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A B S T R A C T

Observations of the tidal response of celestial bodies quantified by the Love numbers are highly relevant
in planetary geophysical investigations because they provide unique insight into the interior structures. For
example, the high sensitivity of tidal deformations to the properties of the oceans detected beneath the icy
surfaces of some moons is of paramount importance for investigations of their habitability. We present here
PyALMA3, a software framework developed in Python devoted to the computation of planetary Love numbers.
PyALMA3 is based on ALMA3, a previous version developed in Fortran. Conversion to Python significantly
improves the accessibility and portability of the software. We tested PyALMA3 by applying it to the exploration
of the tidal responses of Europa and the other Galilean moons. We show that accurate modeling of effects such
as the viscoelastic deformations of ice and the water density gradient in the ocean (variations of 2–3% on the
real part of 𝑘2) will be important in the context of geophysical investigations that will be conducted by future
missions targeting icy moons, such as Europa Clipper and JUICE.
1. Introduction

Celestial bodies are periodically perturbed by external or surface
forcings that deform their shape and change their gravitational po-
tential. To describe these planetary deformations and relate them to
the forcing, the Love number formalism was introduced (Love, 1911).
Three different sets of Love numbers describe the response to the main
perturbation mechanisms in terms of radial and horizontal surface
deformations, and variations in the total gravitational potential. The
tidal Love numbers quantify the perturbations induced by gravitational
tides raised by an external potential, while the load Love numbers
and the shear Love numbers describe the response to a normal and
tangential surface load, respectively (e.g., Farrell, 1972). Since the
deformations and the induced response strongly depend on the interior
structure of the body, measurements of the Love numbers can provide
significant constraints on the internal structure of planetary bodies.
For example, with the dearth of seismic measurements for most of the
celestial bodies, detection of the tidal response through observation
of the tidal Love numbers can provide clues on the state of planetary
cores (e.g., Yoder et al., 2003; Dumoulin et al., 2017), or evidence for
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existence of subsurface oceans in icy moons (e.g., Moore and Schubert,
2000; Iess et al., 2012). In particular, due to the considerable influence
of the oceans on tidal deformations, the Love numbers represent a
powerful way to sound the structure and thermal state of ocean worlds,
revealing valuable clues about their habitability (Vance et al., 2018).

To infer constraints on the interior properties of a body, it is
necessary to model the planetary deformations induced by a generic
forcing and compare the results to the observations. Love numbers
can be computed in the framework of the gravito-elastic theory, which
describes the deformations of a spherically symmetric self-gravitating
body in response to gravitational tides, surface loading and traction,
or free oscillations of the body. The mathematical formalism was first
developed to study the elastic response of the Earth to oscillations
generated by an earthquake (Alterman et al., 1959; Takeuchi and Saito,
1972), and consists of a set of six first-order differential equations re-
sulting from the equilibrium equations of a solid body (conservation of
mass and momentum) coupled with the Poisson equation for the grav-
itational potential. This formulation can be straightforwardly extended
to a viscoelastic body by invoking the Correspondence Principle (Biot,
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1954). The Love numbers can then be computed by solving the Laplace-
transformed set of equilibrium equations by using the normal modes
approach (Peltier, 1974). Melini et al. (2022) presented ALMA3, a soft-
ware written in Fortran that enables the evaluation of the viscoelastic
Love numbers of a layered spherically symmetric planet by adopting
the normal modes technique. ALMA3 extends the functionalities of the
previous version (Spada, 2008) by adding several new functions, in-
cluding the capability to compute frequency-dependent Love numbers,
which describe the response to periodic forcing, new rheology models,
and the possibility to model a layered core. These features make
ALMA3 very useful for planetary geophysical investigations, for which
observation and interpretation of the response to periodic forcing such
as gravitational tides or surface loading represent important objectives
toward a better understanding of planetary interiors and evolution.
ALMA3 has already been used to compute the Love numbers of mul-
tiple planetary bodies, including the Moon (Briaud et al., 2023a,b),
Mercury (Goossens et al., 2022), Venus (Saliby et al., 2023; Petricca
et al., 2022), Mars (Petricca et al., 2022), and Enceladus (Genova et al.,
2024).

Here, we present PyALMA3 (Styczinski et al., 2024), a planetary-
oriented Python software framework based on ALMA3 to compute
the frequency-dependent Love numbers of a spherically symmetric
celestial body. The conversion to Python significantly improves the
accessibility and portability of the code, enabling an easier integration
with other Python frameworks devoted to planetary interior modeling,
such as PlanetProfile (Styczinski et al., 2023a). We introduce PyALMA3
in combination with a methodology based on a Monte Carlo scheme
useful to study the dependency of the tidal Love numbers on the
interior properties by exploring a large parameter space. We show
that this approach, enabled by the efficient numerical scheme adopted
by PyALMA3, can be very valuable in understanding the relationship
between geophysical parameters and the interior structure of a body,
and thus the information that can be obtained through measurements
of these quantities. We applied this methodology in combination with
PyALMA3 to investigate the tidal response of Jupiter’s moon Europa.
We focus on the influence of effects relevant to the tidal modeling of
ocean worlds, such as viscoelastic response of ice and the effect of
density variations with depth in the ocean, and we show that they
need to be properly modeled to interpret the measurements that will
be acquired by future missions.

This paper is structured as follows: Section 2 introduces to the meth-
ods used by PyALMA3 to compute the Love numbers for a viscoelastic
planet, the rheological models included in the software and the interior
modeling that we use to benchmark PyALMA3 and study the tidal
response of Europa. Section 3.1 presents a validation benchmark of the
software by comparing the Love numbers computed for a viscoelastic
model of Europa with PyALMA3. Section 3.2 shows the results of the
investigation of Europa’s tidal response carried out with PyALMA3.
An application of PyALMA3 to Europa, Ganymede, and Callisto to
investigate the effects of water density gradient on their tidal response
is presented in Section 3.3. Finally, we discuss and summarize the
relevance of PyALMA3 and the effects on tidal modeling that we
quantified in the context of future missions in Sections 4 and 5.

2. Methods

This section introduces the rheological models commonly used in
planetary applications to describe the response to loading or tidal
forcings, and the methods that we use to build interior models to
benchmark PyALMA3and explore the tidal responses of ocean worlds.
The subsection on rheological models focuses on the improvements
of PyALMA3with respect to ALMA3, including a generalization of the
Andrade rheology and the implementation of the Sundberg-Cooper
rheology.
2

2.1. Rheological models

The response of a particular viscoelastic material to an external forc-
ing can be described in the Laplace domain with the same formalism
as the elastic problem, in which the elastic shear modulus 𝜇 is replaced
by a function 𝜇(𝑠), related to the constitutive equation of the material.
In the context of the propagator approach to compute planetary Love
numbers, the complex shear modulus is contained in the propagators
𝛬(𝑠) (see Appendix A). In general, deformations in a solid body subject
to shear loading follow a sequence driven by three regimes (e.g.,
Jackson et al., 2014; Renaud and Henning, 2018; Bagheri et al., 2022a):
after instantaneous and recoverable elastic and anelastic deformations
that are relevant on short time scales (regime 1), a transient creep
regime is achieved (regime 2), ultimately followed by steady-state creep
(regime 3), in which the response is fully viscous. Rheological models
describe this response in the time domain using a creep function, which
accounts for the different regimes of the viscoelastic response. The
complex creep compliance 𝐽 (𝑠) is the Laplace transform of the time-
domain creep function 𝐽 (𝑡) and its reciprocal is the complex shear
modulus 𝜇(𝑠) = 1∕𝐽 (𝑠).

