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Predicting the future of hardware is easy



Follow the Money
• The five hyperscalars are in control … they ask from their vendors and they receive 

(discounts, design changes, etc.).
1. Amazon web services

2. Microsoft Azure

3. Google Cloud  

4. IBM Cloud

5. Apple

• Nvidia has a temporary “near-monopoly” giving them some power over the hyperscalars, but it is 
temporary (AMD GPUs are great and Intel will figure it out eventually).

• Chip vendors will do what it takes to maximize profit (i.e., keep hyperscalars happy, accelerate 
designs, and reduce costs).

Since the early days when Cray had a monopoly, the HPC community has always 
fed off the table scraps from industry.  

Government spending (e.g. the ASCI program in the 1990’s) sometimes offsets 
this effect, but it never lasts long enough at significant levels to really matter.

If you are in the microprocessor 
business, the fact each of these 

companies are now designing their 
own processors is VERY scary.



The heart of computing … microprocessors



4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

It used to be so easy … x86 ruled
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13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency cores and 8 

performance cores + integrated GPU

Image sources: Intel, AMD 

AMD® RyzenTM 9 5900X
Desktop CPU with 12 cores

AMD® EPYCTM 9005  Server CPU 
with 128 Zen 5 cores



Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

Now ... Diversity rules
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13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Google® Tensor 
Processing Unit

Image sources: Intel, AND, Nvidia TPU from https://cloud.google.com/tpu Third Party Names and logos are the property of their owners.

Intel® Xe HPC GPU

AMD® RyzenTM 9 5900X
Desktop CPU with 12 cores

AMD® EPYCTM 9005  
Server CPU with 128 

Zen 5 cores

Including RISC 
architectures we 

used to ignore

NVIDIA® Grace HopperTM superchip 72 
Arm Neoverse v2 CPUs and  GH200 GPU



Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

Now ... Diversity rules

8

13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Google® Tensor 
Processing Unit

Image sources: Intel, AND, Nvidia TPU from https://cloud.google.com/tpu Third Party Names and logos are the property of their owners.

Intel® Xe HPC GPU

AMD® RyzenTM 9 5900X
Desktop CPU with 12 cores

AMD® EPYCTM 9005  
Server CPU with 128 

Zen 5 cores

Including RISC 
architectures we 

used to ignore

NVIDIA® Grace HopperTM superchip 72 
Arm Neoverse v2 CPUs and  GH200 GPU

And now that the x86 “monopoly” 
is over, all my explicitly vectorized 

code is broken!!



… and its about to get MUCH ”worse”



What does the future hold?   Get ready for Chiplets … 

A really nice case study on the value of chiplets

Chiplet: A distinct silicon-device packaged with other chiplets to create the processor you drop in a socket



1st generation AMD EPYCTM processor 
built from 4 identical chiplets

Infinity FabricTM a coherent interconnect between chiplets

Chiplets: Follow the Money

A hypothetical Monolithic chip

Pioneering Chiplet Technology and Design for the AMD EPYCTM and RyzenTM processor Families, S. Maffzieger, N. Beck, T. Burd, K. Lepak, G. Loh, M. Subramony, and S. White, ISCA, 2021.



Chiplets: Follow the Money

Small chiplets → better yield over large monolithic chips

A hypothetical Monolithic chip
1st generation AMD EPYCTM processor 

built from 4 identical chiplets

Pioneering Chiplet Technology and Design for the AMD EPYCTM and RyzenTM processor Families, S. Maffzieger, N. Beck, T. Burd, K. Lepak, G. Loh, M. Subramony, and S. White, ISCA, 2021.

Infinity FabricTM a coherent interconnect between chiplets



Pioneering Chiplet Technology and Design for the AMD EPYCTM and RyzenTM processor Families, S. Maffzieger, N. Beck, T. Burd, K. Lepak, G. Loh, M. Subramony, and S. White, ISCA, 2021.

Chiplets: The value of mixing chip fabrication nodes

Matching the chiplet to 
the most effective 
technology node is a 
potentially huge cost 
savings

2nd Generation AMD EPYCTM processor

16 Zen 2TM cores that 
benefit from the top-
end technology node 
…. While the I/O Die 
(IOD) uses less 
expensive and mature 
12 nm technology.



Pioneering Chiplet Technology and Design for the AMD EPYCTM and RyzenTM processor Families, S. Maffzieger, N. Beck, T. Burd, K. Lepak, G. Loh, M. Subramony, and S. White, ISCA, 2021.

