Electron reconstruction at a Muon Collider

International UON Collider Collaboration

Leonardo Palombini, Davide Zuliani, Lorenzo Sestini, Donatella Lucchesi, Carlo Giraldin, Massimo Casarsa

A noisy path to the frontiers of physics

About me

Bachelor Degree at University of Padua

Experimental heavy ion physics at INFN-LNL

MsC internship

ENUBET collaboration, monitored neutrino beam, lepton/hadron/muon calorimetric tagging

MsC thesis

Muon Colllider Detector study: isolated electron reconstruction for 10 TeV muon collisions

Future discovery purpose

How did I end up here?

R&D challenge novelty space Skills software analysis design

A backdoor to the TeV frontier

Colliding muons could pave the way to Beyond Standard Model physics

Second generation

possible LFV phenomena muonphylic new physics Large(r) mass

no synchrotron radiation

Fundamental particles full energy available no QCD background

... and much more! just ask your favorite phenomenologist

10+ TeV COM energy

MSSM particles, Y-universal Z', composite Higgs/Top, WIMPs

with similar reach to 100Tev pp

High intensity EW factory

Large VV fusion cross section 10M h, 10k hh, 100k tt

10x higgses wrt FCC-ee

Not only a high energy explorer

The Muon Collider facility

-

So why doesn't a Muon Collider exist yet?

Unfortunately, muons only live 2.2 us at rest, decaying in an electron and two neutrinos

Machine challenges

- proton target power dissipation
- target region radiation dose
- muon cooling
- quick beam re-acceleration
- accelerator/collider rings radiation dose
- neutrino flux

...

Detector challenges

• Beam Induced Background

The Beam Induced Background

Electrons and positrons of few TeV hit the detector, generating an unsustainable background

PASSIVE

- Dedicated machine lattice and optics
- Tungsten shieldings

ACTIVE

• Exploit (r,t,E) features of BIB vs signal • Filter/reconstruction

MUSIC: a detector for the 10 TeV Muon Collider

Vertex Detector

Tungsten nozzle

-

The difficult task of energy measurement

The EM calorimeter is the first "dense" subdetector encountered by BIB particles (photons). On average, 10^6-10^7 hits are generated in ECal, of which 10^3 from signal particles. **Stringent R&D requirements for a candidate EM calorimeter system:**

- superior time resolution < 100 ps
- good energy resolution
- Iongitudinal segmentation and high granularity

CRILIN (CRystal calorImeter with Longitudinal InformatioN) is the system of choice.

How does the BIB look in CRILIN?

Mostly-BIB E-t (barrel L0 Z0)

Signal E-t (barrel L0 Z0)

1.1

Physics objects reconstruction

une = [Gev]

100

Preliminary reconstructions with 10 TeV BIB

Check the effects of a simplistic BIB-signal discrimination

- Tracks requirements N(hits) and chi squared
 - from 100K to 200 tracks
- ECal hit requirements (t,E) by regions
 - $\circ~$ from 6M to 20k hits
- From >40h/evt to few min/evt

Performance is ok, but huge improvement margin

- Target tracking+reconstruction efficiency 90%
- Target energy resolution 15% / sqrt(E)

Possible improvements by exploiting ML techniques

.

Preliminary performances in the h > 4e physics case

The physics channel h > ZZ* > 4e will be an important component in the measurement of the h-Z coupling. A small BR, together with a large multiplicity, makes it a telltale of detector performance.

- with only ECal and no bms correction, **invariant mass resolution of 2 GeV**
- combining tracking and ECal, statistically significant peak already without ZZ fusion process

lution of 2 GeV ready without ZZ fusion process

Thank you!