Simple viscoelastic models can reproduce only the instantaneous
elastic and steady-state viscous regimes. For example, the Maxwell
model has been widely used for Earth (e.g., Peltier, 1974) and planetary
applications (e.g., Moore and Schubert, 2000; Bills, 2005). However,
this rheology does not appropriately reproduce the observed depen-
dence of material dissipation on the forcing period. Several rheo-
logical models have been proposed through laboratory experiments
and physical principles to more accurately characterize the response
of planetary materials (e.g., ice and rocks), including the Andrade
model (Andrade, 1910; Castillo-Rogez et al., 2011) and the Sundberg–
Cooper model (Sundberg and Cooper, 2010; Renaud and Henning,
2018). The fundamental advantage of these models over simpler rhe-
ologies such as Maxwell is that they are able to reproduce the response
associated with transient creep, occurring at timescales intermediate
between the elastic and viscous regimes. This range of forcing peri-
ods is relevant to many tidal interactions within the Solar System,
leading to a better description of the response to gravitational tides.
Specifically, application of these rheological laws to modeling of Mars’s
tidal response showed that they can fit geophysical observations with a
plausible mantle viscosity structure, whereas the Maxwell model yields
viscosities too low to match observations (Bagheri et al., 2019; Bills,
2005; Nimmo and Faul, 2013). Compared to the Maxwell model, the
transient components of these rheology models can produce a greater
tidal heating by an order of magnitude, with important implications for
the thermal and orbital evolution of Galilean moons and exoplanetary
systems (Renaud and Henning, 2018; Renaud et al., 2021). As a result,
these models have been widely used in modeling planetary response in
recent years, both for rocky (e.g., Dumoulin et al., 2017; Padovan et al.,
2014; Goossens et al., 2022) and icy bodies (e.g., Castillo-Rogez et al.,
2011; Rambaux et al., 2010; Gevorgyan et al., 2020; Bagheri et al.,
2022b).

The Andrade and Sundberg–Cooper rheologies reproduce the re-
sponse associated with transition between the elastic and the fully
viscous regimes through the inclusion of transient components in the
complex creep compliance and shear modulus. The complex shear
modulus for a Maxwell model consists of only the elastic and viscous
terms:

𝜇(𝑠) =
𝜇𝑠

𝑠 + 𝜇∕𝜂
(1)

where 𝜇 is the unrelaxed shear modulus (i.e., the material response
shortly after the application of the stress) and 𝜂 is the Newtonian
viscosity, which describes the response when the fully viscous regime is
achieved. In the Maxwell model, the transition between the elastic and
viscous response occurs at a characteristic relaxation time called the
Maxwell time 𝜏𝑀 = 𝜂∕𝜇. In contrast, the Andrade and Sundberg–Cooper

models include transient terms and feature a distribution of relaxation
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times instead of a single value. The Andrade complex shear modulus is
given by (e.g. Melini et al., 2022; Goossens et al., 2022):

𝜇(𝑠) =
𝜇𝑠

𝑠 + 𝜇∕𝜂 + 𝑠𝜇𝛼𝛤 (𝛼 + 1)(𝑠𝜂𝜁 )−𝛼
(2)

where 𝛤 is the Euler’s gamma function and 𝛼 is an empirical parameter
that describes the duration of the transient response. Its value has been
observed to be in the range 0.2−0.4 from laboratory evidence and it has
been found that this range provides a good fit to the experimental data
for both rocks and ice (e.g., Castillo-Rogez et al., 2011). The parameter
𝜁 = 𝜏𝐴∕𝜏𝑀 is the ratio between the Andrade characteristic time 𝜏𝐴 (on
which anelastic creep occurs) and the Maxwell time (Efroimsky, 2012;
Renaud and Henning, 2018). An alternative formulation of the Andrade
model is based on the parameter 𝛽, which describes the strength of
anelastic dissipation and can be related to the other parameters of the
rheological law by:

𝛽 = 𝜁−𝛼𝜇−1𝜏−𝛼𝑀 (3)

Under low stress regimes, 𝛽 was fit to experimental data in the pioneer-
ing work by Castillo-Rogez et al. (2011), who introduced the Andrade
model in planetary applications and showed that the 𝛽 parameter is
approximated by:

𝛽 ≈ 𝜇𝛼−1𝜂−𝛼 (4)

Comparing Eqs. (3) and (4), it is clear that this approximation is
equivalent to assuming 𝜁 = 1. In this case, the anelastic and viscous
timescales are equal. However, Castillo-Rogez et al. (2011) emphasize
that the fit to the experimental data that yields 𝜁 ≃ 1 is only valid
in a specific range of 𝜇𝛼−1𝜂−𝛼 , and therefore it should be used with
caution. Recent efforts proposed a broader range for 𝜁 , varying between
1×10−2−1×101 (Bierson, 2024; Walterová et al., 2023), although values
as high as 1×105 are still consistent with geodetic measurements of the
Earth’s Love and Shida numbers (Amorim and Gudkova, 2024).

ALMA3 extended the functionalities of previous versions by includ-
ing the Andrade rheology with 𝜁 = 1. Given the uncertainties in the
parameter 𝜁 , in PyALMA3 we have included the possibility of choosing
different values for 𝜁 for each layer described by an Andrade rheology.
We have also augmented the set of rheologies available in PyALMA3 by
including the Sundberg–Cooper model. The expression of the complex
shear modulus described by this rheological model is (Renaud and
Henning, 2018; Goossens et al., 2022):

𝜇(𝑠)

=
𝜇𝑠(𝜇∕𝜂 + 𝑠)

𝑠2(1 + 𝜇𝛼𝛤 (𝛼 + 1)(𝑠𝜂𝜁 )−𝛼 ) + 𝑠(𝜇∕𝜂 + (𝜇 + 𝜇)∕𝜂 + 𝜇∕𝜂 𝜇𝛼𝛤 (𝛼 + 1)(𝑠𝜂𝜁 )−𝛼 ) + 𝜇𝜇∕(𝜂𝜂)

(5)

where 𝜇 is the defect shear modulus (Renaud and Henning, 2018) and
𝜂 is the Voigt–Kelvin viscosity. PyALMA3 allows the user to choose the
parameters 𝛼, 𝜁 , 𝜇 and 𝜂 for every layer of the interior model.

.2. Interior structure modeling

Our interior models are based on a four-layer structure for Europa,
ncluding a rock–iron core, an ocean, and an outer ice I shell. The
ce shell is divided into a lower/warm and an outer/cold portion. The
arm shell is representative of the ice layer that is subject to ductile
eformations, in which subsolidus convection occurs, while the cold
ayer undergoes brittle deformations and transfers heat entirely by
onduction.

.2.1. Monte Carlo sampling
Some properties of Europa’s interior layers have been constrained

y previous work with measurements of the moon’s gravity and mag-
etic fields acquired by Galileo (e.g., Anderson et al., 1998; Hand
nd Chyba, 2007; Gomez Casajus et al., 2021; Petricca et al., 2023;
3

Table 1
Observations that we used to constrain our interior modeling of the Galilean satellites.
The moment of inertia is considered with the measurement uncertainty, while the mass
and radius of the interior models are enforced to be equal to the observed value.