Chiplets: The value of mixing chip fabrication nodes

Matching the chiplet to 
the most effective 
technology node is a 
potentially huge cost 
savings

16 Zen 2TM cores that 
benefit from the top-
end technology node 
…. While the I/O Die 
(IOD) uses less 
expensive and mature 
12 nm technology.

2nd Generation AMD EPYCTM processor

Support a family of products 
from two chiplet building 
blocks at a lower die cost



Intel® AgilexTM FPGAs

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

Intel is using chiplet technology as well
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Intel® Xe HPC GPU

These Intel products use 
chiplet technology



A New Golden Age for Computer Architecture

Source: uciexpress.org white paper, 

• Chiplet-based architectures … building a 
package placed in a socket composed of 
distinct little chips (the “chiplet”).

• Connected by high speed in package 
interconnects … lets chiplets from multiple 
fabs fit into one package.

• The Universal Chiplet Interconnect Express 
effort defines a standard for how to 
connect chiplets.

• The result … multi-chiplet packages in a 
socket with heterogeneous devices from 
multiple vendors.

https://www.uciexpress.org/_files/ugd/0c1418_c5970a68ab214ffc97fab16d11581449.pdf


With a common chiplet standard, we can expect 
interesting combinations of chiplets across vendors



With UCIe we will have chiplets from multiple 
vendors using different process technologies in a 

single socket.

Heterogenous architectures within a socket will 
become common

Developing a code-base for our applications that 
spans all this heterogeneity will be a real headache.  

Can we just ignore it?   Just because HW people 
build stuff, we don’t have write code for it, do we?



If you care about power, the world is heterogeneous?

Specialized 
processors doing 

operations suited to 
their architecture 
are more efficient 

than general 
purpose processors. 
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Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2.   IEEE International 
Symposium on Computer Architecture and High Performance Computing, 2020  

Intel® MovidiusTM 
MyriadTM 2 VPU

Intel® Xeon® 
E5-2697v2 CPU, 

3.5 GHz, 12 cores

Nvidia® 
K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs, 
FPGAs, and a wide range of accelerators
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This is all at the level of a socket.

Consider the large scale systems at the heart 
of HPC. 



We all       the top-500 List
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computers in the 

world as 
measured by their 
ability to solve a 

dense linear 
algebra problem.

www.top500.org
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Forget the top-500 list… remember what I said about following the money?

Nobody makes much money off massive supercomputers.

The future of large scale systems is in the cloud

The 500 fastest 
computers in the 

world as 
measured by their 
ability to solve a 

dense linear 
algebra problem.

www.top500.org



… to really understand the cloud, and take full 
advantage of what it has to offer, you need to 
understand traditional distributed computing.  



The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing     …. Thanks to Areg Melik-Adamyan for teaching me about the famous Eight Fallacies

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing


The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

Source: https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous
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1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X

HPC == tightly coupled parallel workloads



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Laptop/server and cluster models work 
well together.   

An impenetrable wall separates them 
from the cloud-native world

OK … 4 domains.  I need to add a column for the GPU



With that general background out of the way, 
consider the hardware inside a cloud data 

center.  



What do the racks in a cloud data center look like?

28

Take the most commonly allocated unit … a dual 
processor server … maybe with a GPU or even an FPGA

Pack them into 
racks and fill you 
data center with 
the racks



What do the racks in a cloud data center look like?
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Take the most commonly allocated unit … a dual 
processor server … maybe with a GPU or even an FPGA

Pack them into racks, 
add high speed 
networking, and fill 
your data center 
with the racks

Resources are 
tied to the 
concept of node.

Memory … for 
example … is 
tied to CPUs so 
depending on 
CPU allocation 
you may have 
vast amounts of 
unused memory.

This applies to 
all resources, 
not just memory



The birth of Disaggregated Computing
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Replace a rack of nodes with pools of resources

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:



Disaggregated Computing for SW Defined Servers (SDS)
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Consider a Rack composed of multiple pools

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Dynamically compose across pools to match a 
software defined server to the workload

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

SSD SSD SSD SSD



Disaggregated Computing for SW Defined Servers (SDS)
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Consider a Rack composed of multiple pools

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Dynamically compose across pools to match a 
software defined server to the workload

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

ICache

Scheduler

SSD SSD SSD SSD

The idea of disaggregated computing for SDS is so 
ridiculous, I can’t believe anyone would suggest it. 

 It reduces operational costs and improves utilization of 
system components, but the performance would be terrible 
for anything other than totally compute bound problems!!!

The network overheads would kill you!!!



