

WP1: Muon g-2 overview

2024 aMUSE General Meeting Padova, 17 Sep 2024

> **Paolo Girotti** (INFN Pisa) Dominik Stoeckinger (TU Dresden)

Muon g-2

- The muon anomaly \mathbf{a}_{μ} encodes all the possible virtual interations
- E989: measure the muon anomaly to 140 parts per billion
- A discrepancy with the value predicted by the Standard Model would be a sign of new physics

- BNL experiment found 3.7σ discrepancy with theory
- Repurposed the magnetic ring, upgraded everything else
- Took data from 2018 to 2023

OMUSE-**Experimental technique**

$$\vec{\omega}_a = \underline{\vec{\omega}_s} - \underline{\vec{\omega}_c} = -\left(\frac{g-2}{2}\right)\frac{e\vec{B}}{m} \equiv -a_\mu \frac{e\vec{B}}{m}$$

- This "anomalous" precession frequency is proportional to g-2 and to the magnetic field
- ω_{a} is entirely due to the virtual interactions between the muon and the field
- Measure $\boldsymbol{\omega}_{a}$ and $\mathbf{B} \rightarrow \text{obtain}[\mathbf{a}_{l}]$

INFN

Measurement principle

INFN

Istituto Nazionale di Fisica Nuclea

Formula

P. Girotti | Muon g-2 overview

09/17/24

Measuring ω_a

Run-1 wiggle plot χ^2 / NDOF = 3899/4000 10^{-10} N / 149.2 ns 20 40 60 80 100 Time after injection modulo 102.5 [µs] 1.2 $f_{CBO} \\ f_{CBO} \pm f_{a}$ FFT of fit 1.0 residuals f_{vw} FFT magnitude 9.0 7 0.2 0.0 Manual and the service of the se 0.5 1.5 2 2.5 3 1 Frequency [MHz]

09/17/24

- Positrons above 1 GeV are counted vs time and weighted by their asymmetry A(E)
- Histogram fitted with 27-parameter function
 - Muon precession and beam oscillations
 - 7 independent blinded analyses to extract the muon anomalous precession frequency ω_a

$$\begin{split} N(t) &= Ne^{-t/\tau_{\mu}} \left[1 + A \cdot \cos(\omega_{0}t - \phi + \phi_{BO}(t)) \right] \cdot \\ &\quad \cdot \left(1 + A_{CBO} \cos(\omega_{CBO}t - \phi_{CBO})e^{-\frac{t}{\tau_{CBO}}} \right) \cdot \twoheadrightarrow \text{Horizontal betatron oscillation} \\ &\quad \cdot \left(1 + A_{VW} \cos(\omega_{VW}t - \phi_{VW})e^{-\frac{t}{\tau_{VW}}} \right) \cdot \qquad \longrightarrow \quad \text{Vertical waist} \\ &\quad \cdot \left(1 + A_{2CBO} \cos(\omega_{2CBO}t - \phi_{2CBO})e^{-\frac{t}{\tau_{2CBO}}} \right) \cdot \implies \quad \text{Horizontal breathing} \\ &\quad \cdot \left(1 + A_{y} \cos(\omega_{y}t - \phi_{y})e^{-\frac{t}{\tau_{y}}} \right) \cdot \qquad \longrightarrow \quad \text{Vertical oscillation} \\ &\quad \cdot \left(1 - k_{LM} \int_{0}^{t} L(t')e^{t'/\tau_{\mu}}dt' \right) \cdot \qquad \longrightarrow \quad \text{Vertical oscillation} \\ &\quad \cdot \left(1 + [A_{+}\cos(\omega_{+}(t)t - \phi_{+}) + A_{-}\cos(\omega_{-}(t)t - \phi_{-})]e^{-\frac{t}{\tau_{CBOVW}}} \right) &\qquad 6 \end{split}$$

Measuring the field

- Field intensity measured with Nuclear Magnetic Resonance (NMR) probes in terms of proton precession frequency ω_{p}
- Continuously monitored around the storage region and periodically measured inside the storage region

