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WHAT IS THE AIM?

= The aim of this study is to characterize alternative gas mixtures for future trackers
= We started with the characterization of the gas mixture used in the CDCH of the MEG Il experiment

= |tis a He:lsobutane 90:10 mixture with the
addition of a 1.5% concentration of Isopropilic
alcohol and a 0.5% concentration of Oxygen

= The additives are necessary to guarantee
operational stability

= The interesting aspect of these additives is that
they slowed down the ageing of the chamber




MEASUREMENTS

= To have a complete characterization of the mixtures,
we are interested in the study of uv

>
= Drift velocity w

= Attachment coefficient
= Ageing rate OPTIC /

BEAM

BLOCKER
I

= To perform the first two measurements we used a
small time projection chamber (TPC) illuminated by a
laser with pulses at 355 nm

= |n this way we can ionize locally at a fixed position

= Ageing rate will be measured using an x-ray source



MEG-II GAS MIXTURE CHARACTERIZATION

= From now on we will focus on the MEG-II drift
chamber’s gas mixture

= To broaden the literature, we want to explore a

wider range of oxygen concentrations at different
drift fields

= Oxygen concentration: 0.2%, 0.35% and 0.5%

= Drift field: 700 V/cm, 1000 V/cm, 1250 V/cm and
1500 V/cm

= The paper taken as a reference for our
measurements is V. Golovatyuk et al. (2001)
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Abstract

The presented results refer to 90% helium and 10% isobutane gas mixture. Single electrons have been used to
measure the attachment coefficient and drift velocity in homogeneous electric fields in the range from 100 to
1000 Vem~!. Water vapor and oxygen concentrations varied from 350ppm up 1.1%, and from 5 to 900 ppm,
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SET UP SIMULATION

The detector chosen for these measurements is
a small TPC

= A wired 16x16x5 cm? plexiglass chamber
closed by a cathode and an anode board

= [t was first necessary to simulate the electric
field inside the chamber to check that no
discharges occur inside the volume

= To do so we used ANSYS, a Finite Element :
Analysis software cathode

45° plane

Field wires
St Sense wires
Readout pads
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READ-OUT PADS

= We could read the data through a wavedream
which displays the signal collected

= The pad can be connected to three wavedreams
but due to an excess of noise we chose to use
only one

= The readout channels are only those
enumerated in the picture

= Channel 2 is a reference channel used to subtract
the noise

= |tis actually connected to the pad in the bottom
right corner




DATA ANALYSIS - SMOOTHING

= To clear the signal first | subtracted the

Low-Pass Filter via FFT and Gaussian Smoothing
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DATA ANALYSIS — DRIFT VELOCITY

= To extract the drift velocity for each mixture we collected data at different distances with respect to
the read-out pads and then we extracted the time of arrival from the signal distribution
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DATA ANALYSIS — DRIFT VELOCITY

= Drift velocity vs drift field

= The pure mixture measurements are not aligned: it might be related to a non-homogeneity of the
mixture at the time
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DATA ANALYSIS - ATTACHMENT

the drift length

To obtain the attachment coefficient | studied how the amplitude of the signal changes with respect to

= The result must depend on the mixture composition, in particular on the Oxygen concentration

= The relation between the number of
ionizations and the attachment
coefficient is described by
N(d) = Nye ™

= The fit function, then, is
log(N(d)) = log(Ny) — nd
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DATA ANALYSIS - ATTACHMENT

= Attachment coefficient vs drift field

= The data collected have a hyperbolic behaviour, as expected
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DATA ANALYSIS - ATTACHMENT

Attachment coefficient vs oxygen concentration

In the plot of the attachment coefficient vs the
Oxygen concentration we would expect a linear
behaviour

The discrepancy with respect to the expected
behaviour is most likely due to the fact that we
were not in full control of the Oxygen
concentration
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MIXTURE STABILITY

Mixture stability from 0% to 2% Q2 concentration

Mixture stability from 2% to 5% O2 concentration
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WHAT IS NEXT?