Source: ayarlabs.com/teraphy/

I know about this 
work through the 
Intel Group that 

worked on the HIVE 
program … a scalable 

architecture 
optimized for 

workloads 
dominated by graph 

algorithms



Networking technology is evolving quickly 
… Optical networks plus new topologies

34

A clique:  A graph where every vertex is 
connected to every other vertex

Optical technologies inside cabinets 
down to the chip level

New topologies … Clique: a network 
of diameter one with 

O(¼N2) bisection bandwidth

Low latency:  Five nanosecond 
latencies on each end plus time of 

flight over fiberoptic cable

SSD N
IC

SSD N
IC

SSD N
IC

SSD N
IC

SSDN
IC

SSDN
IC

SSDN
IC

SSDN
IC



Latencies every engineer should know … 
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L1 cache reference 1.5 ns 

L2 cache reference 5 ns 

Branch misprediction 6 ns 

Uncontended mutex lock/unlock 20 ns 

L3 cache reference 25 ns 

Main memory reference 100 ns 

“Far memory”/Fast NVM reference 1,000 ns (1us) 

Read 1 MB sequentially from memory 12,000 ns (12 us) 

SSD Random Read 100,000 ns (100 us) 

Read 1 MB bytes sequentially from SSD 500,000 ns (500 us) 

Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms) 

Read 1 MB sequentially from disk 10,000,000 ns (10 ms) 

Disk seek 10,000,000 ns (10 ms) 

Send packet California→Netherlands→California (150 ms) 

Source: The Datacenter as a Computer: Designing 
Warehouse-Scale Machines, Luiz Andre Barroso, Urs 
Holzle, Parthasarathy Ranganathan, 3rd edition, 
Morgan & Claypool, 2019.

SSD N
IC

SSD N
IC

SSD N
IC

SSD N
IC

SSDN
IC

SSDN
IC

SSDN
IC

SSDN
IC

A cluster of nodes with a Clique 
network topology and low latency 
optical network…

Yields one hop network latencies 
on par with DRAM access 
latencies.



With next generation optical interconnects in the data center, 
cloud and cluster overlap

Cloud HPC Cluster

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

X

X
X
X
X
X

Chip-to-chip optical 
networks push latency down 
and bandwidth up

Data Streaming Accelerator 
reduces tail latency.

Programmable Infrastructure 
Processing Units drive down 
latency and reduces jitter

With Low Latencies, high bandwidths and stable performance, we can do loosely synchronous and synchronous 
applications in the cloud.    The economics of the cloud vs dedicated HPC clusters means the cloud will dominate HPC

HPC applications will need to change to deal with reliability and network inhomogeneities.   

P4, P5, and P6 are a family of languages for programming network infrastructure



Low latency, high bandwidth network between cliques

SW Defined clusters of SW defined Servers
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…

• Dynamic … changing from one job 
to the next.

• SW defined severs composed of 
heterogeneous components 

• Dynamically composed into a 
cluster

• Integrated over a 5G network to 
devices (and people) at the edge



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Advances in networking technology plus 
low-overhead software stacks optimized 

to reduce tail-latency will shatter this wall



This is a compelling future. 

Who is going to write all the software for these 
systems?
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Evolution of software developers from 2013 to 2024

The number of Software developers worldwide is growing rapidly …

But look what the U.S. Bureau of 
Labor Statistics says …

How can both of these trends be correct?

Developers increasingly come from application domains, not 
computer science!

https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm

https://www.computersciencezone.org/developers
https://www.statista.com/statistics/627312/worldwide-developer-population/

Quick Facts: Computer Programmers

2019 Median Pay $86,550 per year

2021 Median Pay $99,700 per year

Typical Entry-Level Education Bachelor's degree

Number of Jobs, 2019 213,900

Number of Jobs, 2021 139,400

Job Outlook, 2021-31 -10% (Decline)

Employment Change, 2023-33 -13,400

2013 2019

18.2

28.7

2013 2024

58% 
increase in 

11 years

https://www.computersciencezone.org/developers
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
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Evolution of software developers from 2013 to 2024

The number of Software developers worldwide is growing rapidly …

https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm

https://www.computersciencezone.org/developers
https://www.statista.com/statistics/627312/worldwide-developer-population/

Quick Facts: Computer Programmers

2019 Median Pay $86,550 per year

2021 Median Pay $99,700 per year

Typical Entry-Level Education Bachelor's degree

Number of Jobs, 2019 213,900

Number of Jobs, 2021 139,400

Job Outlook, 2021-31 -10% (Decline)

Employment Change, 2023-33 -13,400

2013 2019

18.2

28.7

2013 2024

58% 
increase in 

11 years

It used to be that professional programmers wrote the 
applications needed by different communities.