Radius [km] Mass (×1022 kg) Moment of Inertia (𝐶∕MR2)

Europa 1560.8 4.8 0.3547 ± 0.0024
Ganymede 2631.2 14.8 0.3115 ± 0.0028
Callisto 2410.3 10.8 0.3549 ± 0.0042

Table 2
Summary of properties considered for our interior models of Europa. All properties are
assumed to be random variables, with priors given by uniform distributions throughout
the range presented here.

Parameter Range Units Symbol

Ocean depth 0 − 200a km 𝑑ocean
Conductive ice shell thickness 0 − 150b km 𝑑ice,cond
Convective ice shell thickness 0 − 150b km 𝑑ice,conv
Ocean density 1000 − 1300c kgm−3 𝜌ocean
Core shear modulus 50 − 70c GPa 𝜇core
Ice shear modulus 2.5 − 4.5d GPa 𝜇ice
Core viscosity exponent 18 − 22ef log10(Pa s) 𝜂core
Melting point ice viscosity exponent 12 − 16g log10(Pa s) 𝜂ice,melt
Creep activation energy 50 − 70h kJmol−1 𝐸𝑎
Andrade exponent 0.2 − 0.4i – 𝛼
Surface temperature 90 − 106jk K 𝑇surf

a Petricca et al. (2023).
b Howell (2021).
c Wahr et al. (2006).
d Cole and Durell (1995).
e Běhounková et al. (2021).
f Hussmann et al. (2002).
g Hussmann et al. (2002).
h Goldsby and Kohlstedt (2001).
i Castillo-Rogez et al. (2011).
j Spencer et al. (1999).
k Ashkenazy (2019).

Zimmer et al., 2000). However, given the sparsity of these data, large
uncertainties affect our knowledge of the interior structure, especially
the thickness of the ice shell, which has been suggested to range
between a few km and 100 km (e.g., Ojakangas and Stevenson, 1989;
Hussmann et al., 2002; Howell, 2021; Vilella et al., 2020; Bray et al.,
2014). Our objective here is to explore the tidal response of Europa
and investigate the sensitivity of the tidal Love numbers to different
properties of the interior. To do this, we vary the interior properties in
a broad range without any a priori assumption on them. We build our
models by randomly varying the interior properties with a Monte Carlo
sampling algorithm. Our 11-dimensional parameter space includes the
size, density, and rheological properties of the layers (Table 2). For
each parameter, we build uniform prior probability distributions across
the range presented in Table 2. From each distribution we draw a
random sample and use these samples to build an interior model. With
this approach, we generate a large number of models ((107)), which
allows us to map the parameter space by exploring a large number of
combinations between the interior properties. The core density 𝜌core is
djusted to match the total mass (𝑀 = 4.8 × 1022 kg, Table 1), while
he ice density 𝜌ice is assumed to be equal to 917 kgm−3 (Fukusako,
990). Once all the models are built, we filter them by excluding all
odels not in agreement with the MoI derived by Gomez Casajus et al.

2021) from Galileo radio science data to within 3 standard deviations
Table 1). Discarding models with this approach implies assuming
hat the MoI is uniformly distributed in the credible interval within

standard deviations from the central value (i.e., 0.3547 ± 3 × 0.0024
or the axial MoI, 𝐶∕𝑀𝑅2). Prescribing the consistence of the MoI with
bservational evidence with this approach results in an acceptance rate
f 5% (∼500 000 accepted models).
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2.2.2. Viscoelastic deformation modeling
Accounting for two different layers within the ice shell allows us

to model the stagnant lid regime that develops in layers with highly
temperature-dependent viscosity, such as ice I. As the temperature
increases from about 100K at the surface to the melting point at
he ice–ocean interface, in the range 250 − 270K, the viscosity de-

creases by several orders of magnitude. If the shell is thick enough,
this viscosity contrast can trigger solid-state convection (McKinnon,
1999; Pappalardo et al., 1998), which becomes the main heat transfer
mechanism in the lower shell. The upper layer is cold and transfers heat
by thermal conduction. The properties of the convective layer, where
a significant amount of tidal heating is generated, considerably affect
the calculation of the tidal Love numbers. In our parameter space (
Table 2), we included the rheological properties of Europa’s interior
layers, which are relevant to modeling the viscosity structure of the ice
shell. These parameters are randomly varied along with the radial and
density structures and then used to compute the Love numbers only for
the models that are consistent with the measured mass and MoI.

The treatment of convection in the ice shell is carried out by
modeling the thermal and viscosity structures of the layer with scaling
laws (Solomatov, 1995) in a 1-dimensional domain. This approach
allows us to reduce the computational effort required to compute a
large number of models in the Monte Carlo algorithm and has been
successfully applied to past investigations of the outer shells of icy
satellites (e.g., Hussmann et al., 2002; Deschamps and Sotin, 2001).
The thermal structure of the ice layer is computed by starting from
the bottom, where the temperature is given by the melting point of
the ice Ih–water phase diagram. We approximate the melting curve of
ice Ih with the Simon–Glatzel equation given by Choukroun and Grasset
(2007):

𝑇𝑚 = 𝑇0

(

𝑃𝑚 − 𝑃0
𝑎

+ 1
)

1
𝑐

(6)

here the empirical parameters 𝑎 = −414.5MPa and 𝑐 = 8.38 and
he reference pressure 𝑃0 = 6.11657 × 10−4 MPa and temperature 𝑇0 =
73.15K are fit to experimental data (Choukroun and Grasset, 2007).
he melting pressure 𝑃𝑚 is derived from the density and total thickness
f the ice layer through hydrostatic equilibrium. The convective portion
s assumed to be isothermal and its temperature is derived using the
pproximation given by Howell (2021):

conv =

√

4𝑇𝑚𝑅∕𝐸𝑎 + 1 − 1
2𝑅∕𝐸𝑎

(7)

where 𝑅 is the gas constant and 𝐸𝑎 is the creep activation energy,
which depends on the dominant deformation mechanism. Since this
parameter is not well constrained, we include it in our parameter space
and randomly vary it in the range 50 − 70 kJmol−1. To compute the
rheological structure of this layer, we assume that the ice behavior is
described by diffusion creep and the viscosity is given by an Arrhenius
equation (e.g., Goldsby and Kohlstedt, 2001):

𝜂conv = 𝜂0 exp
[

𝐸𝑎
𝑅𝑇𝑚

(

𝑇𝑚
𝑇conv

− 1
)]

(8)

where the ice melting point viscosity 𝜂0 is randomly varied in the range
1012 − 1016 Pa s. The computed viscosity and ice thickness are then used
to evaluate whether the lower ice layer is in the subsolidus convection
regime. The Rayleigh number of this layer is:

𝑅𝑎conv =
𝛼ice𝜌ice𝑔(𝑇𝑚 − 𝑇surf )𝑑3ice

𝜂conv𝐷ice
(9)

here 𝛼ice = 1.6 × 10−4 K−1 is the ice thermal expansivity, 𝑔 is the
ravitational acceleration, 𝑇surf is the surface temperature, 𝑑ice,conv is
he thickness of the convective layer, and 𝐷ice = 1.4 × 10−6 m2 s−1 is
he ice thermal diffusivity. The critical Rayleigh number determines the
4

a

nset of convection (Solomatov, 1995):

𝑎crit = 20.9

(

𝐸𝑎(𝑇𝑚 − 𝑇surf )
𝑅𝑇 2

conv

)4

(10)

If 𝑅𝑎conv > 𝑅𝑎crit , the ice shell is unstable against convection. In
his case, the tidal deformations of the lower layer are modeled with
n Andrade rheology, with the Andrade exponent randomly varied
etween 0.2 and 0.4 (Table 2). The cold upper layer is assumed to
eform elastically. The shear modulus is equal in the two layers and
s assigned by Monte Carlo sampling within the range 2.5 − 4.5GPa. In
he opposite case of 𝑅𝑎conv < 𝑅𝑎crit , the whole ice shell is assigned a
igh viscosity and responds elastically to tidal deformations.

