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Motivation

What is the actual Standard Model Group?
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Introduction

We know that the Standard Model is based on the gauge group:

G = SU(3)c × SU(2)L × U(1)Y ,

which describes all fundamental forces in nature apart from gravity. All its
elementary matter representations can be grouped in the table below.

qL uR dR ℓL eR H
SU(3)c 3 3 3 1 1 1
SU(2)L 2 1 1 2 1 2
U(1)Y 1/6 2/3 −1/3 −1/2 −1 1/2

It is common to use the following notation (RSU(3)c , RSU(2)L)Y
eg. qL ∈(3,2)1/6.
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Group Theoretics

The choice of the group and particularly its Lie algebra is very important for
interactions between charged particles and mediators in a gauge theory.

Groups can locally look the same, but it is the centre Z (set of elements
that commute with the other elements of the group) that can distinguish
between them.

Let us consider a simple example; SO(3) vs SU(2).
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SO(3) vs SU(2)

Both of these groups are locally the same and their generators satisfy

SU(2) :
[σi

2
,
σj

2

]
= iϵijk

σk

2
; SO(3) : [Ti , Tj ] = iϵijkTk (1)

Their main difference is the centre, SU(2) has Z(SU(2)) = Z2 = {1,−1} in the
fundamental representation, while SO(3) has Z(SO(3)) = 1.

SU(2) : eiϕ
σ3
2

ϕ=0−−−→
(
1

1

)
= I ; eiϕ

σ3
2

ϕ=2π−−−→
(
−1

−1

)
= −I

SO(3) : eiϕT3
ϕ=0,2π−−−−−→

(
cosϕ sinϕ
− sinϕ cosϕ

)
= I

So we can obtain SO(3) from SU(2) by removing its centre,

SO(3) =
SU(2)

Z2
. (2)
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General SU(N)

For an SU(N) group, we can write any of its elements as eiθaT
a .

The centre of SU(N) is Z(SU(N)) = ZN =
{
1, ξ, ξ2, . . . , ξN−1

}
with the

first non-trivial generating element being ξ = e2πinN/N where nN is the
n-ality of the representation, a positive integer mod N .

For U(N) these generating elements are not distinct.

U(1) is its own centre.
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U(N) vs U(1)× SU(N)

Let us take the composition of U(1)× SU(N) and compare it to U(N).
The action of ZN should leave any SU(N) representations R invariant but
there is an extra phase θ0 = −2π/(QFN) coming from U(1).

ξR = e2πinN/Ne−2πiQ/(QFN) R = R (3)

2π

(
nN (R)

N
− QR

QFN

)
= 2πZ (4)

which is the result of

U(N) =
U(1)× SU(N)

ZN
. (5)

Taking the quotient reduces the electric spectrum.

(despoina.dimakou@durham.ac.uk) Durham University PLANCK 29.05.2025 7 / 20



U(3) vs U(1)× SU(3)

U(3)

n

Q

0

U(1)× SU(3)

n

Q

0
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The Standard Model Group

The SM group can be moded by a discrete symmetry Zp.

Gp ≡ SU(3)c × SU(2)L × U(1)Y /Zp , (6)

Zp =


Z1 ξ6

Z2

{
1 , ξ3

}
Z3

{
1 , ξ2 , ξ4

}
Z6

{
1 , ξ , ξ2 , ξ3 , ξ4 , ξ5

} (7)

where the generating elements are defined as

ξ = e2πiQY e2πinc/3 eiπnL (8)

and nc, nL are the n-alities under SU(3)c, SU(2)L and QY the hypercharge.
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Hypercharge quantisation

The invariance of all SM representations under the action of Zp leads to
quantisation conditions for hyperchage.