378 fixed probes continuous monitoring

17 probes on a trolley to 3D map every ~3 days

P. Girotti | Muon g-2 overview

Trolley cross-calibrated to absolute probes

INFN

stituto Nazionale di Fisica Nuclea

Measuring the beam

amuse-

Istituto Nazionale di Fisica Nuclea

- Trackers at 180° and 270° reconstruct the positron trajectory to extrapolate the decay vertex in the storage region
- Muon distribution maps extrapolated to the entire ring azimuth with Geant4 simulation (gm2ringsim)
- Calorimeter hit energy matching to perform particle identification

Run-1 result (2021)

- First **a** measurement, 462 ppb, from 2018 data
- In agreement with BNL and increased tension with 2020 theory
- Great success and paved the way for subsequent analyses

$a_{\mu} \propto$	$f_{clock}\omega_a^m\left(1+C_e+C_p+C_{ml}+C_{pa}\right)$
	$\overline{f_{calib}\left\langle\omega_p'(x,y,\phi)\times M(x,y,\phi)\right\rangle\left(1+B_k+B_q\right)}$

Quantity	Correction [ppb]	Uncertainty [ppb]
ω_a (statistical)	-	434
ω_a (systematic)	-	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{calib}\langle \omega'_p(x,y,\phi) \cdot M(x,y,\phi) \rangle$	-	56
B_q	-17	92
B_k	-27	37
μ_p'/μ_e	-	10
m_{μ}/m_e		22
g_e	-	0
Total systematic	-	157
Total external factors		25
Total	544	462

Run-2/3

- 4.7x more data wrt Run-1
- Statistical error reduced from 434 ppb in Run-1 to 201 ppb in Run-2/3
- 185 ppb when combined

- Magnet blanket installed after Run-1 to mitigate day-night temperature fluctuations
- AC unit installed in experiment hall after Run-2 for complete temperature stability
- AC unit installed for laser hut too

Run-2/3

- Damaged quadrupole resistors in Run-1 have been re-designed and replaced before Run-2
- More stable beam storage
- C_{pa} uncertainty reduced by ~6x

- Kicker upgraded and operated at nominal voltage toward the end of Run-3
- Beam distribution much more centered
- Smaller beam oscillations
- Lower beam dynamics corrections

Run-2/3

- Pulsing quadrupoles vibrate, generating an oscillating magnetic field
- New NMR probe to measure these oscillations at more locations
- 5x reduction of uncertainty with respect to Run-1

- Pileup is a major uncertainty for ω_a determination
- Improved positron reconstruction in calorimeter
- Improved pileup correction algorithms
- Uncertainty reduced by 5x

Run-2/3 result

- Run-2/3 measurement published on 10 Aug 2023
- Excellent \mathbf{a}_{μ} agreement with Run-1
- Tension with data-driven theory (2020) at 5.1σ level

Run-2/3 papers

PHYSICAL REVIEW LETTERS 131, 161802 (2023)