Viscoelastic and anelastic deformations may also occur in Europa’s
eep interior, depending on the temperature and rheological structures,
hich are not well determined. Therefore, tidal dissipation in the deep

nterior is largely unconstrained, and some previous studies on the
hermal state of Europa assumed that the deep interior tidal response is
lastic (i.e.,non-dissipative; Ojakangas and Stevenson, 1989; Hussmann
t al., 2002; Moore, 2006; Ruiz, 2005). Běhounková et al. (2021)
nvestigated the effects of tidal heating on the thermal history and
elt production of Europa using a 3D model and the rheology of the
eep interior described by the Andrade model and the temperature-
ependent viscosity. Here, we adopt a simple model of the deep interior
esponse based on the Andrade rheology, an average viscosity varied
etween that at the melting point of the rocks (∼ 1018 Pa s,Běhounková
t al., 2021) and a value representative of a cold, elastic interior
1022 Pa s). The shear modulus is randomly drawn uniformly from the
ange 50 − 70GPa.

.2.3. Pressure-induced density increase with depth across the ocean
We investigate the effects of density variations with depth across

he ocean on tidal deformations for Europa, Ganymede, and Callisto
sing PlanetProfile to self-consistently model the effects of pressure
n ocean density. Mitri et al. (2014) showed that the water density
radient driven by pressure is relevant for the computation of tidal Love
umbers of ocean worlds, with Titan’s 𝑘2 increasing by about 3 − 4%
hen compared to the case of uniform density throughout the ocean.
his difference might be greater than the measurement uncertainty
hat will be achieved by future missions at ocean worlds (e.g., Europa

Clipper and JUICE); therefore, quantifying these effects for the Galilean
moons will be beneficial for future investigations.

PlanetProfile computes the ocean density by assuming that the ocean
s characterized by an adiabatic thermal profile:

𝜕𝑇
𝜕𝑃

=
𝛼ocean𝑇
𝜌𝐶𝑃

(11)

where 𝑇 is the temperature, 𝑃 is the pressure, 𝛼ocean is the fluid thermal
expansivity, 𝐶𝑃 is the specific heat, and all quantities in (11) are depth-
ependent. Starting from the temperature (input into the software) and
he pressure at the bottom of the ice shell, the ocean profiles are cal-
ulated using relevant equations of state (EoS) for pure water (through
eaFreeze; Journaux et al., 2020), seawater (Gibbs seawater package;
cDougall and Barker, 2011) and MgSO4 (Vance and Brown, 2013;
ance et al., 2014), which account for the dependence of pressure and

emperature of 𝛼ocean, 𝜌, and 𝐶𝑃 . To calculate the pressure profile, a
inear pressure step 𝛥𝑃 is set as input that defines the resolution of the
cean profiles. The physical properties are propagated to the bottom of
he ocean, corresponding to the ocean–rock interface or to the phase
ransition to high-pressure ice phases for the larger moons. We assess
he influence of variations with depth in the density of the ocean for the
hree moons by separately examining each of the different compositions
vailable in PlanetProfile.



Icarus 417 (2024) 116120F. Petricca et al.

M
e
F
o
a
w

Fig. 1. Love numbers (a) ℎ2 and (b) 𝑘2 computed with PyALMA3 for varying ice shell thickness and mantle rigidity. We adopted the modeling by Wahr et al. (2006) to compare
our results with the tidal Love numbers they computed (Figure 1 in Wahr et al., 2006). The H2O + MS + NS case is based on a hydrosphere composed of the eutectic system
H2O-MgSO4-Na2SO4 (Kargel et al., 2000).
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3. Results

3.1. Benchmark and validation

We validated PyALMA3 by comparing the predicted tidal response
for Europa with previous studies. Our results are provided in terms of
the real parts of the tidal Love numbers, which are indicated by 𝑘2, ℎ2,
𝑙2 throughout the paper. Wahr et al. (2006) computed the tidal Love
numbers of Europa using a compressible elastic framework to investi-
gate the possibility of inferring the ice thickness from measurements
of 𝑘2, ℎ2, or a combination of the two. They concluded that although
recovery of the thickness of the ice shell through observations of only
𝑘2 or ℎ2 can be significantly biased from other relevant parameters such
as the rock shear modulus or the ocean density, the gravimetric factor
𝛿𝑔 = 1+𝑘2−ℎ2 is more robust to these uncertainties and its measurement
is useful for investigating the structure of the ice shell. We adopted
the same interior modeling as used by Wahr et al. (2006), except for
our assumption of incompressibility. Thus, the density of ice and the
density of the ocean are assumed to be 920 kgm−3 and 1000 kgm−3,
respectively. The density of the metallic core is given by the density
of the eutectic mixture in the Fe-FeS system (5150 kgm−3). The density
and size of the rocky mantle are derived from the radius of the body
and the total mass. The ice shear modulus is assumed to be equal to
2GPa. As in the reference work, we use different values of the mantle
shear modulus (i.e., 40GPa, green dashed line in Fig. 1; 60GPa, black
solid line; 130GPa, yellow dashed line). Another case we reproduced
from Wahr et al. (2006) shows the tidal Love numbers obtained by
assuming that the hydrosphere is composed of the eutectic system H2O-

gSO4-Na2SO4 based on Kargel et al. (2000) (ice and ocean density
qual to 1144 kgm−3 and 1208 kgm−3, respectively, orange dashed line).
or each case, we compute the corresponding 𝑘2 and ℎ2 as a function
f ice thickness, reported in Fig. 1. Although our modeling assumes
n incompressible behavior, the results show substantial agreement
ith the results of Wahr et al. (2006) in their Fig. 1. A more rigorous
5

assessment of the effects of assuming incompressibility is presented in
Section B.

We also compared the output of PyALMA3 with the output of
ALMA3 obtained for the same interior modeling (Figure S1) to validate
the conversion to Python. Relative differences between the tidal Love
numbers are negligible, on the order of 10−14 for ℎ2 and 10−15 for 𝑘2.

.2. Tidal response of Europa

This section shows the results of the exploration of Europa’s tidal
esponse carried out with the Monte Carlo sampler. Techniques based
n the exploration of a large parameter space combined with the
eneration of a broad number of models allow for a robust assessment
f geophysical quantities that describe the interior structure of a body.
his robustness is ensured by the wide range of combinations between
he interior properties sampled by the Monte Carlo algorithm, which
ccount for all the uncertainties associated with the quantities relevant
o the determination of the geophysical parameters. Here, we provide
he tidal Love numbers resulting from the application of PyALMA3 to
ur large-scale modeling. These predictions can be useful for future
nvestigations and simulations of Europa’s interior.

