
DP, K. Bondarenko, M. Doro, T. Kobayashi <u>Phys. Dark Univ. 46 (2024), 101704</u> **DP, M. Doro, T. Kobayashi** <u>arXiv:2505.xxxxx</u>

Università degli Studi di Padova

<u>Michele Doro (</u>University of Padova) Takeshi Kobayashi (SISSA), Daniele Perri (SISSA, U. Warsaw)

QUESTION?

Are cosmic magnetic fields relevant for terrestrial experimental bounds on MMs?

#1 MM INTRO AND EXPERIMENTS

QUICK INTRO: DIRAC'S CLASSIC MONOPOLE

- He was trying to find a way to have a natural explanation for the quantization of the electric charge
- In 1948 he proposed a model for a monopole made of one semi-infinite string solenoid
- Magnetic charge:

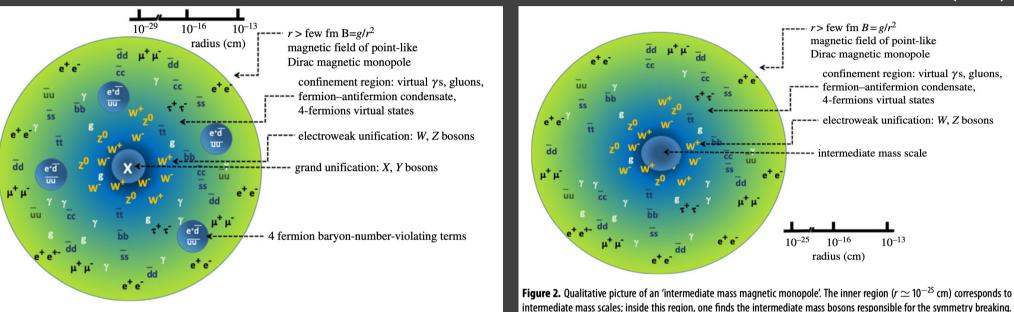
 \bigcirc

$$g = 2\pi n/e = ng_{\rm D}$$

Dirac himself said of MM "One would be surprised if Nature had made no use of it"

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

MMS ARE COMMON: T'HOOFT AND POLIAKOV


- In 1974 'T Hooft and Poliakov proposed a model of monopoles as topological defects, which was naturally appearing during phase transitions
- Monopoles are inevitable predictions of Grand Unified Theories: $SU(5) \rightarrow SU(3) \times SU(2) \times U(1) \rightarrow$ $SU(3) \times U(1)$
- o MM
 - GUT (early Universe) M>10^16 GeV
 - Intermediate Mass (later) M>10^6 GeV
- The 't Hooft–Polyakov monopole is a finiteenergy, topological soliton arising due to the non-trivial topology of the vacuum manifold.

GUT AND INTERMEDIATE MM

Patrizii+ Ann.Rev.Nucl.Part.Sci. 65 (2015)

The outer regions are as in figure 1, but without terms violating baryon number conservation in the fermion-antifermion

condensate.

Figure 1. Qualitative picture of the internal structure of a GUT magnetic monopole (modified figure from [11]). The different regions are described in the text.

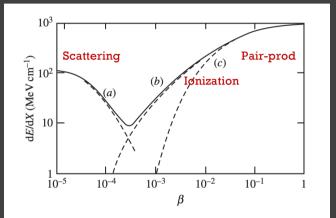
GUT MM foresees proton decay

Inside the core, all the states of the GUT are excited.

6

ACTUALLY, TOO MANY MAGNETIC MONOPOLES

COSMOLOGICAL MONOPOLES crowd


- Monopoles are produced in the early universe during phase transition.
- The abundance of produced monopoles can easily overdominate the energy density of the universe.
- Inflation provides a good solution to the problem.