G6 : ξR = R,
nc

3
+

nL

2
+QY =Z , (9)

G3 : ξ2R = R,
2nc

3
+ 2QY =Z , (10)

G2 : ξ3R = R,
nL

2
+ 3QY =Z , (11)

G1 : ξ6R = R, 6QY =Z . (12)
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Constituent blocks of allowed hypercharge
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Electromagnetic charge spectrum

There is an apparent electric 1-form symmetry in our theory.
Taking the quotient introduces a magnetic 1-form symmetry.

Qem = T3L +QY ; Qemgem = Z (13)

Qem

G6 0 1 2

G3 0 1/2

G2 0 1/3

G1 0 1/6

Notice periodicity of p/6 for Gp.
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BSM fractional states

G6 : eR ℓL dR

(1, 1)−1 , (1, 2)−1/2 , (3, 1)−1/3

G3 : Ξ Λ Ω

(1, 1)1/2 , (1, 2)0 , (3, 1)1/6 ,

G2 : Σ ∆ Θ

(1, 1)1/3 , (1, 2)1/6 , (3, 1)0 ,

G1 : Φ Λ Θ

(1, 1)1/6 , (1, 2)0 , (3, 1)0 .
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How do these fractional states couple to SM?
Due to their fractional nature these new fields cannot couple linearly to SM.

SM

S̄M

ΠFr
µν

SM

S̄M

σqq̄→FrF̄r =
g4

s
I(q)I(R) Im(iΠµν

Fr) [p2µp1ν + p2νp1µ − gµν(p2 · p1 +m2
q)]d(Ad)

∑
a

Ta(R)Ta(R) ≡ C(R)1 (14)

C(R)d(R) = I(R)d(Ad) (15)
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Hadronic cross section varying with mass
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For a more in-depth phenomenological and formal discussion please refer to
S. Koren, A. Martin [2406.17850].
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Conclusion

Detection of fractionally charged particles would showcase the actual
Standard Model Group.
More fundamentally, they may help us understand charge quantisation.
Probing the discrete symmetries of the Standard Model, we can learn more
about BSM theories (eg. GUTs).
There is also an open connection to generalised and higher-form symmetries.
D. Tong [1705.01853]

Thank you for listening!
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Extra material

Extra material
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Extra material

Applications in SMEFT with fractional states
SMEFT is an effective field theory that describes SM interactions with higher
dimension operators.

LSMEFT = LSM + Ld=6 + ... (16)

Ld=6 ⊃ −2δ

v2
(acJ

b
cJ

b
c + aLJ

I
LJ

I
L + aY JY JY ) (17)

with b the colour index, I the isospin, the coefficients ac, aY

δ =
asdLdcv

2

(4π)2240M2
, ac =

Icg4c
dc

, (18)

aL =
ILg4
dL

, aY = Q2
Y (gY )

4 . (19)

and the SU(2)W , U(1)Y Higgs currents

JL,µ,a = i(H† TL,aDµH − (DµH)† TL,aH)

JY,µ = iQY (H
† DµH − (DµH)† H).

(20)
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Extra material

BSM electroweak precision observables

The ratio of aL and aY takes a discrete set of values for Gp that can be used to
infer the quantum numbers of the new particle.
It cannot be determined by a single observable as δ is a free parameter but it can
be determined by the correlation between two observables.
Let us define our input scheme:

M2
W =

g2v2

4
(1− aLδ) , (21)

M2
Z =

g2v2

4c2w
(1− aLδ − aY δ) , (22)

GF =
1√
2v2

, (23)

sw ≡
√
4παem

2MW (
√
2GF )1/2

= sw(1 +
1

2
aLδ) . (24)
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Extra material

ρ parameters
We can then substitute these in the expression for two other observables that
maximise the range of angles for the correlation of the Wilson coefficients,

ρΓ3 ≡ 1

6

M3
ZΓW

M3
WΓinv

Z

= (1 + δaY ) , (25)

ρΓ5 ≡ 1

6

(1− s̄2w)M
5
ZΓW

M5
WΓinv

Z

= (1− 1

2
2t̄2wδaL) . (26)
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