# Higher dimensional operators at finite temperature affect gravitational wave predictions

Philipp Klose

Theory Group, Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands

Planck Conference 2025

arXiv:2503.18904

Collaborators: Fabio Bernado, Philipp Schicho, Tuomas Tenkanen

 Strong first-order phase transitions (FOPT) can produce observable GW backgrounds

- Strong first-order phase transitions (FOPT) can produce observable GW backgrounds
- Standard model predicts electroweak crossover at  $T \sim 160 \text{ GeV}$  $\Rightarrow$  No gravitational waves (GW) due to lack of violence

- Strong first-order phase transitions (FOPT) can produce observable GW backgrounds
- Standard model predicts electroweak crossover at  $T \sim 160 \text{ GeV}$  $\Rightarrow$  No gravitational waves (GW) due to lack of violence
- New physics may induce FOPT
  - ⇒ Highly promising new physics probe, but hard to accurately predict GW background

- Strong first-order phase transitions (FOPT) can produce observable GW backgrounds
- Standard model predicts electroweak crossover at T ~ 160 GeV
   No gravitational waves (GW) due to lack of violence
- New physics may induce FOPT
  - ⇒ Highly promising new physics probe, but hard to accurately predict GW background

# Do we understand all of the relevant theory uncertainties?

#### FOPT Thermodynamics are hard to compute

Effective potential V(v) determines equation of state:

$$p(T) = p_{+} - T\Delta V(v_{\min})$$
  $L^{3}V(v) = -\int_{1\mathrm{Pl}} \mathcal{D}\phi_{4} e^{-S_{E}[\phi_{4}+v_{4}]}$ 

Important input for GW predictions but hard to compute (fixes e.g. transition strength  $\alpha$  + duration  $\beta$ )

$$L^3=$$
 Space-time volume /  $v_4=T^{1/2}v$  /  $\Delta V=V(v)-V(0)$ 

Philipp Klose

Finite temperature higher dimensional operators Planck 2025 2/8

# FOPT Thermodynamics are hard to compute

Effective potential V(v) determines equation of state:

$$p(T) = p_{+} - T\Delta V(v_{\min})$$
  $L^{3}V(v) = -\int_{1\text{Pl}} \mathcal{D}\phi_{4} e^{-S_{E}[\phi_{4}+v_{4}]}$ 

- Important input for GW predictions but hard to compute (fixes e.g. transition strength  $\alpha$  + duration  $\beta$ )
- Dimensional reduction technique is common starting point for sophisticated effective theory / lattice computations
  - $\Rightarrow$  What are the uncertainties from dimensional reduction?

 $L^3$  = Space-time volume /  $v_4 = T^{1/2}v / \Delta V = V(v) - V(0)$ 

# Understanding the basics of dimensional reduction

Abelian Higgs model:

$$\mathcal{L}_{E} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + D_{\mu} \phi_{4}^{\dagger} D_{\mu} \phi_{4} + \mu^{2} \phi_{4}^{\dagger} \phi_{4} + \lambda (\phi_{4}^{\dagger} \phi_{4})^{2} \quad D_{\mu} = \partial_{\mu} - \mathrm{i} \, g B_{\mu}$$



3/8

# Understanding the basics of dimensional reduction

Abelian Higgs model:

$$\mathcal{L}_{E} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + D_{\mu} \phi_{4}^{\dagger} D_{\mu} \phi_{4} + \mu^{2} \phi_{4}^{\dagger} \phi_{4} + \lambda (\phi_{4}^{\dagger} \phi_{4})^{2} \quad D_{\mu} = \partial_{\mu} - \mathrm{i} \, g B_{\mu}$$

hard 
$$\pi T$$
  
 $m_{D}$   
 $soft$   
 $gT$   
 $gT$   

# High T expansion induces uncertainties

- A priori EFT construction yields infinite tower of operators
- Can truncate tower if all scales small compared to T (High T expansion)
- NLO is state of the art:

$$\Rightarrow \mathcal{L}_{\text{soft}} = \frac{1}{4} F_{ij} F_{ij} + D_i \phi^{\dagger} D_i \phi + \mu_3^2 \phi^{\dagger} \phi + \lambda_3 (\phi^{\dagger} \phi)^2 \\ + \frac{1}{2} (\partial_i B_0)^2 + \kappa_3 B_0^4 + h_3 (\phi^{\dagger} \phi) B_0^2 + \mathcal{O}(g^6)$$