GALACTIC MONOPOLES crowd/PARKER BOUND

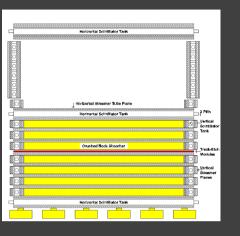
- The Galaxy presents a magnetic field of ~muG
- The Galactic magnetic field accelerates the monopoles losing its energy;
- The survival of the field provides a bound on the monopole flux today

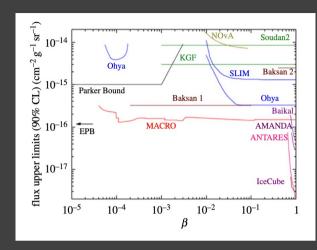
HOW TO GET THEM: ENERGY LOSS IN MATTER

gy loss (in MeV cm⁻¹) mechanisms of $g = g_D$ MMs in liquid hydrogen versus β . Cu hydrogen atom scattering; curve (b) corresponds to interactions with energy level on energy loss [12].

Patrizii+ Ann.Rev.Nucl.Part. Sci. 65 (2015)

- When MMs cross a medium, the time-varying magnetic field induces a strong electric field. MMs are treated as electrically charged particles with an equivalent speeddependent electric charge proportional to $g\beta$.
- The search for MMs is naturally based on their speed at the detector.
 - \circ For β ≤ 10⁻³ the energy loss is mostly through elastic collisions with atoms.
 - For $10^{-3} \leq \beta \leq 10^{-2}$, the medium behaves like a free degenerate gas of electrons (energy level crossings)
 - Relativistic MMs with $\beta \ge 0.1$ ionize atoms. The yield is ~ $(g/e)^2=4700$ times that of a minimum ionizing particle.
 - Ultra-relativistic MMs, with $\gamma > 10^4$, lose energy mostly by pair production and photo-nuclear radiative processes




HOW TO GET THEM

DIRECT DETECTION OF MONOPOLES

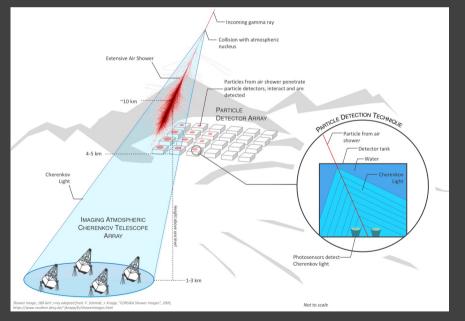
- Induction of electric currents into a coil;
- Energy loss by ionization (Ex. MACRO, IceCube);
- Catalysis of nucleon decays (only for GUT monopoles).

	article Data Group), Prog. Theor. Exp. Phys. 2022, 08	3C01 (2022) and 2023 update	ht	tps	://pdg.lbl.gov/
See the related Magnetic Mon					
Monopole Production X-SECT MASS (cm ²) (GeV)	Cross Section — Accelerator Search CHG ENERGY (g) (GeV) BEAM DOCUM				
Monopole Dens	ity — Matter Searches				
DENSITY	CHG (g) MATERIAL	DOCUMENT ID	,	TECN	
< 9.8E - 5/gram	≥ 1 Polar rock	BENDTZ	13	INDU	
< 6.9E - 6/gram	>1/3 Meteorites and othe		95	INDU	
< 2.E - 7/gram	>0.6 Fe ore	¹ EBISU	87	INDU	

9 -

- The Monopole, Astrophysics and Cosmic Ray Observatory (MACRO) was a dedicated instrument for MMs at LNGS until 2000.
- MACRO was composed of three sub-detectors, sensitive to different MM speeds, operated in combination:
 - scintillation counters
 - o limited streamer tubes
 - o nuclear track detectors
- Upper bounds between $4 \times 10^{-5} \le \beta < 0.99$ at around 1.4×10^{-16} cm-2s-1sr-1 for masses $\ge 10^{16}$ GeV.

SEARCHES AT ACCELERATORS


- The ATLAS experiment sought gD MMs with masses of up to 2.5 TeV.
- MM masses as large as 6 TeV have been explored by the MoEDAL experiment*, which has set upper limits to the production of MMs with charges as large as 5gD considering Drell-Yan process

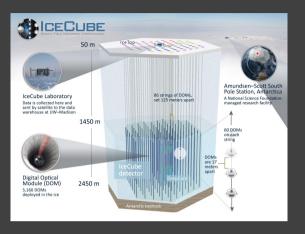
*MoEDAL (Monopole and Exotics Detector at the LHC) is a particle physics experiment at the Large Hadron Collider (LHC)