Fig. 2 shows the distribution of the real parts of the Love numbers
2, ℎ2 and 𝑙2 computed at Europa’s orbital period (85.2 h). Although
hese distributions depend on the assumptions and the specific mod-
ling of Europa’s interior that we adopted, the broad parameter space
e have explored suggests that it is likely that Europa’s Love numbers

all in the ranges given by 𝑘2 = 0.24 ± 0.03, ℎ2 = 1.05 ± 0.11 and
𝑙2 = 0.27 ± 0.03, accounting for 3-sigma intervals.

With the resulting models, we analyze the influence of each interior
property on the tidal Love numbers to better understand which pa-
rameters are most relevant in determining the tidal response. Although
the sensitivity of the Love numbers to the interior properties of ocean
worlds is generally understood qualitatively, rigorous analyses have not
been performed for most of these bodies, with the notable exception of
the study by Kamata et al. (2016), which used the method of variation
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Fig. 2. Histograms of Europa’s tidal Love numbers obtained with our Monte Carlo sampling. The resulting distributions can be summarized as: (a) 𝑘2 = 0.24±0.03, (b) ℎ2 = 1.05±0.11,
c) 𝑙2 = 0.27 ± 0.03.
n partial means to investigate the tidal response of Ganymede. Our
nterior modeling based on Monte Carlo sampling also allows us to
se statistical techniques to study this sensitivity. We perform our
nalysis by computing the Spearman correlation between the tidal Love
umbers and the interior parameters, which tests for any monotonic
elationship between the quantities considered (Spearman, 1904). A
orrelation of 1 indicates that an increase in the parameter considered
lways leads to an increase in the Love numbers, while a correlation of
1 implies that the Love numbers become smaller when the parameter

ncreases. The statistical significance of the correlation is tested with
ts 𝑝-value. Fig. 3 shows the correlations among the real parts of the
idal Love numbers 𝑘2 and ℎ2, their imaginary parts 𝑘2𝑖 and ℎ2𝑖, and
he interior properties that determine our model. The 𝑙2 Love number
nd its imaginary part are not shown since their correlations with the
ther quantities are very close to the corresponding values obtained for
2.

The strong anti-correlations between the core density and radius
nd the one between ice and ocean thicknesses arise from the constraint
iven by the MoI. In fact, these properties trade off to determine the
oI, implying that a measurement of this quantity cannot separately

onstrain the core density and size or the ice and ocean thicknesses.
his ambiguity is very well known from previous works on the inver-
ion of Europa’s interior (e.g., Petricca et al., 2023), but Fig. 3 provides
quantification of this non-uniqueness of the inversion solution. The

orrelations of the interior properties with the tidal Love numbers
re also interesting. The parameters that influence mainly 𝑘2 are the

ice thickness, the depth of the ocean, and the density of the ocean.
This implies that a measurement of 𝑘2 cannot unambiguously constrain
one of these quantities, as shown in previous work (e.g., Wahr et al.,
2006). Since the MoI imposes a constraint on hydrosphere thickness, ice
and ocean thicknesses are strongly anticorrelated, and therefore static
gravity provides an additional constraint to remove some degree of
ambiguity. However, the substantial dependence of 𝑘2 on the density
of the ocean introduces additional uncertainty. The sensitivity of ℎ2 to
nterior properties is similar, with the exception of its weak correlation
ith ocean density. This lack of dependence of ℎ on ocean density
6

2

implies that if viscoelastic and anelastic deformations are neglected,
measurements of the static gravity field (i.e., mass and MoI) combined
with 𝑘2 and ℎ2 could separate the effects of ocean density from ice and
ocean thicknesses. Therefore, the estimation of the factor 𝛿𝑔 = 1+𝑘2−ℎ2
was suggested as a more robust way to infer the thickness of the ice
layer by Wahr et al. (2006), although some uncertainty would still be
introduced by the ice shear modulus. This is evident in Fig. 3 because
the tidal gravimetric factor 𝛿𝑔 does not show any correlation with the
ocean density. Although one would expect that increasing 𝑘2 would
result in an increase of 𝛿𝑔 (i.e.,positive correlation), this is actually not
the case, as they are anti-correlated. This is due to the large correlation
between 𝑘2 and ℎ2. Therefore, increasing 𝑘2 always results in an
increase of ℎ2, which is more strongly anti-correlated with 𝛿𝑔 than 𝑘2,
ultimately leading to a decrease of the gravimetric factor. It should be
noted that the tidal Love numbers were calculated by Wahr et al. (2006)
assuming an elastic tidal response. When including viscoelastic and
anelastic deformations in the ice layer, the uncertainties in determining
the thickness of the ice from measurement of the tidal gravimetric
factor 1+𝑘2−ℎ2 increase greatly. Thus, neglecting the anelasticity of the
ice shell can significantly bias the estimation of the ice thickness from
observation of the 1+𝑘2−ℎ2 factor. Fig. 3 also shows that the properties
of the deep interior only have a small effect on the determination of
the Love numbers, because the properties of the outer layers dominate
the tidal response. This finding is consistent with the results presented
by Kamata et al. (2016) on Ganymede and it indicates that the Love
numbers will not be useful in inferring the properties of the deep
interior of Europa. On the other hand, this small sensitivity implies
that the properties of the deep interior will not bias the recovery of the
characteristics of the outer layers. Other significant correlations occur
between the imaginary parts of the Love numbers and the rheological
properties of the ice shell that determine its viscosity. This behavior
is connected to the expectation that most of the tidal dissipation at
Europa, described by the imaginary parts of the tidal Love numbers,
occurs in the warm convective portion of the ice shell.

These considerations are better illustrated in Figs. 4–6, where we

show 𝑘2, ℎ2, and the tidal gravimetric factor, respectively, calculated
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Fig. 3. Spearman’s correlation index between the complex tidal Love numbers and the interior properties that we consider. Only correlations with magnitude larger than 0.1 are
shown. The tidal Love numbers are mostly affected by the properties of the outer layers, especially the ice and ocean thicknesses, and the ocean density. Some correlations such
as those between the core density and size arise from the imposed MoI constraint.
with the models resulting from our Monte Carlo simulation. The gray
shaded areas represent the projected uncertainty in the determination
of these geophysical quantities with Europa Clipper (Mazarico et al.,
2023; Steinbrügge et al., 2018). The uncertainty in ℎ2 is based on
simulations by Steinbrügge et al. (2018), who showed that it can range
between 0.04 and 0.17, depending on the performance of the crossover
investigation. In all three figures, panels a and b show models with fully
conductive shells (i.e., 𝑅𝑎conv < 𝑅𝑎crit) that deform elastically, while
panel c shows models for which the ice layer is unstable against con-
vection (i.e., 𝑅𝑎conv > 𝑅𝑎crit). Focusing on elastic shells only, the large
influence of ocean density on 𝑘2 is evident (Fig. 4a) with variations of
approximately 40% between end members (1000 − 1300 kgm−3), while
the sensitivity of ℎ2 on the same quantity is smaller (Fig. 5a, differences
of 5 − 15%). A simple linear regression shows that an increase in the
ocean density of 10 kgm−3 increases the corresponding 𝑘2 by 0.0020 and
ℎ2 by 0.0016. Similarly, if the ice thickness increases by 10 km, 𝑘2 and
ℎ2 decrease by 0.006 and 0.023, respectively. For the ice shear modulus,
the conclusion is the opposite, with ℎ2 showing a greater dependence.
As the thickness of the ice shell increases (> 50 km), the value of ℎ2 is
determined solely by the thickness of the ice and the shear modulus.
The different sensitivities of the tidal parameters are combined when
considering the factor 1 + 𝑘2 − ℎ2, for which the influence of the ocean
density is reduced compared to independent measurements of 𝑘2 or
ℎ2 (Fig. 6a). The ice shear modulus has a larger influence and its
uncertainty can bias the recovery of the ice thickness, especially for
thick shells (Fig. 6b).

