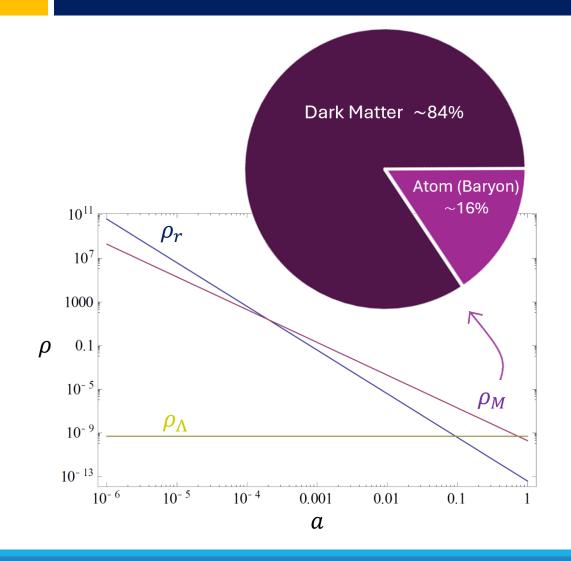


Can we generate the DM masses of $\mathcal{O}(1)$ GeV from the QCD vacuum?

based on arXiv:2411.18725

Yi Chung Max-Planck-Institut für Kernphysik, Heidelberg


May 29th, 2025 PLANCK 2025, Padova, Italy

yi.chung@mpi-hd.mpg.de

The Dark Matter-Baryon Coincidence

 \Rightarrow Why $\rho_D / \rho_B \approx 5$?

For comparison,

 $\rho_{\rm proton} / \rho_{\rm neutron} \approx 7$ $\rho_{\rm proton} / \rho_{\rm electron} \approx 1800$

yi.chung@mpi-hd.mpg.de

More about the DM-Baryon Coincidence

• For non-relativistic particles, the energy density = number density × mass

$$\rho_D / \rho_B = n_D / n_B \times m_D / m_B = 5 !?$$
from unknown
Baryogenesis confinement

• For comparison,

$$\rho_p / \rho_n = n_p / n_n \times m_p / m_n = 7 \text{ (Symmetry!!)}$$

$$\sim 7 \because SU(2)_F \times 1 \because SU(2)_F$$

$$\rho_p / \rho_e = n_p / n_e \times m_p / m_e = 1800$$

$$\sim 1 \because U(1)_{EM} \times 1800$$

Previous attempts: Asymmetric Dark Matter

• The problem is partly solved in Asymmetric DM models [Petraki, Volkas '13; Zurek '13]

$$\rho_D / \rho_B = n_D / n_B \times m_D / m_B = 5 !?$$

$$\sim \mathcal{O}(1) : U(1)_{D-B} \qquad \text{from QCD} \\ \text{confinement}$$

• For comparison,

$$\rho_p / \rho_n = n_p / n_n \times m_p / m_n = 7 \quad \text{(Symmetry!!)}$$

$$\sim 7 \because SU(2)_F \qquad \sim 1 \because SU(2)_F$$

$$\rho_p / \rho_e = n_p / n_e \times m_p / m_e = 1800$$

$$\sim 1 \because U(1)_{EM} \qquad \sim 1800$$

Previous attempts: Asymmetric Dark Matter

• The problem is partly solved in *Asymmetric DM models* [Petraki, Volkas '13; Zurek '13]

$$\rho_D / \rho_B = n_D / n_B \times m_D / m_B = 5 !?$$

$$\sim 0(1) :: U(1)_{D-B}$$

$$\frac{12}{1.1} \int_{0.6} \frac{m_B \sim \Lambda_{QCD}}{m_B \sim 10}$$
a complete solution should also explain how $m_D \sim \Lambda_{QCD}$