Now those different communities write their own applications.  

https://www.computersciencezone.org/developers
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm


Popularity of Programming Languages (PyPl)

https://pypl.github.io/PYPL.html

29.39 %

15.52 %

8.16 %

6.9%

6.48%

ShareLanguage



Primary Language used in first year, Computer Science Courses

0

50
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200

250

C C++ java Python

Comp Sci 1 languages. ... Reid List

2011 2015 2019

The Reid List tracks a large sample of North American Universities and the languages they use in teaching.

The Reid List was started by Richard Reid in the 1990s.   He has retired but others are carrying on the tradition.  The above  data comes from Trends Of Commonly 

Used Programming Languages in CS1 And CS2 Learning, Robert M. Siegfried, Katherine G. Herbert -Berger,  Kees Leune, Jason P. Siegfried, The 16th International 

Conference on Computer Science & Education (ICCSE 2021) August 18-20, 2021. 

Most programmers are NOT learning 
languages that expose features of the 

hardware.

As hardware complexity increases, 
the population of people who can 
deal with that complexity is going 

down!

Survey of 409 universities in North America



Solution: Bring HPC programming to Python
PyOMP: mapping OpenMP into Python
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from numba import njit

from numba.openmp import openmp_context as openmp

@njit

def piFunc(NumSteps):

    step = 1.0/NumSteps

    pisum = 0.0

    

    with openmp ("parallel for private(x) reduction(+:pisum)"):

        for i in range(NumSteps):

            x = (i+0.5)*step

            pisum += 4.0/(1.0 + x*x)

    pi = step*pisum

    return pi

pi = piFunc(100000000)

OpenMP managed through the with context manager.

Pass the OpenMP directive into the OpenMP context 

manager as a string

• parallel: creates a team of threads

• for: maps loop iterations onto threads.   

• private(x): each threads gets its own x

• Loop control index of a parallel for (i) is private to each thread.

• reduction(+:sum): combine sum from each thread using +

Numba Just In Time (JIT) compiler compiles the Python code into 

LLVM thereby bypassing the GIL.   Compiled code cached for 

later use.

GIL: Global Interpreter Lock
Multithreaded parallel Python through OpenMP support in Numba, Todd Anderson and Tim 
Mattson, SciPy 2021, https://proceedings.scipy.org/articles/majora-1b6fd038-012



DGEMM PyOMP vs C-OpenMP
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C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.  

Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order 

1000 matrices

PyOMP times 

DO NOT include 

the one-time JIT 
cost of ~2 

seconds.

… but remember, 

the JIT’ed code  

can be cached for 

future use.  It’s 

straightforward to 
hide the JIT cost.

Multithreaded parallel Python through OpenMP support in Numba, Todd Anderson and Tim Mattson, SciPy 2021, https://proceedings.scipy.org/articles/majora-1b6fd038-012



Traditional parallel programming models 
mapped into Python is valuable, however, 

it doesn’t solve the problem of how we 
map code onto diverse hardware.

Our only hope is to rethink how we 
engineer software



▪ Application task-groups →  microservices
▪ Data structures → distributed object store
▪ Durable store: Persistent cloud store (e.g. S3)

▪ Application task-groups → processes
▪ Data  structures → process memory
▪ Durable Store: Cluster file system

▪ Applications task-groups → threads
▪ Data  structures → process heap
▪ Durable store: local file system

One codebase → many systems

Application Program:
High-level Algebra + Core Patterns  

Application Program source code:

Software generator
Hardware cost 

model

Cloud Native HPC Laptop/ServerHPC Cluster

▪ Performance, Productivity AND Portability … the database 
people “did it” with relational algebras and SQL.

▪ Can HPC people solve this problem?  We can’t even agree 
on the right algebra to use let alone the needed 
programming models.

▪ But if we get it right, we’ll have … declarative semantics 
that a software generator can turn into laptop, cluster or 
cloud programs.

Intention Adaptation

InventionData Data

Data

*

*This is the logo of the machine programming research program I helped lead inside Intel Labs
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Traditional programming

• Three fundamental aspects of software development:
• Express the intent of the program

• Invent algorithms/data-structures

• Adapt the software to the details of the hardware for high performance

• Programmers do all this together when they write code.

Third party names are the property of their owners.

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code

Past attempts to automatically generate code have failed since 
they tried to “do it all” together (just as a human would).