In addition to these uncertainties, which have already been in-
vestigated and accounted for in previous studies, we show that the
viscoelastic response of the shell to the tidal forcing represents a
relevant source of uncertainty in the determination of the ice thickness.
Figs. 4c, 5c, and 6c show the values of 𝑘2, ℎ2 and 1 + 𝑘2 − ℎ2, respec-
tively, for models that include ice shells unstable to convection. In the
convective portion of the shell, tidal deformations can be enhanced
if the viscosity of the ice is low, significantly affecting the resulting
7

Love numbers. The absolute values of 𝑘2 and ℎ2 increase and the
corresponding value 1+𝑘2−ℎ2 decreases. This significantly widens the
space of solutions, and the interpretation of future measurements will
require careful modeling and evaluation of the viscoelastic effects.

3.3. Effects of liquid density gradient in the ocean

The liquid density in the subsurface oceans is expected to increase
with depth due to the self-compression of water. Because the density of
the ocean is a key parameter in determining the tidal responses of ocean
worlds, these pressure-induced variations in the water density can
significantly affect the tidal Love numbers. We computed the tidal Love
numbers for Europa, Ganymede, and Callisto by integrating PyALMA3
with PlanetProfile to investigate the effects of the density gradient
across the ocean on their tidal responses. For both Europa and Callisto,
we consider a pure-water ocean, MgSO4 with a salt concentration
equal to 100 g∕kg, and a seawater composition with Earth’s mean salt
concentration (34 g∕kg). For pressures greater than 200MPa, the EoS
for the seawater ocean becomes unstable and thus is not applicable
to larger bodies such as Ganymede. Therefore, we evaluate the self-
compression effects of an ocean that includes 10 g∕kg of MgSO4 as an
intermediate case. Interior models generated by PlanetProfile include
the radial structures of the density and the shear and bulk moduli of
each layer needed to calculate the tidal deformations. The latter is
ignored by PyALMA3 in evaluating the Love numbers due to the in-
compressibility approximation. Some of the density and shear modulus
profiles generated by PlanetProfile are shown in Figures S2–S4.

The effects of the density gradient are assessed by evaluating the
difference 𝛥𝑘2 between the Love number calculated with the full radial
profile and the corresponding value computed with the ocean density
averaged over the ocean depth. Fig. 7 shows 𝛥𝑘2 for Europa (Fig. 7a),
Ganymede (Fig. 7b), and Callisto (Fig. 7c). For all moons, the effect is
of the order of a few percent of the 𝑘2 value, consistent with previous
estimates for Titan (Mitri et al., 2014). In terms of absolute value, the
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Fig. 4. Tidal Love number 𝑘2 as a function of varying ice shell thickness for models including an elastic (a, b) and (c) viscoelastic ice layer. The clear vertical separation between
values of 𝑘2 in panel (a) shows the large influence of the ocean density. In contrast, the ice layer rheological properties have a smaller influence (b, c). The inclusion of viscoelastic
deformations (c) widens the parameter space and increases the absolute value of 𝑘2. Gray shaded areas represent the projected uncertainties from Europa Clipper Gravity/Radio
Science investigation (Mazarico et al., 2023).
Fig. 5. Tidal Love number ℎ2 as a function of varying ice shell thickness for models including an elastic (a, b) and (c) viscoelastic ice layer. In contrast to 𝑘2, ℎ2 is more sensitive
on the ice shear rigidity than on the ocean the density. Gray shaded areas represent the projected uncertainties from Europa Clipper data in two different scenarios (Steinbrügge
et al., 2018).
errors introduced if density variation with depth is not taken into ac-
count are approximately 0.005, 0.015, and 0.013 for Europa, Ganymede,
and Callisto, respectively. For Europa and Callisto, the errors increase
for deeper oceans considering the range of ocean depth consistent with
the MoI and EoS constraints introduced by PlanetProfile. However, this
8

trend should not be extrapolated to larger ocean depths, as illustrated in
the Ganymede case. In the latter case, when deep oceans are considered
(> 300 km), the errors decrease with increasing depth, showing that
the ability of an average density to describe the ocean tidal response
improves with increasing depth.
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Fig. 6. Tidal gravimetric factor 1+𝑘2 −ℎ2 as a function of varying ice shell thickness for models including an elastic (a, b) and (c) viscoelastic ice layer. The determination of this
factor can provide a good estimate of the ice thickness if this is low and elastic modeling is assumed. However, the inclusion of viscoelastic effects significantly reduces the utility
of the gravimetric factor in resolving the ice thickness (c). Gray shaded areas represent the projected uncertainties from Europa Clipper data in two different scenarios (Steinbrügge
et al., 2018; Mazarico et al., 2023).
Fig. 7. Effects of variations of the water density across the ocean on the tidal Love number 𝑘2 for (a) Europa (∼ 1.7% or ∼ 0.005), (b) Ganymede (∼ 2.5% or ∼ 0.015) and (c)
Callisto (∼ 2.3% or ∼ 0.013).
These results were examined against the same interior models us-
ing a numerical toolbox to calculate the Love numbers developed
for the case of both rocky (Bagheri et al., 2019; Dmitrovskii et al.,
2022), and icy bodies (Bagheri et al., 2022b). This toolbox uses the
spectral element method to compute the complex Love numbers of
9

a compressible body exploiting different viscoelastic models such as
Maxwell, Extended Burgers, Andrade, and Sundberg–Cooper. Despite
the different methods used by the code (i.e.,compressible model, in
contrast to the assumption of incompressibility in PyALMA3), we find
that the effects of the density gradient in the ocean are consistent with
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those evaluated by using PyALMA3 (e.g., differences between the two
codes of approximately 3 × 10−5 for the deepest ocean in the case of
Europa).

4. Discussion

The analyses carried out here will be valuable for future investiga-
tions of the interiors of icy bodies by measuring their tidal responses.
Europa Clipper and JUICE are set to explore the Jupiter system in
the next decade, providing radio science data from which the gravity
field and the tidal response of Europa, Ganymede, and Callisto will be
measured. The Europa Clipper Gravity and Radio Science investigation
will measure the tidal Love number 𝑘2 of Europa with an accuracy of
1.4×10−2−1.8×10−2 (Mazarico et al., 2023), while the 3GM experiment
onboard JUICE is expected to yield Ganymede and Callisto 𝑘2 to better
than 10−4 and 5.9 × 10−2, respectively (Cappuccio et al., 2020, 2022).
For all moons, the determination of the ice shell thickness and ocean
depth will be challenged by the effects of viscoelastic deformations
because the Love numbers and their combination are sensitive to the
thermal and viscosity structure of the ice layer. Especially in the case of
Europa, it is likely that measurements of the tidal deformations alone
will not enable the determination of the hydrosphere properties. As
shown in Figs. 4–6, the projected uncertainties in determining Europa’s
tidal Love numbers could be too large to allow accurate retrieval
of the thickness of the ice shell and the depth and density of the
ocean. The recovery of hydrosphere properties will then be significantly
improved through the combination of gravity and tidal observations
with other datasets, such as magnetic induction measurements (Vance
et al., 2021; Petricca et al., 2023; Roberts et al., 2023). Petricca et al.
(2023) developed a methodology to combine gravity and magnetic field
measurements to improve the characterization of the hydrospheres of
icy moons. They showed that simultaneously enforcing the constraints
given by static gravity (i.e.,mass and MoI) and magnetic induction mea-
surements provides a robust way to infer the ice thickness and ocean
depth. The inclusion of tidal Love numbers among the constraints will
narrow down the ocean density and salinity, yielding a comprehensive
characterization of the subsurface ocean. Additional constraints can be
determined by radar sounding, which could provide the thickness of the
ice shell or the thickness of the outer cold lid if the attenuation induced
by the lower warm ice layer is strong (e.g., Roberts et al., 2023).