INDIRECT DETECTION OF MM

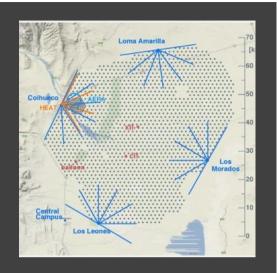
- A MM acts as a super-ionizing muon 0
 - the ionization yield of a relativistic unit charge MM is $(g/e)^2 \sim 4700$ times that of a MIP
 - Also 4700 times more Cherenkov light than that of a muon with the same speed

https://pdg.lbl.gov/

	Ionopole Flux — Cosmic Ray Searches "Caty" in the charge column indicates a search for monopole-catalyzed nucleon decay.					
FLUX (cm ⁻² sr ⁻¹ s ⁻	MASS ¹ (GeV)	CHG (g)	$\frac{COMMENTS}{(\beta = v/c)}$	DOCUMENT ID		TECN
<2E-19		1	0.86< β <0.995	¹ ABBASI	22	ICCB
<2E-14	>5E8		$6E-4 < \beta < 5E-3$		21	NOVA
<1E-17		Caty	$1E-5 < \beta < 1E-3$	³ GAPONENKO	21	BAIK
< 1.5E - 18		1	β >0.6	⁴ ALBERT	17	ANTR
<2.5E-21		1	1E8< γ <1E13	⁵ AAB	16	AUGE


MM

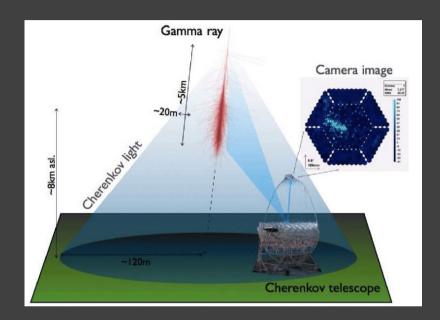
Monopole Density — Astrophysics CHC DENSI


DENSITY	(g)	MATERIAL	DOCUMENT ID	TECN
< 1.E - 9/gram	1	sun, catalysis	¹ ARAFUNE 8	3 COSM
<6.E-33/nucl	1	moon wake	SCHATTEN 8	3 ELEC

Monopole Flux — Astrophysics							
FLUX (cm ⁻² sr ⁻¹ s ⁻¹)	MASS (GeV)	CHG (g)	$COMMENTS \\ (\beta = v/c)$		DOCUMENT ID		TECN
<1.3E-20	(001)	6/	faint white dwarf	-	¹ FREESE	99	ASTR
$<\!\!1.E\!-\!16$	E17	1	galactic field		² ADAMS	93	COSM
<1.E-23			Jovian planets		¹ ARAFUNE	85	ASTR
< 1.E - 16	E15		solar trapping		BRACCI	85B	ASTR

ICECUBE

PIERRE AUGER OBSERVATORY (PAO)



- Located at the South Pole in Antarctica, the IceCube detector is an array of 5160 optical modules arranged in 86 vertical strings deployed into the ice between 1500 m and 2500 m below the surface, with a total volume of 1 km³.
- A charged particle can emit Cherenkov light in ice
- Core science: astrophysical neutrinos, but can see MMs above beta>0.5
- $_{\odot}$ $\,$ Several publications assuming supermassive MMs $\,$

- **PAO** is the largest (3,000 km2) ultra-high-energy cosmic-ray detector currently in operation.
- Surface-detector array of water tanks that samples the charged particles from atmospheric showers and 24 fluorescence detectors with a field-of-view of 30°.
- PAO is sensitive to ultra-relativistic gamma>10^8 MMs
- Several papers published assuming light enough MMs

IACTS

 Only preliminary studies from MSc thesis of Gerrit Spengler

- Very peculiar signature from MM in IACTs:
 - Super-bright events
 - Sometimes Double signals (from different zone of the atmosphere)
 - No confusion wrt gamma-rays