Editors' Suggestion

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

D. P. Aguillardo,³³ T. Albahrio,³⁰ D. Allspacho,⁷ A. Anisenkovo,^{4,a} K. Badgleyo,⁷ S. Baeßlero,^{35,b} I. Baileyo,^{17,c} L. Bailey^{0,27} V. A. Baranov,^{15,d} E. Barlas-Yucel^{0,28} T. Barrett^{0,6} E. Barzi^{0,7} F. Bedeschi^{0,10} M. Berz^{0,18} M. Bhattacharya⁰,⁷ H. P. Binney³⁶ P. Bloom⁰,¹⁹ J. Bono⁰,⁷ E. Bottalico⁰,³⁰ T. Bowcock⁰,³⁰ S. Braun⁰,³⁶ M. Bresslero, ³² G. Cantatoreo, ^{12,e} R. M. Careyo, ² B. C. K. Caseyo, ⁷ D. Cauzo, ^{26,f} R. Chakrabortyo, ²⁹ A. Chapelaino, ⁶ S. Chappa,⁷ S. Charity⁰,³⁰ C. Chen⁰,^{23,22} M. Cheng⁰,²⁸ R. Chislett⁰,²⁷ Z. Chu⁰,^{22,g} T. E. Chupp⁰,³³ C. Claessens⁰,³⁶ M. E. Convery[®], ⁷ S. Corrodi[®], ¹ L. Cotrozzi[®], ^{10,h} J. D. Crnkovic[®], ⁷ S. Dabagov[®], ^{8,i} P. T. Debevec[®], ²⁸ S. Di Falco[®], ¹⁰ G. Di Sciascio[®], ¹¹ B. Drendel[®], ⁷ A. Driutti[®], ^{10,h} V. N. Duginov[®], ^{15,d} M. Eads[®], ²⁰ A. Edmonds[®], ² J. Esquivel[®], ⁷ M. Farooq³, ³ R. Fatemi⁹, ²⁹ C. Ferrari⁹, ^{10,j} M. Fertl⁹, ¹⁴ A. T. Fienberg⁹, ³⁶ A. Fioretti⁹, ^{10,j} D. Flay⁹, ³² S. B. Foster⁹, ² H. Friedsam,⁷ N. S. Froemming,²⁰ C. Gabbanini⁰,^{10,j} I. Gaines⁰,⁷ M. D. Galati⁰,^{10,h} S. Ganguly⁰,⁷ A. Garcia⁰,³⁶ J. George⁹,^{32,k} L. K. Gibbons⁶, A. Gioiosa⁹,^{25,1} K. L. Giovanetti⁹,¹³ P. Girotti⁹,¹⁰ W. Gohn⁹,²⁹ L. Goodenough⁹, T. Gorringe[®],²⁹ J. Grange[®],³³ S. Grant[®],^{1,27} F. Gray[®],²¹ S. Haciomeroglu[®],^{5m} T. Halewood-Leaga[®],³⁰ D. Hampai[®],⁸ F. Han[®],²⁹ J. Hempstead[®],³⁶ D. W. Hertzog[®],³⁶ G. Hesketh[®],²⁷ E. Hess,¹⁰ A. Hibbert,³⁰ Z. Hodge[®],³⁶ K. W. Hong[®],³⁵ R. Hong^{9,29,1} T. Hu^{9,23,22} Y. Hu^{9,22,g} M. Iacovacci^{9,n} M. Incagli^{9,10} P. Kammel^{9,36} M. Kargiantoulakis^{9,1} M. Karuza⁽⁰⁾, ^{12,0} J. Kaspar, ³⁶ D. Kawall⁽⁰⁾, ³² L. Kelton⁽⁰⁾, ²⁹ A. Keshavarzi⁽⁰⁾, ³¹ D. S. Kessler⁽⁰⁾, ³² K. S. Khaw⁽⁰⁾, ^{23,22} Z. Khechadoorian⁶, N. V. Khomutov⁹, ¹⁵ B. Kiburg⁹, ⁷ M. Kiburg⁹, ^{7,19} O. Kim⁹, ³⁴ N. Kinnaird⁹, ² E. Kraegeloh⁹, ³⁵ V. A. Krylov⁰, ¹⁵ N. A. Kuchinskiy, ¹⁵ K. R. Labe⁰, ⁶ J. LaBounty⁰, ³⁶ M. Lancaster⁰, ³¹ S. Lee⁰, ⁵ B. Li⁰, ^{22,1,p} D. Li⁰, ^{22,q} L. Lio, ^{22,g} I. Logashenkoo, ^{4,a} A. Lorente Camposo, ²⁹ Z. Luo, ^{22,g} A. Lucào, ⁷ G. Lukicovo, ²⁷ A. Lusianio, ^{10,r} A. L. Lyono, ⁷ B. MacCoyo, ³⁶ R. Madrako, ⁷ K. Makinoo, ¹⁸ S. Mastroiannio, ⁹ J. P. Millero, ² S. Miozzio, ¹¹ B. Mitrao, ³⁴ J. P. Morgano, ⁷ W. M. Morseo, ³ J. Motto, ^{7,2} A. Natho, ^{9,n} J. K. Ngo, ^{23,22} H. Nguyeno, ⁷ Y. Oksuziano, ¹ Z. Omarovo, ¹⁶⁵ R. Osofsky[©], ³⁶ S. Park[©], ⁵ G. Pauletta, ^{26,s} G. M. Piacentino, ^{25,t} R. N. Pilato[©], ³⁰ K. T. Pitts[©], ^{28,u} B. Plaster[©], ²⁹ D. Počanić⁰, ³⁵ N. Pohlman⁰, ²⁰ C. C. Polly⁰, ⁷ J. Price⁰, ³⁰ B. Quinn⁰, ³⁴ M. U. H. Qureshi⁰, ¹⁴ S. Ramachandran⁰, ^{1,k} E. Ramberg,⁷ R. Reimann⁰,¹⁴ B. L. Roberts⁰,² D. L. Rubin⁰,⁶ L. Santi⁰,^{26,f} C. Schlesier⁰,^{28,v} A. Schreckenberger⁰,⁷ Y. K. Semertzidis^{5,16} D. Shemyakin^{6,4,a} M. Sorbara^{6,11,w} D. Stöckinger^{5,24} J. Stapleton^{6,7} D. Still,⁷ C. Stoughton^{6,7} D. Stratakis⁶,⁷ H. E. Swanson⁶,³⁶ G. Sweetmore⁶,³¹ D. A. Sweigart⁶,⁶ M. J. Syphers⁶,²⁰ D. A. Tarazona⁶,^{630,18} T. Teubner³⁰ A. E. Tewsley-Booth⁹,^{29,33} V. Tishchenko⁹, N. H. Tran⁹^{2,x} W. Turner⁹,³⁰ E. Valetov⁹,¹⁸ D. Vasilkova, ^{27,30} G. Venanzonio, ^{30,1} V. P. Volnykho, ¹⁵ T. Waltono, ⁷ A. Weisskopfo, ¹⁸ L. Welty-Rieger, ⁷ P. Wintero, ¹ Y. Wu⁰,¹ B. Yu⁰,³⁴ M. Yucel⁰,⁷ Y. Zeng⁰,^{23,22} and C. Zhang³⁰