DM mass from QCD

yi.chung@mpi-hd.mpg.de

Previous attempts: Mirror / Unification / IRFT

• The problem is partly solved in *Asymmetric DM models* [Petraki, Volkas '13; Zurek '13]

$$p_D / \rho_B = n_D / n_B \times m_D / m_B = 5 !?$$

$$\sim O(1) :: U(1)_{D-B} / M_D \sim \Lambda_{DC}$$

$$\lim_{\substack{n_B \\ n_B \\ n_$$

 $\sim \mathcal{O}(1)$: $\Lambda_{DC} \sim \Lambda_{QCD}$ from Symmetry / Dynamics

New attempt: DM masses from QCD vacuum

• The problem is partly solved in *Asymmetric DM models* [Petraki, Volkas '13; Zurek '13]

$$\rho_D / \rho_B = n_D / n_B \times m_D / m_B = 5 !?$$

$$\sim \mathcal{O}(1) : \mathcal{U}(1)_{D-B} / M_D = 12$$

$$\bar{\chi} = 12$$

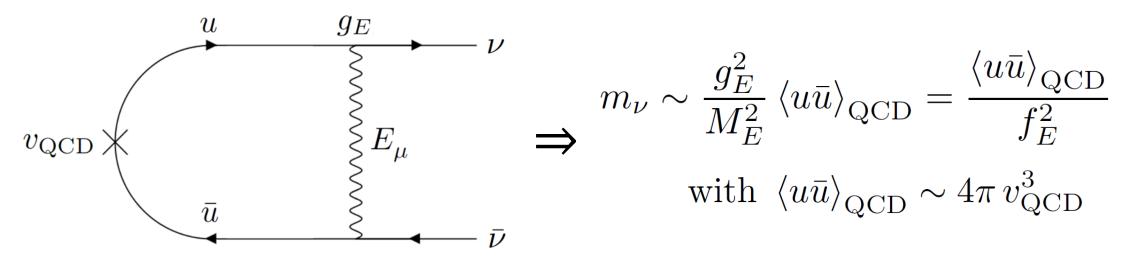
$$m_D \sim 4\pi v_{QCD} \sim \Lambda_{QCD}$$

$$m_D \sim 4\pi v_{QCD} \sim \Lambda_{QCD}$$

 $\sim \mathcal{O}(1)$: m_D is also generated from QCD vacuum

8/18

yi.chung@mpi-hd.mpg.de


How?

yi.chung@mpi-hd.mpg.de

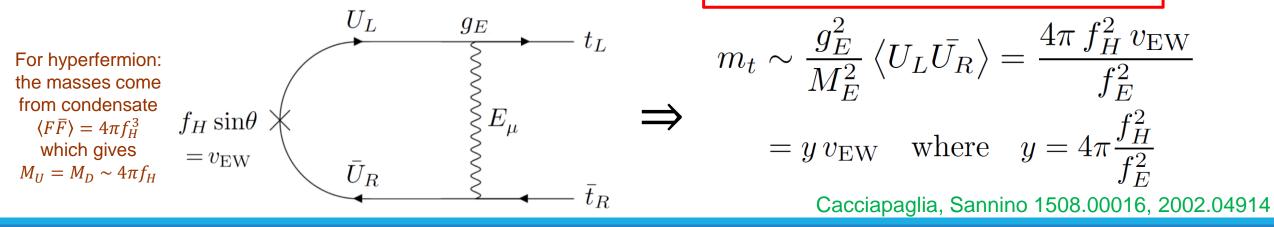
Neutrino mass from QCD + PS leptoquark

• Example: By including new leptoquark fields from Pati-Salam model, we can mediate quarks and neutrino, which then gets masses from the QCD vacuum

- DM model: $u \rightarrow \psi$, $v \rightarrow \chi$ where ψ is colored and χ is colorless
- For a realistic model, we still need

