

Why

Beyond Standard Model?

- # reasons why
- Neutrino mass
- Dark matter(!)
- Fermion mass hierarchy

and many more....

What are we doing?

• Trying to address **Fermion mass hierarchy** and **dark matter** from a common origin.

How?

Model Set up

• Gauge Group:

 Global abelian symmetry

• Particle content:

 $SM \otimes U(1)_{FN}$

- S, flavon, a singlet complex scalar
- χ , a majorana fermion

The problem and the solution

- The problem
- The wide range of fermion masses in the Standard Model

One of the solution

Frogatt Nielson Mechanism

m _u = 2.3 ±	m _c = 1275 ±	m _t = 173210
0.7MeV	25MeV	± 510MeV
m _d = 4.8 ±	m _s = 95 ±	m _b = 4180 ±
0.5Me∨	5MeV	30MeV
m _e = 0.51MeV	m _µ = 105.658 ± 38MeV	m _τ = 1776.84 ± 17MeV

FN mechanism in a nut-shell

• Yukawa term in SM • In FN framework

 $Y^{ij}\bar{Q}_iHd_i$ $y^{ij}\left(\frac{S}{\Lambda}\right)^{n_{ij}}\bar{Q}_iHd_j$ $Y^{ij} = v^{ij} \epsilon^{n^{u}}$ Therefore $\epsilon = \frac{v_s}{\sqrt{2} \Lambda} \approx 0.225$ where

Flavon scenario

- The relation needed to respect U(1)_{FN} symmetry is $n_{ij}^d = a_{Q_i} - a_H - a_{d_j}, \quad n_{ij}^u = a_{Q_i} + a_H - a_{u_j}.$
- The charge assignment of the fermions here are

$$\begin{vmatrix} a_{Q_1} & a_{Q_2} & a_{Q_3} \\ a_{u_1} & a_{u_2} & a_{u_3} \\ a_{d_1} & a_{d_2} & a_{d_3} \\ a_{L_1} & a_{L_2} & a_{L_3} \\ a_{e_1} & a_{e_2} & a_{e_3} \end{vmatrix} = \begin{vmatrix} 4 & 2 & 0 \\ 4 & 2 & 0 \\ 4 & 3 & 3 \\ 4 & 3 & 3 \\ 4 & 2 & 0 \end{vmatrix}$$

DM Phenomenology

- We want a minimal model for dark matter and we chose a Majorana fermion as our candidate.
- The dark sector lagrangian looks like

$$L_{DM} = \frac{1}{2} \overline{\chi} (i \gamma^{\mu} \partial_{\mu}) \chi - y_{\chi} (\frac{S}{\Lambda})^{2n-1} S \overline{\chi^{c}} \chi + h.c$$

where n is the $U(1)_{FN}$ charge of DM.

- For n being half integer, the dark matter is stable.
- For n being a little high, it can create freeze in coupling naturally.

Thermalisation of S

Condition for non-thermal DM

Boltzmann equation

$$\frac{dY_{\chi}}{dz} = \frac{\langle \Gamma(S \rightarrow \chi \chi) \rangle}{H z} Y_{s}(z) + \frac{4 \pi^{2}}{45} \frac{M_{Pl}M_{s}}{1.66} \frac{\sqrt{g(z)}}{z^{2}} \langle \sigma v_{SS \rightarrow \chi \chi} \rangle Y_{S}^{2}(z)$$

$$\frac{dY_{s}}{dz} = -\frac{\langle \Gamma(S \rightarrow \chi \chi) \rangle}{H z} Y_{s}(z) - \frac{4 \pi^{2}}{45} \frac{M_{Pl}M_{s}}{1.66} \frac{\sqrt{g(z)}}{z^{2}} \langle \sigma v_{SS \rightarrow \chi \chi} \rangle Y_{S}^{2}(z)$$

$$+ other terms$$

How it looks

DM abundance

Summary

- In this work, we have proposed a unified solution to the fermion mass hierarchy and a FIMP dark matter within a class of $U(1)_{FN}$ extensions of the Standard Model.
- We have shown a preferred range for the DM mass, which is (100-300) keV and (3-10) MeV, corresponding to n = 7.5 and 8.5 respectively.

Thank You