(The Muon g - 2 Collaboration)

https://doi.org/10.1103/PhysRevLett.131.161802

17 October 2023

PHYSICAL REVIEW D 110, 032009 (2024)

Editors' Suggestic

Detailed report on the measurement of the positive muon anomalous magnetic moment to 0.20 ppm

D. P. Aguillarde, ³³ T. Albahrie, ³⁰ D. Allspache, ⁷ A. Anisenkove, ^{4,a} K. Badgleye, ⁷ S. Baeßler, ^{35,b} I. Baileye, ^{17,c} L. Baileye, ²⁷ V. A. Baranov, ^{15,*} E. Barlas-Yucele, ²⁸ T. Barrette, ⁶ E. Barzie, ⁷ F. Bedeschie, ¹⁰ M. Berze, ¹⁸ M. Bhattacharyae, ⁷ H. P. Binneye, ³⁶ P. Bloome, ¹⁹ J. Bonoe, ⁷ E. Bottalicoe, ^{30,d} T. Bowcocke, ³⁰ S. Braune, ³⁶ M. Bresslere, ³² G. Cantatoree, ^{12,c} R. M. Careye, ² B. C. K. Caseye, ⁷ D. Cauze, ^{26,f} R. Chakrabortye, ²⁷ A. Chapelaine, ⁶ S. Chappa, ⁷ S. Corrodie, ¹ L. Cotrozzie, ^{10,30,h} J. D. Crnkovice, ⁷ S. Dchugeve, ³⁴ R. Chapelaine, ^{10,40} J. D. Cortovice, ⁷ S. Cortue, ^{21,24} T. E. Chuppe, ³³ C. Claessense, ³⁶ M. E. Converye, ⁷ S. Corrodie, ¹ L. Cotrozzie, ^{10,30,h} J. D. Crnkovice, ⁷ S. Dabagove, ^{8,1} P. T. Debevece, ²⁸ S. Di Falcoe, ¹⁰ G. Di Sciascio, ¹¹ S. Donatie, ^{10,40} B. Drendele, ⁷ A. Driuttie, ^{10,40} N. Pertle, ¹⁴ A. T. Fienberge, ³⁶ A. Fiorettie, ^{10,10} D. Flaye, ³² S. B. Fostere, ² H. Friedsam, ⁷ N. S. Froemming, ²⁰ C. Gabbanine, ^{10,41} I. Gainese, ⁷ M. D. Galatie, ^{10,40} S. Gangulye, ⁷ A. Garcia, ⁶ J. George, ^{23,24} L. K. Gibbonse, ⁶ A. Gioiosae, ^{25,1} K. L. Giovanettie, ¹³ P. Girottië, ¹⁰ W. Gohne, ²⁹ L. Goodenoughe, ⁷ T. Gorringee, ²⁹ J. Grangee, ³³ S. Grante, ^{1,27} F. Gray, ²¹ S. Haciomeroglue, ^{5,m} T. Halewood-Leagas, ³⁰ D. Hampaie, ⁸ F. Hane, ⁹ J. Hempsteade, ³⁶ D. W. Hertzog, ³⁶ G. Heskethe, ²⁷ E. Hess, ¹⁰ A. Hibbert, ³⁰ Z. Keslere, ³² K. S. Khawe, ^{33,22} Z. Khechadooriane, ⁶ N. V. Khomutove, ¹⁵ B. Kiburge, ⁷ M. Kiburge, ⁷ H. O. Kime, ³⁴ N. Kinnairde, ² E. Kraegelohe, ³¹ V. A. Krylove, ¹⁵ N. A. Kuchinskiy, ¹⁵ K. R. Labee, ⁶ J. LaBountye, ⁶ M. Lancastere, ³¹ S. Leee, ⁵ B. Lie, ^{27,1,p} D. Lie, ^{22,4} I. Lie, ^{22,4} I. Logashenko, ⁴ A. Lorente Campose, ⁹² Z. Lue, ^{24,4} A. Luc, ⁷ G. Lukicove, ⁷ Z. K. Schlasiere, ⁹² D. Počanić, ⁵ N. Nedhinane, ⁷⁴ C. Pollye, ⁷ J. Pr

(Muon g - 2 Collaboration)

https://doi.org/10.1103/PhysRevD.110.032009

8 August 2024

09/17/24

Uncertainties

- Published results are still statistically limited
- Both statistical and systematic uncertainties have been halved from Run-1 to Run-23
- Total systematic uncertainty (70 ppb) exceeded design goal of 100 ppb
- Excellent performance of the apparatus

$$a_{\mu} \propto \frac{f_{clock} \,\omega_{a}^{m} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left\langle\omega_{p}'(x, y, \phi) \times M(x, y, \phi)\right\rangle \left(1 + B_{k} + B_{q}\right)}$$

Uncertainties

ω_a systematics	BNL	FNAL TDR	FNAL Run-1	FNAL Run-2/3
Gain + residuals	120	20	19	11 *
Pileup	80	40	37	7 *
Lost muons	90	20	5	<4
CBO	70	30	40	21 *
E-field/pitch	50	30	55	34 *
Phase acceptance	-	-	75	13 *
Total ω _a	180	70	108	41

- Enourmous effort from the entire collaboration
- Crucial contribution from aMUSE researchers (*)

 All systematic uncertainties are now at or below the TDR level

ω_p systematics	BNL	FNAL TDR	FNAL Run-1	FNAL Run-2/3
Trolley calibration	90	30	32	18 *
Trolley meas	50	30	40	38
Fixed probes	70	30	23	17 *
Muon weighting	30	10	20	9
Absolute calib	50	35	19	9
Configuration	-	-	23	22 *
Kicker transients	-	-	37	13 *
Quad transients	-	-	92	20
Other	100	50	-	-
Total ω _p	170	70	114	52

Run-4/5/6

- Three more datasets taken from 2020 to 2023
- They account for ~70% of total statistics
- TDR goal achieved in February 2023
- Second half of Run-6 mostly dedicated to systematic studies
- Analysis in progress, final publication expected in 2025