(1) ψ to be heavy (2) $\langle \psi \bar{\psi} \rangle \sim 4\pi f_E^2 v_{QCD} \rightarrow Misalignment in Composite Higgs Models !!$

yi.chung@mpi-hd.mpg.de


Misalignment: top mass in CHM with EHC

• Use the SU(4)/Sp(4) Fundamental CHM as an example

4 Weyl hyperfermions in the fundamental representation of the $Sp(N_{HC})$ hypercolor group $(U_L, D_L) = (1, 2)_0$, $U_R = (1, 1)_{1/2}$, $D_R = (1, 1)_{-1/2} \Rightarrow F = (U_L, D_L, \tilde{U}_L, \tilde{D}_L)^T$

• Two types of condensates can be formed once hypercolor group becomes strongly coupled $\langle F\bar{F} \rangle = 4\pi f_H^3 \left(\cos \theta \cdot \Sigma_{EW} + \sin \theta \cdot \Sigma_{EW} \right)$ where $\Sigma_{EW} = f_H \begin{pmatrix} i\sigma_2 & 0 \\ 0 & -i\sigma_2 \end{pmatrix}$, $\Sigma_{EW} = f_H \begin{pmatrix} 0 & \mathbb{I} \\ -\mathbb{I} & 0 \end{pmatrix}$ $f_H \sin \theta = v_{EW} = 246 \text{ GeV}$

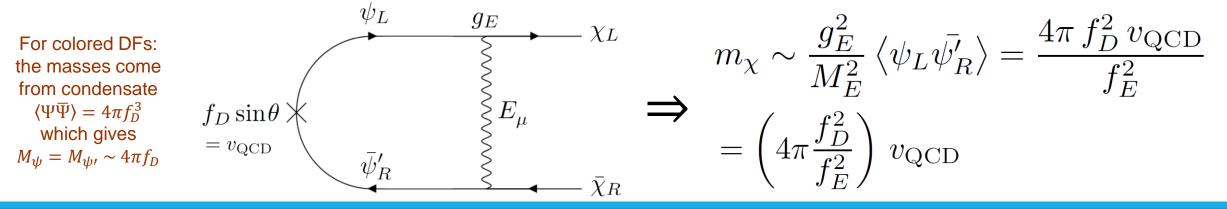
the relevant condensate for top quark mass is $\langle U_L \bar{U_R} \rangle = 4\pi f_H^3 \sin \theta = 4\pi f_H^2 v_{\rm EW}$!!

yi.chung@mpi-hd.mpg.de

DM mass from QCD

11/18

DM masses from QCD-triggered misalignment


• Analogous to CHMs, we need similar ingredient in our DM model, including

Gauge: Hypercolor \rightarrow Dark Color ; EHC \rightarrow Pati-Salam , **Fermion:** $U, D \rightarrow \psi, \psi'$; $t \rightarrow \chi$

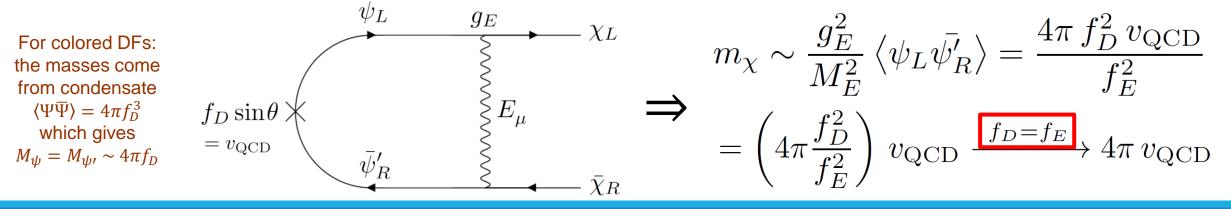
- In minimal setup, we introduce 2 Dirac dark fermions ψ, ψ' in the fundamental representation of both the $SU(N)_D$ dark color and $SU(3)_C$ color group with $SU(2)_L \times SU(2)_R$ global symmetry
- Again, two types of condensates can be formed once dark color becomes strongly coupled