49

Separation of concerns

• Let’s break up the software development process and consider each aspect 

Separately

Third party names are the property of their owners.

Intention Adaptation

Invention

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code
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Separation of concerns

Third party names are the property of their owners.

Intention Adaptation

Invention

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code

Programmers should just worry about expressing their intent.   We will 
automate the Invention and Adaptation work

• Let’s break up the software development process and consider each aspect 

Separately



The Three Pillars of Machine Programming
MAPL/PLDI’18

512nd ACM SIGPLAN Workshop on Machine Learning and Programming  Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

Justin Gottschlich, Intel

Armando Solar-Lezama, MIT

Nesime Tatbul, Intel

Michael Carbin, MIT

Martin, Rinard, MIT

Regina Barzilay, MIT

Saman Amarasinghe, MIT

Joshua B Tenebaum, MIT

Tim Mattson, Intel

A position paper laying out our vision for how to solve the machine 

programming problem. The three Pillars:

– Intention: Discover the intent of a programmer

– Invention: Create new algorithms and data structures

– Adaption: Evolve in a changing hardware/software world

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

University of Bristol
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Halide: Focusing on programmer intent

Func blur_3x3(Func input) {
  Func blur_x, blur_y;
  Var x, y, xi, yi;

  // The algorithm - no storage or order
  blur_x(x, y) = (input(x-1, y)  + input(x, y)  + input(x+1, y))/3;
  blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

  // The schedule - defines order, locality; implies storage
  blur_y.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);
  blur_x.compute_at(blur_y, x).vectorize(x, 8);

  return blur_y;
}

• Algorithm:
– What the program does, 

– Written by a domain specialist

• Schedule:
– How the program runs

– Written by SW/HW expert

Halide 
separates the 

Algorithm
 

from the

 Schedule

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, J Ragan-Kelley, C. 

Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, PLDI, 2013, https://doi.org/10.1145/2491956.2462176

Intention Adaptation

InventionData Data

Data

A domain specific language for image processing

https://doi.org/10.1145/2491956.2462176
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Halide Learned Schedules

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded,  SIGGRAPH 2019 

(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.

Productivity / 

Performance

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, 

Jonathan Ragan-Kelley. Learning to Optimize Halide with Tree Search and Random Programs  ACM Transactions on Graphics 38(4) (Proceedings of ACM 

SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967
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Superhuman Performance

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded,  SIGGRAPH 2019 

(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, 

Jonathan Ragan-Kelley. Learning to Optimize Halide with Tree Search and Random Programs  ACM Transactions on Graphics 38(4) (Proceedings of ACM 

SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967


But now days … all people seem to care about 
is large language models (LLM) that generate 

code



LLMs don’t do well with parallel code
Example

Source: Can Large Language Models Write Parallel Code? 
(2024), https://arxiv.org/abs/2401.12554

pass@1
 probability 

correct 
parallel code 

on first 
attempt



Can we do better with LLMs specialized to HPC?
● Kadosh, Tal, Niranjan Hasabnis, Vy A. Vo, Nadav Schneider, Neva Krien, Mihai Capota,, Abdul Wasay , Guy Tamir, Ted 

Willke, Nesreen Ahmed, Yuval Pinter, Timothy Mattson, and Gal Oren . ”MonoCoder: Domain-Specific Code 

Language Model for HPC Codes and Tasks." arXiv preprint https://arxiv.org/html/2312.13322v2, (2024). HPEC’24

● Kadosh, Tal, Niranjan Hasabnis, Timothy Mattson, Yuval Pinter, and Gal Oren. "Quantifying OpenMP: Statistical 

Insights into Usage and Adoption [HPCorpus]." arXiv preprint arXiv:2308.08002 (2023). HPEC’23

● Schneider, Nadav, Tal Kadosh, Niranjan Hasabnis, Timothy Mattson, Yuval Pinter, and Gal Oren. "MPI-rical: Data-

Driven MPI Distributed Parallelism Assistance with Transformers." arXiv preprint arXiv:2305.09438 (2023). AI4DEV 

@ SC’23

● Kadosh, Tal, Nadav Schneider, Niranjan Hasabnis, Timothy Mattson, Yuval Pinter, and Gal Oren. "Advising OpenMP 

Parallelization via a Graph-Based Approach with Transformers." arXiv preprint arXiv:2305.11999 (2023). IWOMP’23