Data production

- Collaboration-wide effort to increase the production speed and efficiency and produce the large Run-456 datasets in time for analysis and publication schedule
- Production increased by \sim 5x with respect to Run-2
- Run-6 pre-produced in parallel with data acquisition (new!)
- New compact data skims to reduce the reconstructed output from 7 PB to 1.3 PB for faster and easier data analysis

Reconstruction

- Three positron reconstructions techniques a new one by INFN added since Run-4
- All have been upgraded to further improve pulse fitting and positron cluster separation
- Pileup has been reduced by 2x or more, and is no longer a dominant systematic
- Improved energy reconstruction accuracy

Quadrupole RF

- A quadrupole radio-frequency dampening system has been installed and tuned at the end of Run-4
- The RF pulsing scheme reduces the radial and vertical oscillations of the beam
- Turned on starting from Run-5
- Coherent Betatron Oscillation (CBO) amplitude reduced by factor ~9
- CBO systematic uncertainties, among the largest ones in Run-23, will be reduced
- However, analysis is slightly more complicated to fully characterize CBO frequencies

$$a_{\mu} \propto \frac{f_{clock}\omega_{a}^{m}(1+C_{e}+C_{p}+C_{ml}+C_{pa})}{f_{calib}\left\langle\omega_{p}'(x,y,\phi)\times M(x,y,\phi)\right\rangle(1+B_{k}+B_{q})}$$

09/17/24

Mini-SciFi detector

- Two **Mini**mally intrusive **Sci**ntillating **Fi**ber detectors have been installed before Run-6 to measure the beam distribution distructively
- Fibers can be mechanically moved to scan the entire storage region
- Horizontal fibers to measure the decay time momentum correlation and compare with calorimeter data
- Vertical fibers to measure the CBO envelope and phase, and measure the momentum distribution and compare with calorimeters/trackers
- Many successful campaigns during Run-6
- Analysis in progress...

 $a_{\mu} \propto \frac{f_{clock}\omega_{a}^{m}(1+C_{e}+C_{p}+C_{ml}+C_{pa})}{f_{calib}\langle\omega_{n}'(x,y,\phi)\times M(x,y,\phi)\rangle(1+B_{k}+B_{a})}$

Field calibrations

- Excellent performance of field determinations in Run-23, already exceeding TDR goals
- Some improvements and cross checks in Run-456 analysis to increase trust in methods
- New test on absolute calibration with ³He probe
- Cross calibration measurements with Japan collaboration
- Improved trolley position algorithms
- More systematic studies on time and configuration changes

$$a_{\mu} \propto \frac{f_{clock} \,\omega_{a}^{m} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left(\omega_{p}^{\prime} x, y, \phi\right) \times M(x, y, \phi) \left(1 + B_{k} + B_{q}\right)}$$

09/17/24

Kicker transient

- The three kickers produce a 120 ns pulse to correct the injection orbit during the first turn
- However, they induce slowly decaying eddy currents in the surrounding aluminum
- Two Faraday magnetometers to measure the effect, one designed and operated by INFN since end of Run-5
- New studies on mechanical vibrations and measurements at multiple radial positions to improve estimate of Bk term

$$a_{\mu} \propto \frac{f_{clock} \,\omega_{a}^{m} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left\langle\omega_{p}'(x, y, \phi) \times M(x, y, \phi)\right\rangle \left(1 + B_{k} + B_{q}\right)}$$

09/17/24

P. Girotti | Muon g-2 overview

3 field [mG]

Projected uncertainties

- Run-4/5/6 statistics is \sim 3 times higher with respect to Runs 1-3
- Run-4/5/6 analysis is ongoing on all thrusts
- Systematic uncertainties are being evaluated right now
- What we can expect:

			_	
Quantity	Correction [ppb]	Uncertainty [ppb]	~100 ppb for entire Runs 1-6	
ω_a^m (statistical)	_	201	-10x reduction of CPO systematics	
ω_a^m (systematic)	_	25 -		
$\overline{C_e}$	451	32 📉	 Pileup systematics reduced 	
C_p	170	10		
\hat{C}_{pa}	-27	13	New algorithms and new MiniSciFi detectors	
C_{dd}	-15	17 \frown		
C_{ml}	0	3		
$f_{\rm calib} \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46 🔨	New tracker-based analysis for cross checking	
B_k	-21	13		
B_q	-21	20	Improved analysis calibration and cross-checks	
$\mu_p'(34.7^\circ)/\mu_e$	_	11	improved analysis, calibration, and cross checks	
m_{μ}/m_e	—	22		
$g_e/2$	_	0	Improved measurements, cross checks, and spatial mod	
Total systematic	_	70 —		
Total external parameters	—	25		
Totals	622	215	Aiready below TDR, possibly even better in Run-456!	