An efficient technique that produces interior models consistent with
multiple geophysical observations by combining different datasets re-
lies on the Markov chain Monte Carlo (MCMC) algorithm (e.g., Petricca
et al., 2023; Genova et al., 2019). The difference from the simpler
approach proposed here is that the MCMC method requires defining a
probability distribution for the observations that constrains the inverse
problem (e.g., the MoI used here). For example, previous work on
Europa’s interior inversion assumed a Gaussian distribution for the
MoI (Petricca et al., 2023), with the mean given by the observed value
and the standard deviation given by the measurement uncertainty,
while here we assume that the MoI is uniformly distributed in the
3 − 𝜎 range. The MCMC method leads to a more efficient sampling
of the parameter space that is suitable for the Bayesian inversion of
the interior structure from observations. Within a Bayesian framework,
the focus is on sampling the most probable regions of the parameter
space. Since the goal of this work is to explore the parameter space and
the sensitivity of the Love numbers on the interior properties without
providing any constraint on them, we adopted a simpler approach
that does not require generating Markov chains. In this way, we were
able to simply explore the parameter space of acceptable models as
defined by the data and our prior constraints (Table 2). The successful
application of the MCMC algorithm requires generating a large number
of interior models, on the order of a few to tens or hundreds of
millions, depending on the specific application, to converge to the final
probability distributions for the parameters and observations. Thanks
10

to the efficient numerical scheme enabled by the propagator matrix
technique, PyALMA3 will be suitable for use in these multidisciplinary
investigations.

An additional aspect that should be taken into account in future
investigations is ocean modeling. We showed that the effects of the
radial density gradient in the ocean could induce variations in 𝑘2 that
could be large, potentially biasing the estimation of interior properties
from measurements of the tidal response. Taking into account the
predicted accuracy in the determination of Europa’s 𝑘2 from Europa
Clipper data, the effects of water density gradient might be below
the noise threshold. This is not the case for Ganymede, for which
these effects might be two orders of magnitude larger than the high
precision predicted for the 3GM experiment onboard JUICE. For both
moons, accurate modeling of the ocean properties will be essential
to interpreting future tidal observations, and new experimental data
to derive equations of state for relevant compositions, pressures, and
temperatures will be important in this context.

5. Summary

In this manuscript we presented PyALMA3, a Python framework
based on ALMA3 dedicated to modeling the planetary response to
tidal deformations. We validated PyALMA3 by applying it to Jupiter’s
moon Europa and comparing our results with previous investigations
of the satellite’s tidal response. We combined this benchmark of the
software with a simple Monte Carlo technique used to explore the tidal
deformations of Europa, which allowed us to more rigorously assess
the effects of the interior properties on the tidal Love numbers. We
demonstrated that the tidal response of Europa is significantly affected
by the properties of the outer layers, especially the ice and ocean
thicknesses, and the ocean density. In contrast, our results indicate
that the properties of the deep interior have negligible effects on
the tidal deformations. Furthermore, we showed that the rheological
response due to the viscosity of the ice shell also plays a key role in
determining the tidal Love numbers, negatively affecting the recovery
of the outer layer properties from a combined measurement of 𝑘2
and ℎ2, which has been the subject of several geophysical studies of
ocean worlds. Given the large number of parameters that determine
the response to tides, a combination of different types of measurement
will be fundamental to achieving an accurate characterization of icy
moon interiors, and PyALMA3 provides a means to relate some of these
ritical measurements. Finally, our results show that accounting for the
ressure-induced variations of water density in the ocean is critical for
correct interpretation of future measurements of the tidal responses of
cean worlds. In fact, this effect (on the order of 2−3% on the tidal Love
umber 𝑘2 of the Galilean moons) is close to the projected measurement
ncertainty in the determination of Europa’s tidal Love number from
uropa Clipper’s radio science data and, most importantly, two orders
f magnitude larger the expected accuracy of the 3GM experiment
nboard JUICE.
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Appendix A. Computation of Love Numbers

The problem of computing the deformations of a solid body sub-
ject to self-gravitation has traditionally been approached by assuming
that the body is spherically symmetric. The equilibrium equations are
usually solved using two different classes of methodologies.

Direct numerical integration schemes do not require additional
assumptions and are based on the original formulation developed to
calculate the elastic deformations associated with seismic waves (Al-
terman et al., 1959; Takeuchi and Saito, 1972). This formalism was
extended to modeling viscoelastic deformations through the correspon-
dence principle, according to which the Fourier (or Laplace) transform
of the equilibrium equations can be cast as a formally elastic problem if
frequency-dependent shear and bulk moduli are defined. This approach
can be used to model deformations induced by any periodic forcing,
such as those due to tidal and loading potentials (Tobie et al., 2005;
Michel and Boy, 2021). One of the main drawbacks of this method is
the numerical instability arising from the presence of a fluid layer in
the body, as with subsurface oceans. To solve this problem, previous
work introduced the additional assumption of static tides (e.g., Wahr
et al., 2006; Mitri et al., 2014).

Another class of methods used to compute the Love numbers of
planetary bodies is the propagator matrix method (Peltier, 1974; Saba-
dini et al., 1982), originally developed with the assumption that bulk
deformations can be neglected, i.e., the only effects accounted for are
deviatoric stresses and strains related to shear rigidity and viscosity.
The body is modeled with incompressible layers with uniform proper-
ties. This approach is less computationally expensive because, in the
incompressible limit, analytical expressions for the propagator in each
layer are available, and hence no numerical integration is needed.
Compared to numerical integration schemes, it has the advantage of
being stable when layers with a vanishing shear modulus (i.e., behaving
as fluids) are encountered. These characteristics made this method suit-
able for planetary applications, particularly for the interior modeling
of ocean worlds (e.g., Moore and Schubert, 2000; Hussmann et al.,
2002; Segatz et al., 1988; Roberts and Nimmo, 2008), although it
was also successfully applied to terrestrial planets (e.g., Khan et al.,
018; Padovan et al., 2014). The drawback of the incompressibility
ssumption is that it can lead to large errors in the calculation of Love
umbers for some applications, such as for large bodies where bulk
11

eformations are relevant (Renaud and Henning, 2018) or bodies with
a substantial melt fraction (Kervazo et al., 2021, 2022). The propagator
method can be extended in a natural way to a spherically symmetric
body modeled with uniform compressible layers (Sabadini et al., 2016).
However, for a compressible layer, a closed-form expression for the
fundamental matrix can be obtained only with the approximation
that the gravity acceleration 𝑔(𝑟) scales linearly with 𝑟 in each layer
(i.e., that the 𝑔(𝑟)∕𝑟 ratio is constant), while an analytical form of
the inverse of the fundamental matrix is not available (Vermeersen
et al., 1996). Moreover, as discussed, for instance, by Hanyk et al.
(1999) and Vermeersen and Mitrovica (2000), compressible viscoelastic
models require particular attention due to the onset of gravitationally
unstable modes known as Rayleigh–Taylor instabilities.