= From these results we could understand the limitations of our set up

= The drift velocity behaves as expected while the attachment shows some discrepancies

= [tis crucial to know the actual oxygen concentration inside the mixture
= This can be done introducing an oxygen analyser after the chamber

= We could also add an intermediate step between the mixer and the chamber so that the
mixture is homogeneous when enters the detector

= The laser instabilities effects must be reduced

= To do so we can split the laser beam: one half is set at fixed position while the second one can
be moved to perform the measurements needed
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FUTURE

= The very next step will be to set up the ageing rate measurements using an x-ray source

= We will also test other alternative mixtures

= They must be hydrocarbon-free and eco-friendly, of the kind He:CO2:HFO
= An example of HFO is R-1234ze which is already used in RPCs

= This study is in the interest not only of the MEG-II collaboration but also for other future

experiments
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BACK UP SLIDES
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SETTING

= |n the first period we reduced the noise by
shielding the whole apparatus: the price to pay
is that you can no longer disconnect the box

= Then we improved the internal soldering in
order to be able to raise the voltage to 5000 V:
in this way we can safely explore drift ranges of
1500 V/cm

= The anode can reach 1500 V but we have
always worked at 1300 V
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LASER ALIGNMENT

BEAM
BLOCKER
UV I
>
Since the box cannot be opened, we performed w
the alignment by inserting the optical laser
inside the box and arranging mirrors and lenses ‘
OPTIC

appropriately

If we want to add the reference beam, we will
have to replace the beam blocker with a mirror
and insert a beam splitter in the diagram
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SECOND STEP — WIRING AND LASER ALIGNMENT

= Due to logistic reasons we had to choose
the wires configuration as our read out

= After the wiring of the detector we could
set the apparatus at LNF, including the UV
laser needed to perform the
measurements of drift velocity and
attachment coefficient

= The UV laser ionizes the gas locally and
maximizes the statistics collected
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Charge Channel 0 vs Event
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VELOCITA DI DRIFT

0006-0010
0023-0027
0033-0037
0048-0052
0063-0067
0068-0072
0083-0087
0098-0102
0143-0147
0163-0167
0183-0187
0203-0207
0225-0229

He:isobutano

He:isobutano

He:isobutano

He:isobutano, alcool 1.2%
He:isobutano, alcool 1.2%, 02 2%
He:isobutano, alcool 1.2%, 02 2%
He:isobutano, alcool 1.2%, 02 3.5%
He:isobutano, alcool 1.2%, 02 5%
He:isobutano

He:isobutano, alcool 1.4%, 02 2%
He:isobutano, alcool 1.5%, 02 3.5%
He:isobutano, alcool 1.6%, 02 5%
He:isobutano, alcool 1.6%, 02 5%

30 sccm

30 sccm

100 sccm
100 sccm
100 sccm
100 sccm
100 sccm
100 sccm
100 sccm
100 sccm
100 sccm
100 sccm

100 sccm

700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm
700 V/cm

2.113 £+ 0.002 cm/us
2.133 + 0.002 cm/pus
2.416 + 0.007 cm/us
2.409 + 0.008 cm/us
2.40 + 0.01 cm/ps

2.428 + 0.008 cm/us
2.427 + 0.007 cm/us
2.416 + 0.007 cm/us
2.400 + 0.003 cm/us
2.451 + 0.005 cm/us
2.465 + 0.006 cm/us
2.415 + 0.005 cm/us
2.348 + 0.004 cm/us

Confrontando i valori ottenuti per v_drift in diversi scan si osserva una certa
variabilita nei risultati specialmente cambiando il flusso della miscela
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FFT SPECTRA NO SIGNAL RUN

Before noise subtraction After noise subtraction
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Fieldcage (FC)

Cathode

SIMULATION MODEL
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E_FIELD SIMULATION

XZ plane
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E_FIELD SIMULATIO

YZ plane
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E_FIELD SIMULATION

45° plane
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1000

900

800

700

600

500

400

E [V/cm]

28



FIELD CAGE

= This is the field cage which is an innovative technology to be explored

= Unfortunately, we were not able to test it since it causes discharges inside
the chamber at relatively low voltages

resistor

kapton
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