● Harel, Re'em, Yuval Pinter, and Gal Oren. "Learning to parallelize in a shared-memory environment with 

transformers." Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel 

Programming. 2023. PPoPP’23

● Re'em Harel, Tal Kadosh, Niranjan Hasabnis, Timothy Mattson, Yuval Pinter, and Gal Oren PragFormer: Data-driven 

Parallel Source Code Classification with Transformers”, 29 August 2023, preprint (V1) Research Square 

[https://doi.org/10.21203/rs.3.rs-3254961/v1]

This collaborative work 
is led by Gal Oren 
(Technion) and Yuval 
Pinter (Ben Gurion Univ) 
and their students:
• Tal Kadosh 
• Nadav Schneider
• Neva Krien
• Re’em Harel

https://arxiv.org/html/2312.13322v2


You need data:  HPCorpus

• We searched C, C++ and Fortran codes 
in GitHub from 2012-mid 2023 for 
parallel code

Repos Size(GB) Files (#) Functions (#)

C 144,522 46.23 4,552,736 87,817,591

C++ 150,481 26.16 4,735,196 68,233,984

Fortran 3,683 0.68 138,552 359,272

All data and associated scripts are available at:
https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus 
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Programming models usage 2013 to 2023

Aggregate numbers over all repositories from 2013 to 2023

Note: since we did not collect files with .cu or .cuf 
suffices, we unintentionally undercounted CUDA 

usage in HPCorpus.

OpenMP is clearly the most popular 
parallel programming model in use today.

This surprised us … we thought MPI 
would be the most popular model.

However, while MPI dominates at the 
major supercomputing research center, 
GitHub includes laptop, single server, and 
a much wider range of applications.  



You need to tokenize your data

• LLMs work on sequences of tokens from a pre-set vocabulary.

• GPT and related technologies use a standard tokenizer derived from 
research on human language.   

• Can we do better with a tokenizer specialized to HPC languages: C, 
C++ and Fortran?

Token: the smallest unit of text used for processing in an AI model



Current tokenizer technology applied to HPCorpus-Fortran
GPT2 (BPE) NLTK

Code sample Tokenized code AST (xSBT)

function calculate_pi

(max, seed) result(pi)

implicit none

integer, intent(in) :: max, seed

real(8) :: pi

real(8) :: area, x, y

integer :: i

external :: drand48

integer :: pi_count

pi_count = 0

call seed48(seed)

do i = 1, max

x = drand48() * 2 - 1

y = drand48() * 2 - 1

…

['function', 'calculate', '_', 'pi', '(', 'max', ',', 'seed', 
')', 'result', '(', 'pi', ')', 'impl', 'icit', 'none', 'integer', 
',', 'intent', '(', 'in', ')', '::', 'max', ',', 'seed', 'real', 
'(', '8', ')', '::', 'pi', 'real', '(', '8', ')', '::', 'area', ',', 'x', 
',', 'y', 'integer', '::', 'i', 'external', '::', 'dr', 'and', 
'48', 'integer', '::', 'pi', '_', 'count', 'pi', '_', 'count', 
'=', '0', 'call', 'seed', '48', '(', 'seed', ')', 'do', 'i', '=', 
'1', ',', 'max', 'x', '=', 'dr', 'and', '48', '()', '*', '2', '-', 
'1', 'y', '=', 'dr', 'and', '48', '()', '*', '2', '-', '1', 'if', '(', 
'x', '*', 'x', '+', 'y', '*', 'y', '<', '1', ')', 'then', 'pi', '_', 
'count', '=', 'pi', '_', 'count', '+', '1', 'end', 'if', 
'area', '=', '4', '.', '0', '*', 'real', '(', 'pi', '_', 'count', 
')', '/', 'real', '(', 'i', ')', 'end', 'do', 'pi', '=', '4', '.', '0', 
'*', 'real', '(', 'pi', '_', 'count', ')', '/', 'real', '(', 
'max', ')', 'end', 'function']

['declaration__', 'parameter_declaration', 
'parameter_declaration', '__declaration', 
'declaration', 'declaration__', 
'parameter_declaration', '__declaration', 
'call_expression', 'declaration', 'declaration__', 
'parameter_declaration', '__declaration', 
'assignment_expression', 'binary_expression__', 
'binary_expression__', 'call_expression', 
'__binary_expression', '__binary_expression', 
'binary_expression__', 'binary_expression__', 
'call_expression', '__binary_expression', 
'call_expression__', 'binary_expression__', 
'binary_expression__', 'binary_expression', 
'binary_expression', '__binary_expression', 
…..