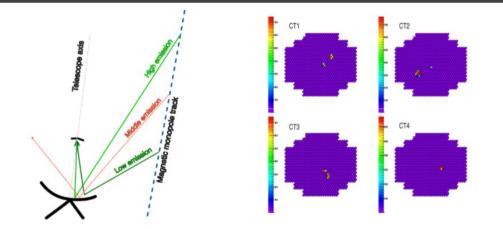
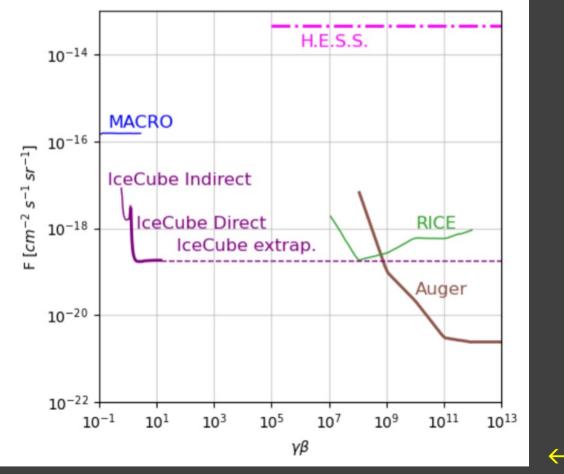



Figure 8.18: Left: Emission scheme from an ultrarelativistic MM emitting Cherenkov radiation throughout the full length of the atmosphere. Right: A simulated MM event on H.E.S.S. cameras. Courtesy of (Spengler, 2009).

CURRENT WORLD-BEST LIMITS

IceCube = Relativistic MMs

PAO=Ultra Relativistic MMs

\leftarrow In terms of speed

14

#2 ACCELERATION OF MM IN COSMIC FIELDS

MM AND MAGNETIC FIELDS

• The evolutions of magnetic monopoles and cosmic magnetic fields are strictly coupled throughout the universe's history.

Cosmic magnetic fields accelerate the monopoles

 $m\frac{d}{dt}(\gamma v) = gB$

Accelerated monopoles extract energy from cosmic magnetic fields

Monopole bounds are affected by the acceleration The survival of cosmic magnetic fields might lead to new bounds If one defines a model for cosmic MFs, one can compute the acceleration of MMs in function of the MM mass (and considering the back-reactions)

ACCELERATION

https://arxiv.or g/abs/2401.005 60

This yields

 $(\gamma v)_0 \sim \frac{gB_{\rm I}}{mH_0}.$

(2.10)

Inhomogeneous IGMF. With sub-horizon coherence lengths, $\lambda_{\rm I} < 1/H_0$, the present-day velocity takes the forms,

$$(\gamma v)_{0} \sim \begin{cases} \frac{gB_{1}\lambda_{I}}{m} \frac{1}{(\lambda_{1}H_{0})^{1/2}} & \text{for } m < \frac{gB_{1}\lambda_{1}^{1/2}}{H_{0}^{1/2}}, \\ \left(\frac{gB_{1}\lambda_{1}}{m}\right)^{2/3} \frac{1}{(\lambda_{I}H_{0})^{1/3}} & \text{for } \frac{gB_{1}\lambda_{1}^{1/2}}{H_{0}^{1/2}} < m < \frac{gB_{1}}{\lambda_{1}H_{0}^{2}}, \\ \frac{gB_{1}}{mH_{0}} & \text{for } m > \frac{gB_{1}}{\lambda_{1}H_{0}^{2}}. \end{cases}$$
(2.11)

- We have explored IGMF/GMF:
 - IGMF: current bounds on intensity,

 $\lambda_I = 1Mpc \text{ or } > 1/H_0$

• GMF: Jannson and Farrar models

Full length article

Monopole acceleration in intergalactic magnetic fields Daniele Perri ^{a,b,c,*}, Kyrilo Bondarenko ^{a,b,c}, Michele Doro ^{d,e}, Takeshi Kobayashi ^{a,b,c,f}

• In short:

- Define B strengths and coherence length
- Compute acceleration in function of MM mass
- Consider back-reaction on B field (flux dependent)
- Check which dominates!

