A quick guide to fractionally charged particles of the Standard Model

Despoina Dimakou R. Alonso, **DD**, M. West [2404.03438]

PLANCK 2025, Padova

Motivation

What is the actual Standard Model Group?

Introduction

We know that the Standard Model is based on the gauge group:

$$G = SU(3)_c \times SU(2)_L \times U(1)_Y,$$

which describes all fundamental forces in nature apart from gravity. All its elementary matter representations can be grouped in the table below.

	q_L	u_R	d_R	ℓ_L	e_R	H
$SU(3)_c$	3	3	3	1	1	1
$SU(2)_L$	2	1	1	2	1	2
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	1/2

It is common to use the following notation $(R_{SU(3)_c},R_{SU(2)_L})_Y$ eg. $q_L\in (\mathbf{3,2})_{1/6}.$

Group Theoretics

- The choice of the group and particularly its Lie algebra is very important for interactions between charged particles and mediators in a gauge theory.
- ullet Groups can locally look the same, but it is the **centre** Z (set of elements that commute with the other elements of the group) that can distinguish between them.
- Let us consider a simple example; SO(3) vs SU(2).

SO(3) vs SU(2)

Both of these groups are locally the same and their generators satisfy

$$SU(2): \left[\frac{\sigma_i}{2}, \frac{\sigma_j}{2}\right] = i\epsilon_{ijk}\frac{\sigma_k}{2} \; ; \; SO(3): \left[T_i, T_j\right] = i\epsilon_{ijk}T_k$$
 (1)

Their main difference is the centre, SU(2) has $Z(SU(2))=Z_2=\{1,-1\}$ in the fundamental representation, while SO(3) has Z(SO(3))=1.

$$SU(2): e^{i\phi \frac{\sigma_3}{2}} \xrightarrow{\phi=0} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \mathcal{I}; \quad e^{i\phi \frac{\sigma_3}{2}} \xrightarrow{\phi=2\pi} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = -\mathcal{I}$$

$$SO(3): e^{i\phi T_3} \xrightarrow{\phi=0,2\pi} \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} = \mathcal{I}$$

So we can obtain SO(3) from SU(2) by removing its centre,

$$SO(3) = \frac{SU(2)}{Z_2} \,. \tag{2}$$

General SU(N)

- ullet For an SU(N) group, we can write any of its elements as $e^{i heta_a T^a}$.
- The centre of SU(N) is $Z(SU(N)) = Z_N = \left\{1, \xi, \xi^2, \dots, \xi^{N-1}\right\}$ with the first non-trivial generating element being $\xi = e^{2\pi i n_N/N}$ where n_N is the n-ality of the representation, a positive integer mod N.
- ullet For U(N) these generating elements are not distinct.
- \bullet U(1) is its own centre.

U(N) vs $U(1) \times SU(N)$

- Let us take the composition of $U(1) \times SU(N)$ and compare it to U(N).
- The action of Z_N should leave any SU(N) representations R invariant but there is an extra phase $\theta_0 = -2\pi/(Q_F N)$ coming from U(1).

$$\xi R = e^{2\pi i n_N/N} e^{-2\pi i Q/(Q_F N)} R = R$$
 (3)

$$2\pi \left(\frac{n_N(R)}{N} - \frac{Q_R}{Q_F N}\right) = 2\pi \mathbb{Z} \tag{4}$$

which is the result of

$$U(N) = \frac{U(1) \times SU(N)}{Z_N} \,. \tag{5}$$

• Taking the quotient reduces the electric spectrum.

U(3) vs $U(1) \times SU(3)$

The Standard Model Group

The SM group can be moded by a discrete symmetry Z_p .

$$G_p \equiv SU(3)_c \times SU(2)_L \times U(1)_Y / Z_p, \qquad (6)$$

$$Z_{p} = \begin{cases} Z_{1} & \xi^{6} \\ Z_{2} & \{1, \xi^{3}\} \\ Z_{3} & \{1, \xi^{2}, \xi^{4}\} \\ Z_{6} & \{1, \xi, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{5}\} \end{cases}$$
(7)

where the generating elements are defined as

$$\xi = e^{2\pi i Q_Y} e^{2\pi i n_c/3} e^{i\pi n_L} \tag{8}$$

and n_c , n_L are the n-alities under $SU(3)_c$, $SU(2)_L$ and Q_Y the hypercharge.