Run-23

 a_μ theory

Background: a_{μ} predicted in SM: all particles/all interactions relevant!

a_{μ} theory

Background: a_{μ} is crucial, unique constraint on new physics — complementary to LHC, flavour, dark matter physics

Given recent SM theory developments, we can ask: "What if..." $\ldots \Delta a_{\mu}$ remains/comes back to 2021-value 25×10^{-10} :

strong BSM constraints

 $\ldots \Delta a_{\mu}$ reduces to 10×10^{-10} :

strong BSM constraints

... discrepancy with HVP remains:

BSM within HVP???

 $\ldots \Delta a_{\mu}$ reduces to 0:

different kinds of BSM constraints

aMUSE Theorists contribute in all these respects:

27

$\mu \rightarrow e$ and combined theory

Background: cLFV would be unambiguous sign for new physics — origin of flavour/generations, neutrino masses?

Questions:

- Correlations? Which models predict observable cLFV rates?
- Constraints on explanations of a_{μ} ?
- Relations to neutrino mass mechanisms?

D1.5: Report on theory interpretations on muon g-2 results and on mu2e conversion, M44 09/17/24 P. Girotti | Muon g-2 overview

Theory contributions for muon g - 2 (Dresden + Padova)

- Hadronic Standard Model theory contributions to g 2 emerging discrepancy between traditional evaluations ("dispersion relations") and new "lattice" evaluations? Could the discrepancy be caused by physics beyond the Standard Model? Answer: No [Luzio,Masiero,Passera,Paradisi '21]
- Deviation a^{Exp}_µ aSM_µ Could this deviation be caused by physics beyond the SM (BSM)? If yes, what kind of BSM physics?
 Answer: many possibilities, BUT: each one is severely constrained by LHC, dark matter, and other constraints. Two generally noteworthy connections: (1) dark matter; (2) Higgs mechanism/Yukawa/flavour sector [Athron,Balazs,Jacob,Kotlarski,Stöckinger,Stöckinger-Kim '21]
 Also: computer code for numerical evaluations published: FlexibleSUSY, GM2Calc
- General BSM insight Important role of chirality flips for muon g-2 and the relation to m_{μ} Mini-review for Frontiers in Physics: [D. Stöckinger, H. Stöckinger-Kim]
- Ultimate test of such BSM explanations? Muon collider! Paradisi et al '21

Theory contributions for muon g - 2 (Dresden + Padova)

 MUonE: novel proposal to measure hadronic vacuum polarization contributions to the muon g-2 in the space-like region.

Theory calculations for MUonE?

simple exact analytic expressions for the fourth-order space-like kernel that allow to extend the computation of the HVP contribution to the muon g-2 in the space-like region from LO to NLO. [Balzani,Laporta,Passera 2112.05704]

- Development of computer code: add-on to FlexibleSUSY, can compute CLFV processes in arbitrary models (\rightarrow see also WP4) [Khasianevich 2022, Khasianevich et al 2024]
- CLFV applications to specific neutrino mass model with new Yukawa couplings: If these couplings explain neutrino masses they inevitably also generate CLFV — what is the impact of CLFV limits on the Higgs sector?

```
\mu \rightarrow e\gamma gives strongest limits on masses and quartic Higgs couplings [Khasianevich et al '22 (JHEP+PRD)]
```

• CLFV versus g-2 in leptoquark models:

If leptoquarks explain the muon g - 2 deviation — how are they then restricted by the non-observation of CLFV effects?

```
Strong constraint on the flavour structure of leptoquark couplings, both from \mu 
ightarrow e\gamma,
```

