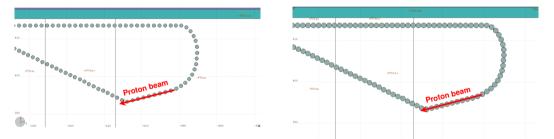
WP2: Mu2e-II and Mu2e Targetry updates

S. E. Müller

Helmholtz-Zentrum Dresden-Rossendorf

aMUSE General Meeting Workshop, September 17, 2024

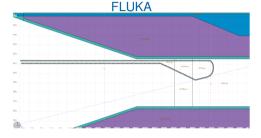

Mitglied der Helmholtz-Gemeinschaft

S. E. Müller | HZDR | http://www.hzdr.de

New PT conveyor target positions

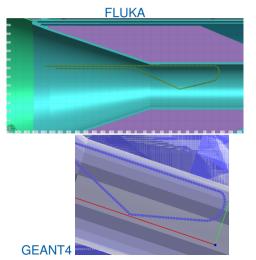
Spline-parameterization of sphere trajectories allows to more realistically model the sphere positions when changing sphere radii:

Old design (tungsten):

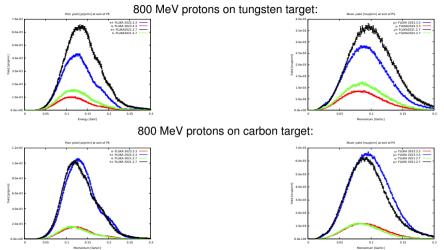

New design (tungsten):

Added feeding and draining lines for design with carbon spheres (which was limited to only the spheres interacting wth the beam).

New PT conveyor target positions

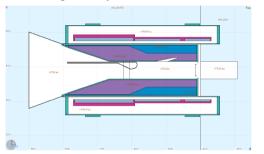

New conveyor target designs have been implemented with FLUKA and GEANT4 (Michael MacKenzie, Northwestern University, also corresponding gdml-files):

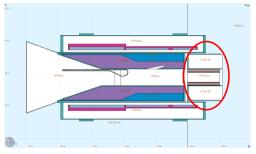
333 tungsten spheres with 6.3mm radius:



GEANT

274 carbon spheres with 7.5mm radius:

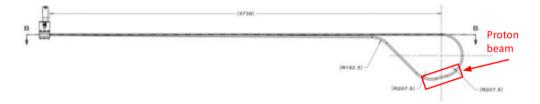

FLUKA Pion and Muon yields with Tungsten and Carbon targets



Results do not change much for carbon target design, but are lower by \sim 30% for tungsten target - reason has probably been understood (**not** due to a change in **FLUKA** physics, but geometry had been changed for tungsten target).

FLUKA Pion and Muon yields with Tungsten and Carbon targets

Collimator at entrance of Transport Solenoid was added to geometry: Old geometry without collimator: New design with collimator:

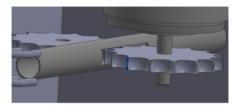


The collimator is taking out a fraction of the particles going from Production Solenoid to Transport Solenoid.

- Iooks everybody else was scoring particles entering the Virtual Detector volume from the PS, while I was scoring particles exiting the Virtual Detector volume into the TS
- I reached out to Michael MacKenzie and Vitaly Pronskikh to confirm (no answer yet)

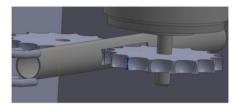
- Layout more close to what is projected in the simulations
- Sprocket drive to drive the spheres

- Layout more close to what is projected in the simulations
- Sprocket drive to drive the spheres



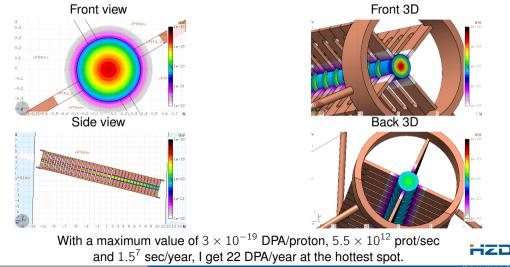
- Layout more close to what is projected in the simulations
- Sprocket drive to drive the spheres

- Layout more close to what is projected in the simulations
- Sprocket drive to drive the spheres



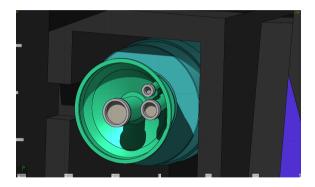
A new prototype for the conveyor target has been built by Euclid Techlabs.