Hypercharge quantisation

The invariance of all SM representations under the action of \mathbb{Z}_p leads to quantisation conditions for hyperchage.

$$G_6: \xi R = R, \frac{n_c}{3} + \frac{n_L}{2} + Q_Y = \mathbb{Z}, (9)$$

$$G_3:$$
 $\xi^2 R = R,$ $\frac{2n_c}{3} + 2Q_Y = \mathbb{Z},$ (10)

$$G_2: \xi^3 R = R, \frac{n_L}{2} + 3Q_Y = \mathbb{Z}, (11)$$

$$G_1: \xi^6 R = R, 6Q_Y = \mathbb{Z}.$$
 (12)

Constituent blocks of allowed hypercharge

Electromagnetic charge spectrum

- There is an apparent electric 1-form symmetry in our theory.
- Taking the quotient introduces a magnetic 1-form symmetry.

$$Q_{em} = T_{3L} + Q_Y \; ; \; Q_{em}g_{em} = \mathbb{Z}$$
 (13)

• Notice periodicity of p/6 for G_p .

BSM fractional states

$$G_6:$$
 e_R ℓ_L d_R $(1,1)_{-1}\,,\,(1,2)_{-1/2}\,,\,(3,1)_{-1/3}$

How do these fractional states couple to SM?

• Due to their fractional nature these new fields cannot couple linearly to SM.

$$\sigma_{q\bar{q}\to {\rm Fr}\bar{\rm Fr}} = \frac{g^4}{s} {\rm I}(q) {\rm I}(R) \, {\rm Im}(i\Pi_{Fr}^{\mu\nu}) \, [p_{2\mu}p_{1\nu} + p_{2\nu}p_{1\mu} - g_{\mu\nu}(p_2 \cdot p_1 + m_q^2)] {\rm d}({\rm Ad})$$

$$\sum_{a} T_a(R) T_a(R) \equiv C(R) \mathbb{1}$$
(14)

$$C(R)d(R) = I(R)d(Ad)$$
(15)

Hadronic cross section varying with mass

For a more in-depth phenomenological and formal discussion please refer to S. Koren, A. Martin [2406.17850].

Conclusion

- Detection of fractionally charged particles would showcase the actual Standard Model Group.
- More fundamentally, they may help us understand charge quantisation.
- Probing the discrete symmetries of the Standard Model, we can learn more about BSM theories (eg. GUTs).
- There is also an open connection to generalised and higher-form symmetries.
 D. Tong [1705.01853]

Thank you for listening!

Extra material

Applications in SMEFT with fractional states

SMEFT is an effective field theory that describes SM interactions with higher dimension operators.

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}_{\mathsf{d}=6} + \dots \tag{16}$$

$$\mathcal{L}_{d=6} \supset -\frac{2\delta}{v^2} \left(a_c J_c^b J_c^b + a_L J_L^I J_L^I + a_Y J_Y J_Y \right) \tag{17}$$

with b the colour index, I the isospin, the coefficients a_c, a_Y

$$\delta = \frac{a_s d_L d_c v^2}{(4\pi)^2 240 M^2}, \qquad a_c = \frac{I_c g_c^4}{d_c}, \qquad (18)$$

$$a_L = \frac{I_L g^4}{d_L},$$
 $a_Y = Q_Y^2 (g_Y)^4.$ (19)

and the $SU(2)_W, U(1)_Y$ Higgs currents

$$J_{L,\mu,a} = i(H^{\dagger} T_{L,a} D_{\mu} H - (D_{\mu} H)^{\dagger} T_{L,a} H)$$

$$J_{Y,\mu} = iQ_{Y} (H^{\dagger} D_{\mu} H - (D_{\mu} H)^{\dagger} H).$$
(20)

BSM electroweak precision observables

The ratio of a_L and a_Y takes a discrete set of values for G_p that can be used to infer the quantum numbers of the new particle.

It cannot be determined by a single observable as δ is a free parameter but it can be determined by the correlation between two observables.

Let us define our input scheme:

$$M_W^2 = \frac{g^2 v^2}{4} \left(1 - a_L \delta \right) \,, \tag{21}$$

$$M_Z^2 = \frac{g^2 v^2}{4c_w^2} \left(1 - a_L \delta - a_Y \delta \right) \,, \tag{22}$$

$$G_F = \frac{1}{\sqrt{2}v^2} \,, \tag{23}$$

$$s_w \equiv \frac{\sqrt{4\pi\alpha_{em}}}{2M_W(\sqrt{2}G_F)^{1/2}} = s_w(1 + \frac{1}{2}a_L\delta).$$
 (24)

ρ parameters

We can then substitute these in the expression for two other observables that maximise the range of angles for the correlation of the Wilson coefficients,

$$\rho_{\Gamma 3} \equiv \frac{1}{6} \frac{M_Z^3 \Gamma_W}{M_W^3 \Gamma_Z^{\text{inv}}} = (1 + \delta a_Y), \qquad (25)$$

$$\rho_{\Gamma 5} \equiv \frac{1}{6} \frac{(1 - \bar{s}_w^2) M_Z^5 \Gamma_W}{M_W^5 \Gamma_Z^{\text{inv}}} = (1 - \frac{1}{2} 2\bar{t}_w^2 \delta a_L).$$
 (26)