 $au o \mu\gamma$ and from $\mu o e$ conversion [Khasianevich, Stöckinger, Stöckinger-Kim, Wünsche '23]

• Current project:

Review: BSM physics and muon g-2

Will provide an overview of the field and facilitate future interpretations

Conclusions

- Fermilab Muon g-2 Experiment published Run-23 measurement at 203 ppb in 2023
- New detailed paper on analysis published Aug 2024: https://doi.org/10.1103/PhysRevD.110.032009
- Systematic uncertainty goal reached and exceeded with Run-23 (70 ppb)
- Statistic uncertainty goal reached with Run-456 (~100 ppb total)
- Still, many improvements on Run-456 hardware and analysis, and key contributions from aMUSE members
- Run-456 analysis will be completed by early 2025
- Theory Initiative Workshop at KEK past week possibly a new White Paper early 2025
- New data-driven theory calculations to come from BaBar, KLOE, SND, BesIII, Belle II in the next years

g-2 physics week Ann Arbor July 2024

Backup

Lattice QCD

- Precise lattice QCD calculations are close to or compatible with the experimental value
- Many independent lattice calculations agree between each other by selecting energy windows more complete calculations to come soon

HVP Calculation: Dispersive (e+e-) Method

• Calculated from data for $\sigma(e^+e^- \rightarrow hadrons)$

- Uses data from different experiments from 20+ years
- 1/s weights low energy strongly: 73% from π + π channel

- New results from SND2k and CMD-3 since White Paper
- CMD-3 is discrepant
- More results from BaBar, KLOE, SND, BESIII, Belle II expected

Muon source

- 16 bunches of 10¹² protons @8 GeV get boosted and delivered via the recycler ring every 1.4 seconds
- Each bunch hits a fixed Inconel® (NiCrFe) target
- Positive pions from shower extracted and decay in delivery ring
- Pure and polarized muon beam enters g-2 ring

INFN

The experiment

Beam injection

- Superconducting inflector ~8 cm offset from nominal orbit
- 3 fast magnetic kickers operated at ~4 kA current for ~200 ns
- 8 aluminum electrostatic quadrupoles at 13.8 kV to provide weak vertical focus

Kicker plates

Quadrupoles

Magnet

- CARLES LISTER LI
- Superconductive magnet cooled at ~5 K with LHe
- 7.112 m radius, highly uniform 1.45 T vertical magnetic field
- Shimmed passively and actively stabilized. Better than 14 ppm RMS field homogeneity across the full azimuth

Detectors

- 24 electromagnetic **calorimeters** for positron energy and time measurement
- 2 tracker stations to extrapolate decay vertex location and measure beam distribution

Tracker module

Calorimeters

- Matrix of 9x6 PbF₂ crystals (25x25x140 mm³, 15X₀ length)
- Each coupled with Hamamatsu SiPM of 1.2 mm² active size (57344 pixels)
- Positrons generate EM shower
- SiPMs collect Čerenkov light, ~1 pe/MeV
- Waveform sampled at 800 Msps
- Online GPU-based trigger

Auon-storage orbit

Pileup

- Pileup = two or more positrons reconstructed as one. Contamination subtracted statistically
- Clustering algorithm already reduced pileup by ~3x
- Improved pileup removal techniques
- <u>Systematic uncertainty reduced from</u> <u>35 ppb to 7 ppb</u>

Not only a_µ

Electric Dipole Moment (EDM)

- If the muon has EDM, the spin precession plane will be tilted
- Analysis conducted with trackers
- Run-1 is being reviewed, Run-23 in progress
- Current limit (BNL): 1.8x10⁻¹⁹ e*cm
- Projected limit: <3x10⁻²⁰ e*cm

CPT and Lorentz Invariance violation

- Sidereal modulation of ω_a frequency
- Run-2/3 in review
- Current limit (BNL): 1.4x10⁻²⁴ GeV
- Projected limit: O(10⁻²⁵) GeV
- Ultralight Muonic Dark Matter (scalar)
 - ω_a modulated at the DM compton frequency
 - Run-2/3 in progress

09/17/24