- Layout more close to what is projected in the simulations
- Sprocket drive to drive the spheres



Many more ideas on target design following discussions at targetry session of "Workshop on a Future Muon Program at Fermilab" (Caltech, Mar 27 - 29, 2023)

DPA simulations for the Mu2e hayman target

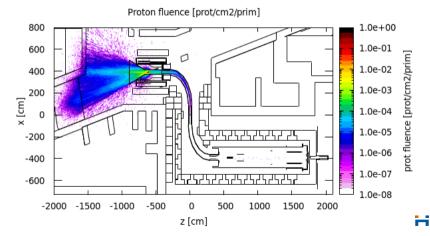

Simulations by the FNAL targetry group for the Mu2e hayman target gave up to 250 DPA (locally concentrated) per year of running. I re-checked using my **FLUKA** model:

E Müller | HZDR | http://www.bydr.de

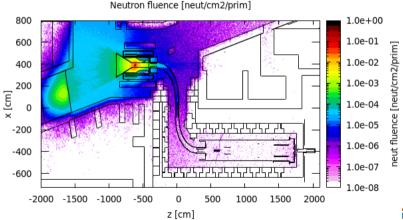
Updated PS endcap geometry

The PS endcap had been updated from a flat design to a curved one, adding a big central window tube, flanges and additional ports. I have added this now to the FLUKA simulation:

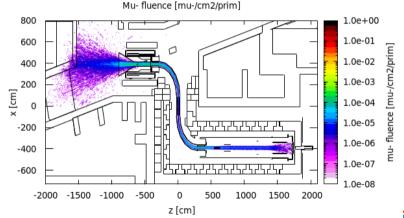
 Does not change muon stopping rates at Stopping Target, but may have an effect on shielding calculations


Bringing FLUKA to fermigrid

- FLUKA 2023.3.3 has been packaged for ups with help from Ray Culbertson and Rob Kutschke from MU2E
 - I provide .tgz packages for upcoming respins or releases of FLUKA
 - Did for FLUKA 2024.1.0
- Mu2e magnetic fieldmaps for FLUKA now available at /cvmfs/mu2e.opensciencegrid.org/DataFiles/BFieldMaps/Mau13/FLUKA/
 - PSMap.bin, TSuMap_swap_TS_14_15.bin, TSdMap.bin, DSMap.bin, DSSweepExtension.bin
- Can now run FLUKA simulations on fermigrid
 - Lot of things to be learned and understood...
 - One event (POT) takes about 10 seconds (with magnetic field, without magnetic field it is about 3-4 seconds)
- In the meantime, MU2E has moved to Almalinux 9 and SPACK instead of Scientific Linux 7 and ups ...
 - Work in progress to package FLUKA for SPACK


First results from the grid

After some initial difficulties, I managed to launch 200 jobs of 5×500 events each (of which 164 came back, so I have 410 000 events). FLUKA postprocessing routines are used for standard FLUKA scoring, and a **ROOT** TSelector was used to process **ROOT**-files.


First results from the grid

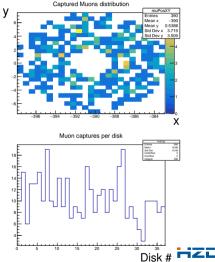
After some initial difficulties, I managed to launch 200 jobs of 5×500 events each (of which 164 came back, so I have 410 000 events). FLUKA postprocessing routines are used for standard FLUKA scoring, and a **ROOT** TSelector was used to process **ROOT**-files.

First results from the grid

After some initial difficulties, I managed to launch 200 jobs of 5×500 events each (of which 164 came back, so I have 410 000 events). **FLUKA** postprocessing routines are used for standard **FLUKA** scoring, and a **ROOT** TSelector was used to process **ROOT**-files.

Stopped muons:

FLUKA allows to identify muons getting captured on the aluminum discs. I got 390 captured muons out of 410 000 primary protons.


Using the 0.6095 factor of muon captures per stopped muon, we get

0.00156 stopped muons per POT

which fits quite nicely with what can be found in **MU2E** literature:

- 0.0019 stopped muons per POT (TDR)
- 0.0016 stopped muons per POT (TDR target)
- 0.00156 stopped muons per POT (Tier 1)
- 0.00151 stopped muons per POT (Hayman 2)

More statistics is needed (of course).

Summary & Conclusion

- MU2E-II target models have been updated in the simulation
 - Better sphere alignment along path for tungsten spheres, feeding- and draining line spheres added for carbon design
 - Now repeat calculations done for SATIF workshop in 2022 and compare with GEANT4 and MARS codes
- New prototype of target for MU2E-II built by Euclid techlabs
 - Sphere trajectory closer to simulation design
 - Sprocket drive
 - Shelved momentarily due to lack of peoplepower
- Problem found with current MU2E hayman target design
 - Large radiation damage over 1 year of running found in simulation (\sim 20 DPA)
 - Graphite target?
- Further improvements in FLUKA simulation
 - Endcap design in PS updated
 - Possibility to run FLUKA on Fermigrid

