ0= 9.4× 10−25 g cm−3 and rs= 12.5 kpc (F. S. Labini et al.
2023). In our study, we employ the same parameters as the fit
without the flares, as the main mass component in this case
arises from the spherical halo. The vertical accelerations

( )a R z,z
mod have half the amplitude of those obtained in the

DMD model (see Figure 13). Thus, they are in agreement with
( )a R z,z

obs only when assuming a higher value of hz(R) than in

Figure 9. Behavior of az
obs (see Equation (15)) in units of a0 (see Equation (42))

for the three cases ( ) =h R hz tn z, , ( ) =h R hz tk z, , and ( ) =h R hz g z, . For clarity
the error bars are not reported.

Figure 10. Generalized rotation curves of the Gaia DR3 sample for different
values of the median height (black dots) and the best fits with a DMD
model (red lines). The DM disk has parameters Mdm,disk = 9 × 1010 Me and
hg,R = 5 kpc .
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the DMD model. This is consistent with the fact that, in this
case, the gas disk has a negligible effect, while the actual hz(R)
must be larger due to the contribution of the thick disk (see
Figure 11).

3.9. Discussion

In order to present a quantitative estimation of the relative
performance of the DMD and NFW models, Table 2 provides
the reduced χ2 values, with two degrees of freedom, for the fits

of the generalized rotation curves in two models, considering
four vertical slices. The fits were performed within the range of
radial distances 8.5–25 kpc (case [1]) and 13–25 kpc (case [2]).
As mentioned above, the precise characterization of the
different flares is needed to make an accurate fit at small radii.
On the other hand, at large enough radial distances the
generalized rotation curves are not affected by the specific
features of the flares in the different mass components.
Comparing the generalized rotation curve vc(R, z) with the
DMD model, we observe that it exhibits a weaker agreement
with the model prediction for all four considered values of z at
large radial distance. Indeed, the rotation curves decay more
slowly than the Gaia DR3 data. As mentioned previously, to
address this, one possible approach is to consider a generalized
NFW profile or an Einasto profile, as demonstrated by X. Ou
et al. (2024).
Similarly Table 3 provides the reduced χ2 values for the fits

of the vertical acceleration in two models, considering four
vertical slices. The fits were performed within the range of
vertical heights |z|ä (0, 2) kpc. The fits in this case are similar.
Finally Table 4 summarizes the values of the best-fit

parameters for the two mass models that we considered.

4. Conclusions

In this work, by using the data of the Gaia DR3 catalog
analyzed by H.-F. Wang et al. (2023), who have measured the
kinematic moments in the anticenter region, we have
determined the generalized rotation curves vc(R, z) for radial
distances in the range from 8.5 kpc to 25 kpc and vertical
heights in the range from −2 kpc to 2 kpc. We have then used
vc(R, z) at different vertical heights to constrain the matter
distribution in two distinct mass models: the first model adopts

Figure 11. Upper panels: behaviors of ( )a R z,z
mod (circles) and ( )a R z,z

obs

(solid lines) as a function of |z| for R = 10, 13, 16, and 19 kpc. Bottom panel:
values of hz for the DMD and NFW models that give the best agreement with
the data together with the behaviors for the thin, thick, and gas disks.

Figure 12. As Figure 10 for the halo model.

Figure 13. As the upper panels of Figure 11 for the halo model.

Table 2
Reduced χ2 Values for the Fits of the Generalized Rotation Curves in Two

Models, Considering Four Vertical Slices

Slice, z (kpc) cNFW
2 [1] cDMD

2 [1] cNFW
2 [2] cDMD

2 [2]

0.25 0.49 1.0 0.40 0.22
0.75 0.37 0.37 0.35 0.10
1.25 1.2 0.34 0.52 0.11
1.75 0.8 0.6 0.48 0.45

Note. The fits were performed within the range of radial distances 8.5–25 kpc
(case [1]) and 13–25 kpc (case [2]).
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the canonical NFW halo model, while the second model,
inspired by the Bosma effect, assumes that dark matter is
confined to the Galactic plane and follows the distribution of
neutral hydrogen. F. S. Labini et al. (2023) used both the
observed profiles of H I and H I + H2 for the fit, and we refer to
that work for further details on this issue.

Best-fitting the NFW model gives a virial mass
Mvir= (6.5± 0.5)× 1011 Me, but for the DMD model a total
mass of MDMD= (1.71± 0.2)× 1011 Me. In our analysis, we
have found that the DMD model generally provides a better fit
to the generalized rotation curves than the NFW model: this
occurs especially at large radii, i.e., R> 13 kpc, where the
rotation curves show a decay with radial distance. At small R,
i.e., R� 12 kpc, where the rotation curve for vertical heights
|z|> 1 kpc shows a rapid decline with R, the agreement is
slightly better for the DMD than for the NFW; however, to
obtain more stringent constraints in this range of radial
distances a precise characterization of the flares in the different
mass components and a full minimization procedure are
necessary. These will be implemented in future works together
with the study of modified gravity models.

We conclude that examining the generalized rotation curves
at different vertical heights allows us to gain insights into the
vertical extent and shape of the DM component. If the DM
distribution is primarily flattened within the Galactic disk, we
would expect to observe distinct variations at small radii (i.e.,
R≈ 5–10 kpc) in the rotation curves as the vertical distance
changes. Conversely, if the DM distribution is more spherically
symmetric, we would anticipate minimal changes in the
rotation curves across different vertical heights. The analysis
of the vertical acceleration does not give clear constraints on
the different mass models, because an additional parameter,
i.e., the vertical characteristic length, crucially determines its
amplitude.

Overall, the forthcoming Gaia data release is indeed
anticipated to provide a broader range of radial and vertical
distance measurements with improved accuracy. This expanded
data set will be valuable for constraining the performance of
models, particularly through the simultaneous fitting of
generalized rotation curves within the 5–30 kpc range of radial
distances, and will probably allow us to explore a larger range
of vertical heights, i.e., |z|< 3 kpc. These improved constraints
have the potential to yield clearer conclusions regarding the
geometric properties of the DM component.
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