$$\langle \Psi \bar{\Psi} \rangle = 4\pi f_D^3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{QCD}} 4\pi f_D^3 \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \text{ with } f_D \sin \theta = v_{\text{QCD}} \sim 0.1 \text{ GeV}$$

where the DM χ only couples to the off-diagonal vacuum through PS leptoquarks

yi.chung@mpi-hd.mpg.de

DM masses from QCD-triggered misalignment


• Analogous to CHMs, we need similar ingredient in our DM model, including

Gauge: Hypercolor \rightarrow Dark Color ; EHC \rightarrow Pati-Salam , **Fermion:** $U, D \rightarrow \psi, \psi'$; $t \rightarrow \chi$

- In minimal setup, we introduce 2 Dirac dark fermions ψ, ψ' in the fundamental representation of both the $SU(N)_D$ dark color and $SU(3)_C$ color group with $SU(2)_L \times SU(2)_R$ global symmetry
- Again, two types of condensates can be formed once dark color becomes strongly coupled

$$\langle \Psi \bar{\Psi} \rangle = 4\pi f_D^3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{QCD}} 4\pi f_D^3 \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \text{ with } f_D \sin \theta = v_{\text{QCD}} \sim 0.1 \text{ GeV}$$

where the DM χ only couples to the off-diagonal vacuum through PS leptoquarks

yi.chung@mpi-hd.mpg.de

Last step: a "Chiral" strongly coupled theory

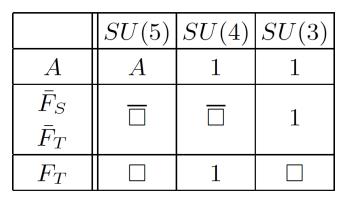
- What does $f_D = f_E$ mean?
- 1. The extended gauge group (Patil-Salam) is broken by dark color dynamics
- 2. The dark matter/fermion χ should be part of dark color sector but remain massless
- \Rightarrow A strongly coupled theory with a massless fermion \Rightarrow A chiral gauge theory !!
- Example: SU(5) with anti-symmetric A + anti-fundamental \overline{F}

 \Rightarrow

	SU(5)	$U(1)_{5}$	
A	A	1	
\bar{F}		-3	

	SU(5)	$U(1)_{5}$
$A\bar{F}\bar{F}$	1	-5

d.o.f @ low energy


 $U(1)_5$ unbroken (can be $U(1)_D$) Massless Composite Fermion!!

yi.chung@mpi-hd.mpg.de

Last step: a "Chiral" strongly coupled theory

- What does $f_D = f_E$ mean?
- 1. The extended gauge group (Patil-Salam) is broken by dark color dynamics
- 2. The dark matter/fermion χ should be part of dark color sector but remain massless
- \Rightarrow A strongly coupled theory with a massless fermion \Rightarrow A chiral gauge theory !!
- Include QCD: SU(5) with anti-symmetric A + anti-fundamental \overline{F} + three pairs of F, \overline{F}

		$SU(3)_C$	$U(1)_{5}$
	$\chi_L = A\bar{F}_S\bar{F}_S$	1	-5
\Rightarrow	$\psi_L = A\bar{F}_S\bar{F}_T$		-7/3
	$\psi_R = (A\bar{F}_S)^c F_T$		+7/3

Massless Weyl baryon $m_{\chi} = 0 \parallel$

Massive Dirac baryon $m_{\psi} \sim \Lambda_{DC}$ which is charged under SU(3)_C

Gauge : $SU(4) \times SU(3) \times U(1)_X \rightarrow SU(3)_C \times U(1)_Y$ with massive leptoquark $U_1(E_\mu) + G' + Z'$

yi.chung@mpi-hd.mpg.de

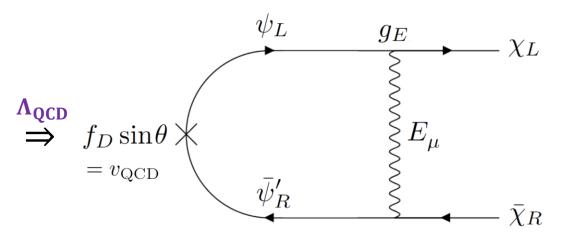
UV complete theory: "54321 model" !?