Avg. # tokens 753.04 179.55

Total # tokens 50K

BPE: Byte Pair Encoding, a core tokenizer used in many leading LLMs

NLTK: Natural Language Toolkit tokenizer 
AST(xSBT: abstract syntax tree built by the “Simple Build Tool”  



Our “Tokompiler" applied to HPCorpus-Fortran

Tokenized code Tokenized AST 

['function', 'func', '48', '(', 'arg', '128', ',', 'arg', '807', 
')', 'result', '(', 'func', '180', ')', 'implicit', 'none', 
'integer', ',', 'intent', '(', 'in', ')', '::', 'arg', '128', ',', 
'arg', '807', 'real', '(', 'num', '5', ')', '::', 'func', '180', 
'real', '(', 'num', '5', ')', '::', 'var', '377', ',', 'var', '84', 
',', 'var', '967', 'integer', '::', 'var', '821', 'external', '::', 
'func', '123', 'integer', '::', 'var', '63', 'var', '63', '=', 
'num', '156', 'call', 'var', '719', '(', 'arg', '807', ')', 'do', 
'var', '821', '=', 'num', '315', ',', 'arg', '128', 'var', '84', 
'=', 'func', '123', '(', ')', '*', 'num', '357', '-', 'num', 
'315', 'var', '967', '=', 'func', '123', '(', ')', '*', 'num', 
'357', '-', 'num', '315', 'if', '(', 'var', '84', '*', 'var', '84', 
'+', 'var', '967', '*', 'var', '967', '<', 'num', '315', ')', 
'then', 'var', '63', '=', 'var', '63', '+', 'num', '315', 
'end', 'if', 'var', '377', '=', 'num', '539', '*', 'func', 
'937', '(', 'var', '63', ')', '/', 'func', '937', '(', 'var', '821', 
')', 'end', 'do', 'func', '180', '=', 'num', '539', '*', 
'func', '937', '(', 'var', '63', ')', '/', 'func', '937', '(', 

'arg', '128', ')', 'end', 'function'] 

'translation_unit', '(', 'declaration', '(', 'function', 
'function_declarator', '(', 'func', '48', 'parameter_list', '(', '(', 
'parameter_declaration', '(', 'arg', '128', ')', ',', 
'parameter_declaration', '(', 'arg', '807', ')', ')', ')', ')', ')', 
'declaration', '(', 'macro_type_specifier', '(', 'result', '(', 'type', 
'descriptor', '(', 'func', '180', ')', ')', ')', 'implicit', ')', 
'declaration', '(', 'none', 'integer', ',', 'function_declarator', '(', 
'intent', 'parameter_list', '(', '(', 'parameter_declaration', '(', 
'in', ')', ')', ')', ')', '(', ':', ':', 'arg', '128', ')', ',', '(', 'arg', '807', 
'function_declarator', '(', 'real', 'parameter_list', '(', '(', 
'parameter_declaration', '(', 'num', '5', ')', ')', ')', ')', ':', ':', 
'func', '180', 'function_declarator', '(', 'real', 'parameter_list', 
'(', '(', 'parameter_declaration', '(', 'num', '5', ')', ')', ')', ')', ':', ':', 
')', 'var', '377', ',', 'var', '84', ',', '(', 'var', '967', 'integer', '::', 
'var', '821', 'external', ':', ':', 'func', '123', 'integer', ':', ':', 'var', 
'63', ')', 'init_declarator', '(', 'var', '63', '=', 'num', '156', ')', ')', 
'declaration', '(', 'call', 'function_declarator', '(', 'var', '719', 
'parameter_list', '(', '(',
…

687.72 1099.1

177 primitives + 1000 locals = 1177

● Generate Variable-Anonymized Code: 
Create a version of the original code with anonymized 
variable names, numbers, and strings

● AST Parsing:                                                                    
Parse the anonymized code using tree-sitter or any suitable 
parser to generate an AST (Abstract syntax tree)

● Recreate AST Changes:                                       
Update the AST to reflect changes made during 
anonymization. Keep a dictionary of all changes done per 
file/function to facilitate restoring semantics back later

● AST to Code-Tokenize:                                     
Transform the updated AST back into code, eliminating any 
comments, new lines, and READMEs that may have been 
introduced during anonymization. This code-tokenized 
version will have a much smaller number of tokens

● Token Splitting:                                                                
Split multi-part tokens (e.g., "var\_1" to ["var", "1"]) to 
ensure that the model comprehends variable names as a 
combination of type and a unique identifier