#### What about higher order contributions?

#### Correct matching safeguards gauge invariance

- We use field redefinitions to construct complete d = 6 operator bases for Abelian Higgs model soft and softer EFTs
- We compute complete leading gauge-invariant d = 6 matching contributions for the first time

 $\Rightarrow$  Leading  $\phi^6$  contributions:

$$\begin{aligned} \mathcal{L}_{\text{soft}} \supset c_6 \phi^6 & c_6 &= \frac{\zeta(3)g^6}{32\pi^4} \left( 1 - \frac{31}{30} x_{\text{LO}} + 5x_{\text{LO}}^2 + \frac{20}{3} x_{\text{LO}}^3 \right) + \mathcal{O}(g^8) \\ \mathcal{L}_{\text{softer}} \supset \overline{c}_6 \phi^6 & \overline{c}_6 &= \frac{\sqrt{3}g^3}{8\pi} (1 - x_{\text{LO}}) + \mathcal{O}(g^4) \end{aligned}$$

 $x_{\rm LO} = \lambda/g^2$ 

# Softer theory is not suitable for strong transitions $\Delta V_{\text{softer}} = \overline{g}_{3}^{6} \left( \frac{\overline{y}}{2} \varphi^{2} + \frac{\overline{x}}{4} \varphi^{4} + \frac{\overline{c}_{6}}{8} \varphi^{6} - \frac{1}{6\pi} \varphi^{3} \right)$



■ Large *c*<sub>6</sub> correction suggests EFT breakdown

Transition strength  $\alpha$  negative for small  $x_{LO} \Rightarrow$  unphysical regime  $\varphi = v/\overline{g}_3, \ \overline{x} = \overline{\lambda}_3/\overline{g}_3^2, \ \overline{y} = \overline{\mu}^2/\overline{g}_3^4,$ 

Soft theory is better but not perfect

$$\Delta V_{\text{soft}}^{\mathcal{E}} = \mathcal{E}^2 g_3^6 \left( \frac{y}{2} \varphi^2 + \frac{x}{4} \varphi^4 + \frac{c_6}{8} \varphi^6 - \frac{1}{6\pi} \varphi^3 \right)$$



c<sub>6</sub> weakens transition

 $\Rightarrow$  Significant uncertainties in the LISA region

 $\varphi = v/g_3$ ,  $\overline{x} = \lambda_3/g_3^2$ ,  $\overline{y} = \mu^2/g_3^4$ ,  $\mathcal{E} = 3/2$ 

Philipp Klose

Finite temperature higher dimensional operators Planck 2025

7/8

# Summary and Outlook

- We constructed complete gauge-invariant d = 6 bases operators for Abelian Higgs model soft and softer EFTs
- We examined impact on strong phase transitions + GW production:
  - **1** Softer EFT becomes unreliable
  - 2 Higher dimensional operators induce significant corrections
     ⇒ Also relevant for lattice computations

Future avenues: Match higher-dimensional operators for SU(N) 4D Lattice simulations?

# Thank you for your attention!

#### **Backup slides**

 $\Rightarrow$  Latent heat determines available energy budget:

$$\alpha = \frac{(T\partial_T - 3)\Delta V}{3\partial_T p_+} \qquad \Delta V = V(v_{\min}) - V(0)$$

 $\Rightarrow$  Duration of the phase transition:

$$\frac{\beta}{H} = T \partial_T S_{\text{nucl}}[v_b] \qquad S_{\text{nucl}}[v] = \int_{\mathbf{x}} \left[ \frac{1}{2} (\partial_i v)^2 + V(v) \right]$$