- Need to add a copy SU(5)' to (1) cancel anomalies (2) generate DM mass
- Gauge group: $(SU(5) \times SU(5)' \rightarrow SU(5)_D) \times SU(4)_h \times SU(3)_\ell \times SU(2)_W \times U(1)_X$
- Fermion/Baryon content:

	SU(5)	SU(5)'	$SU(5)_D$	$SU(4)_h$	$SU(3)_{\ell}$	$U(1)_X$	
A	A	1	A	1	1	0	
\bar{F}		1			1	-1/2	A (
F		1		1		+2/3	$\stackrel{\Lambda_{DC}}{\Rightarrow}$
\bar{A}'	1	$ar{A}$	\bar{A}	1	1	0	
F'	1				1	+1/2	
\bar{F}'	1			1		-2/3	

		$SU(3)_C$	$U(1)_{5}$	$U(1)_Y$
	$\chi_L = A\bar{F}_S\bar{F}_S$	1	-5	0
	$\psi_L = A\bar{F}_S\bar{F}_T$		-7/3	+2/3
DC	$\psi_R = (A\bar{F}_S)^c F_T$		+7/3	-2/3
-	$\chi_R = \bar{A}' F'_S F'_S$	1	+5	0
	$\psi_R' = \bar{A}' F_S' F_T'$		+7/3	-2/3
	$\psi'_L = (\bar{A}'F'_S)^c \bar{F}'_T$		-7/3	+2/3

with LQ $U_1(E_\mu)$ + G' +Z' & dark mesons


massless baryon χ couples strongly to π_D

UV complete theory: "54321 model" !?

- Need to add a copy SU(5)' to (1) cancel anomalies (2) generate DM mass
- Gauge group: $(SU(5) \times SU(5)' \rightarrow SU(5)_D) \times SU(4)_h \times SU(3)_\ell \times SU(2)_W \times U(1)_X$
- Fermion/Baryon content:

	$SU(3)_C$	$U(1)_{5}$	$U(1)_Y$
$\chi_L = A\bar{F}_S\bar{F}_S$	1	-5	0
$\psi_L = A\bar{F}_S\bar{F}_T$		-7/3	+2/3
$\psi_R = (A\bar{F}_S)^c F_T$		+7/3	-2/3
$\chi_R = \bar{A}' F_S' F_S'$	1	+5	0
$\psi_R' = \bar{A}' F_S' F_T'$		+7/3	-2/3
$\psi'_L = (\bar{A}'F'_S)^c \bar{F}'_T$		-7/3	+2/3

with LQ $U_1(E_\mu)$ + *G*' +*Z*' & dark mesons massless baryon χ couples strongly to π_D

 $m_{\chi} \sim 4\pi v_{\rm QCD} \sim \mathcal{O}(1) \,\,{\rm GeV}$

 $\pi_{\rm D}$ gets a vev of $v_{\rm QCD}$ and thus χ becomes massive

yi.chung@mpi-hd.mpg.de

Summary

> Why? - Motivation

- The Dark Matter-Baryon Coincidence is a nontrivial condition
- The coincidence might be the hint to probe the nature of Dark Matter
- Previous solutions always have DM masses from the dark color confinement scales Λ_{DC}

How? - New attempt

- In this study, we try to get **DM masses from QCD vacuum** instead
- Goal: to propagate QCD vacuum to colorless DM without suppressions
- Idea: Chiral Dark Color (massless baryon) with QCD-triggered Misalignment ($f^2 v_{QCD}$)

> Phenomenology

- Dark pNGBs dark pion (ALP) / QCD axion (if anomalous) / dark photon (if gauged)
- Self-interaction can explain the observed small-scale structure "core-cusp problem"