● Random names for recurrent tokens:                               
For recurrent tokens (e.g., "var\_1" or "num\_2"), use 
random numbers during each tokenization. The attached 
numbers are randomly chosen without any relation to the 
type or order of the replaced tokens or the file/function 
length

From 50K tokens to under 2K.   That is a huge improvement



An established LLM for 
generating code

Source: A Systematic Evaluation of Large Language Models
of Code (2022), https://arxiv.org/abs/2202.13169

PolyCoder is an open source transformer model 
based on GPT-2 dedicated to generating code

Perplexity is a measure of model quality:   Lower is better

Frank Xu, Uri Alon, Graham Neubig, and Vincent Hellendoorn: 
https://github.com/VHellendoorn/Code-LMs



Tokompiler and Polycoder

PolyCoder Model matched to 
number of tokens

BPE Tokompiler Tokompiler-small

Model Size 2.8B 2.5B 638M

Time to train (min) 8300 8125 6386

• BPE: the tokenizer used in GPT2 and LLMs for programming tasks (PolyCoder)

• Integrated Tokompiler with PolyCoder

• The number of tokens maps onto the number of parameters in the model, so we were able to build a 
small model to match the reduced set of tokens

• Training done on 4 A40 GPUs with 48 Gbytes.



MonoCoder: A model trained on C/C++/Fortran and using our Tokompiler

HPCorpus
HPCorpus
HPCorpus

Embedding + Positions

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

MonoCoder

8 ×

void vector_add(const float 
*a, const float *b, float 
*c, int n) {
 #pragma ????

omp

MonoCoder draws inspiration from the 

PolyCoder model but reduces the number

of transformer blocks by four … which should 

be OK since Tokompiler reduces the number 

of tokens



MonoCoder Results: code completion

CodeBLEU is a standard metric 

of quality in code generation 

systems … given a number of 

tokens for context, how does the 

system perform with a code 

completion task … shown here 

for 100, 300 and 600 tokens in a 

1200 token program.

For a general code dataset

An ideal score is one

”MonoCoder: Domain-Specific Code Language Model for HPC Codes and Tasks." arXiv preprint https://arxiv.org/html/2312.13322v2, (2024).

https://arxiv.org/html/2312.13322v2


MonoCoder Results: Inserting OpenMP reductions

Trained models on OpenMP code then tested 

them with a data set of OpenMP programs 

with pragmas removed.

• Precision: ratio of correct cases to the 

sum of correct and incorrect cases.

• Recall: ratio of correct cases to sum of 

correct and missed cases

• Accuracy: overall correctness of cases

On a dataset generated from OpenMP codes with pragmas removed, 
find correct locations and the right form for reduction clauses 

”MonoCoder: Domain-Specific Code Language Model for HPC Codes and Tasks." arXiv preprint https://arxiv.org/html/2312.13322v2, (2024).

https://arxiv.org/html/2312.13322v2


LLMs for parallelism have a long way to go, but 
we are making progress

• We have shown the value of “less is more” … training models with languages you do not 

need degrades the quality of the system.

• We have shown our Tokenizer is smaller and delivers better results than tokenizers 

designed for natural language processing.

• We believe we can greatly improve our models by working on their ability to use abstract 

syntax trees and dataflow graph representations of the code.

• Our models work for code completion tasks so we anticipate eventually creating a code 

recommendation plug-in to aid programmers in developing OpenMP code.

• We have preliminary work showing these approaches work with MPI as well … though this 

work was not discussed here.



… I see trouble ahead
• LLM methods require vast amounts of data.

• We can find plenty of parallel code from which we can extract data to train our models that 

add parallelism constructs … but inserting parallel constructs into code is the easy part of 

the parallel programming process.

• The hard part … and this is where software developers need the most help … is the 

changes in algorithms, data structures, and program structure to support parallelism.

• We can’t find much data on that part of the problem.  

No data → No model == ultimate failure

• To restructure code in preparation for parallelism, we need to think like a compiler.  

Symbolic reasoning, code as a graph that we can cluster and reorganize, and more.



In closing …

• The future:  Market forces will drive aggressive growth in hardware complexity

• What should we do about this?

• Processors: Embrace hierarchical heterogeneity as you design application software.  

Chiplets and optical networking makes this an inevitablee trend.

• People: Stop whining … developers are moving to high level languages that hide the 

hardware.   Stop worrying and learn to love Python.

• Programming: We must invest in programming technologies that let people do what 

they do best (imagine new applications and the math/algorithms needed to support 

them) and automate what we can in the backend (mapping algorithms and data 

structures onto the hardware).
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