PyALMA3 is based on the propagator approach. The methods used
by PyALMA3 to compute the Love numbers are presented in Melini
et al. (2022). We briefly recall some of the most important details and
equations, focusing on the evaluation of the frequency-dependent Love
numbers relevant to planetary applications. Love numbers are obtained
by solving the Laplace-transformed equilibrium equations at a given
spherical harmonic degree 𝑛:

𝐱(𝑠) = 𝑓 (𝑠)(𝑃1𝛬(𝑠)𝐽 )(𝑃2𝛬(𝑠)𝐽 )−1𝐛 (12)

here 𝐱(𝑠) = (𝑢(𝑠), 𝑣(𝑠), 𝜑(𝑠)) is the Laplace-transformed solution vector
valuated at the surface that contains the radial 𝑢(𝑠) and horizontal
(𝑠) displacements, and the variations of gravitational potential 𝜑(𝑠),
(𝑠) describes the time-history of the forcing in the Laplace domain,
1 and 𝑃2 are projection operators, 𝛬(𝑠) contains the operators that
ropagate the solution from the core–mantle boundary to the outer
urface, and 𝐽 and 𝐛 express the boundary conditions at the core–
antle boundary and the surface, respectively. The specific form of 𝐽
epends on the assumed state of the core, i.e., fluid inviscid or solid.

The expressions of the propagators 𝛬(𝑠) and the operators 𝑃1 and 𝑃2
are given by Sabadini et al. (1982). Once an interior structure model is
defined, the quantities in (12) can be computed, and the Love numbers
derived from the solution vector 𝐱(𝑠):

ℎ𝑛(𝑠) =
𝑀
𝑅

𝑢(𝑠) (13)

𝑙𝑛(𝑠) =
𝑀
𝑅

𝑣(𝑠) (14)

𝑛(𝑠) = −1 − 𝑀
𝑔0𝑅

𝜑(𝑠), (15)

here 𝑀 is the total mass of the body, 𝑅 the surface radius, and
0 = 𝑔(𝑅) the mean surface gravitational acceleration.

Global deformations of planetary bodies are usually induced by
eriodic external forcing such as tidal and loading potentials. In this
ontext, equilibrium conditions (12) are computed at 𝑠 = 𝑗𝜔, where 𝑗

is the imaginary unit, 𝜔 is the angular frequency of the forcing, and the
Love numbers are derived by evaluating (13)-(15) at 𝑠 = 𝑗𝜔. As a result,
Love numbers are complex, with the real part describing the strength
of a planetary body and the imaginary part measuring the phase lag
between the forcing and the response. Both parts can be measured by
monitoring the effect of tidal deformation on the gravity field of the
body.

Appendix B. Effects of bulk deformations

The main assumption underlying the matrix propagator method
used by PyALMA3 is that the layers are incompressible, i.e., bulk
deformations are neglected, which is equivalent to assuming an infinite
bulk deformation modulus 𝜅. Here, we test this assumption by com-
paring the tidal Love number 𝑘2 computed for Europa with PyALMA3
and the code used by Wahr et al. (2006), available as part of the
SatStress code by Wahr et al. (2009) and modified from a previous
code used to compute Earth’s tides by Dahlen (1976). We adopt the
four-layer modeling detailed in Section 2.2. For simplicity, we assume
that the entire ice shell and the rock–metal core deform elastically.
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Fig. 8. Difference 𝛥𝑘2 between the Love numbers computed with PyALMA3 and with the tidal code by Wahr et al. (2006) as a function of ice shell and core bulk moduli. 𝛥𝑘2
measures the effects of bulk deformations on the tidal response of Europa and is generally smaller than 10−3, with a maximum difference between compressible and incompressible
𝑘2 of 2.4 × 10−3 (corresponding to a relative difference of about 1%).
Fig. 9. Properties of the ice shell, ocean and rock-iron core of Europa after enforcing the constraints on the mass, radius, and MoI to the initial uniform distributions. All the
models built from these distributions are consistent with observations and used to evaluate the tidal response of Europa.
The thicknesses of the ice and ocean are set to 30 km and 100 km,
respectively, and their densities are 920 kgm−3 and 1000 kgm−3. We
vary the bulk moduli of all the ice and the core in order to understand
their effects. The tidal code provided by Wahr et al. (2009) does not
allow us to model the bulk deformations in the ocean, which is treated
as a fluid layer in hydrostatic equilibrium. Furthermore, the response
of the ocean is assumed to be static and any dynamic contribution is
neglected (e.g., Hay et al., 2022). Therefore, the tests carried out here
are not conclusive regarding the tidal response of the ocean. The bulk
moduli of the ice shell and the rock–metal core are varied at intervals
12
1010 − 1011 Pa and 1010 − 1012 Pa. The differences between PyALMA3
and the code of Wahr et al. (2006) are reported in Fig. 8. We find that
for Europa, the corrections to 𝑘2 associated with compressible deforma-
tions are smaller than about 10−3 for most of the values of bulk moduli
explored, with the maximum difference 2.4 × 10−3 (corresponding to a
relative difference of about 1%). We also calculated the effects of bulk
deformations on the tidal Love number ℎ2, reported in Figure S5. In this
case, the relative differences are greater than for 𝑘2, with a maximum
correction of 7.5×10−3 that corresponds to a relative difference of about
7%. The effects on 𝑙2 are similar and are not shown.
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Appendix C. Resulting interior models of Europa

Our interior structure modeling uses broad boundaries as a priori
information to build the uniform probability distributions that describe
the interior properties. The constraints given by the observed mass,
radius (enforced with the central values only without accounting for
their uncertainties), and MoI (enforced with the 3 − 𝜎 uncertainty)
alter these uniform distributions. The resulting probability distributions
are reported in Figure 9. These histograms show that using these
constraints significantly narrows down the set of interior properties
that can be used to evaluate the tidal response. For example, a sample
extracted from the uniform distribution that describes the radius of
the core before imposing the MoI constraint could range between
0 − 1560.8 km (i.e.,when both the ice shell and ocean thickness are
randomly selected equal to 0). However, clearly these end-member
models would not agree with the observations. Therefore, the radius
of the interface between the deep interior and the ocean can only
range between 1370 − 1450 km (Figure 9). Similarly, the thickness of
he hydrosphere cannot be less than 111 km or larger than 191 km

(Figure 9). We do not impose any boundary on the core density, which
falls in the range 3532 − 3838 kgm−3 for all models, in agreement
with the observations. All these results are consistent with previous
investigations of Europa’s interior based on 2, 3, or 4 layers (Anderson
et al., 1998; Sohl et al., 2002; Petricca et al., 2023; Gomez Casajus
et al., 2021). The properties of the ice layer and the ocean are not
significantly altered with respect to the initial uniform distribution due
to the well-known ambiguity in their determination from static gravity
data (Petricca et al., 2023).

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.icarus.2024.116120.
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