IGMF LIMITS

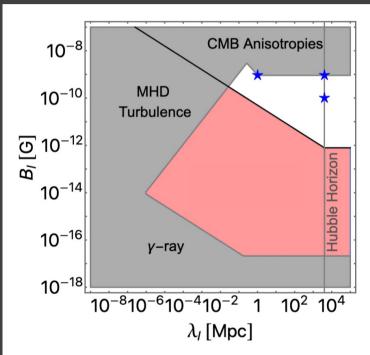
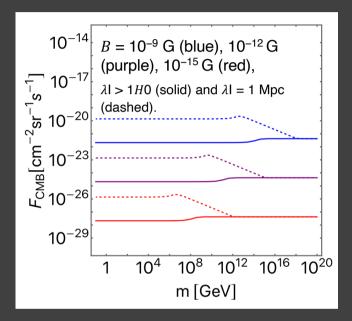


Figure 1: Parameter space of IGMF strength and coherence length. The gray region is excluded by various constraints [28]. The red region shows where IGMFs have negligigle effects on the MM velocity at Earth. The blue stars indicate benchmark values that are used in Fig. 2.

• Current limits on intensity

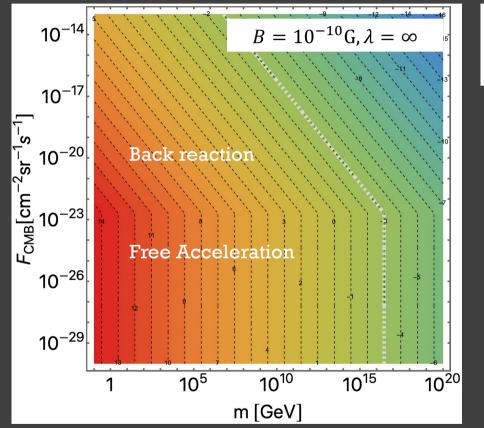
- From above, mostly by CMB anisotropies (~le-9 G)
- From below by gamma-ray experiments
 - G-ray halos around blazars,
 - TeV \rightarrow GeV signal reprocess (due to pair production+synchrotron)
 - Delayed signal emission


• On coherent lengths

• Small values excludes by turbulence

Durrer:2013pga,AlvesBatista:2021sln,Neronov:2021xua

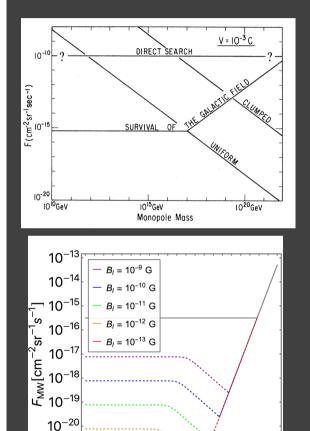
BACK REACTION


- MM extracts energy from B.
- This depends on their flux / their mass
- ← Threshold for back-reaction
 Higher B allows for larger MM fluxes
 Larger λ_I allows for larger fluxes

As a result, the maximum speed depends on flux:

 $\max(v_{MW}, v_{IGMF}, v_{GMF})$

ACCELERATION IN IGMF



-16 -10 -4 2 8 14 $log_{10}(\gamma v)_{\rm CMB}$

IGMF alone can accelerate MM to ultra-relativistic speeds

GALACTIC MAGNETIC FIELDS

10³ 10⁶ 10⁹ 10¹² 10¹⁵ 10¹⁸

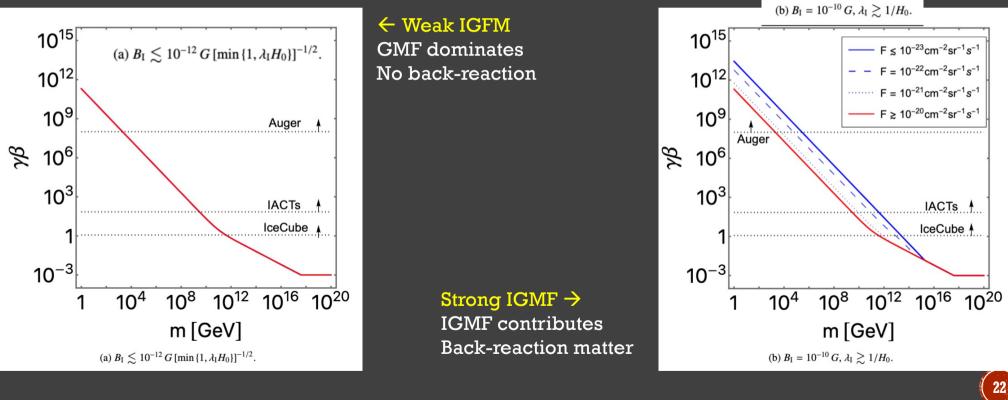
m [GeV]

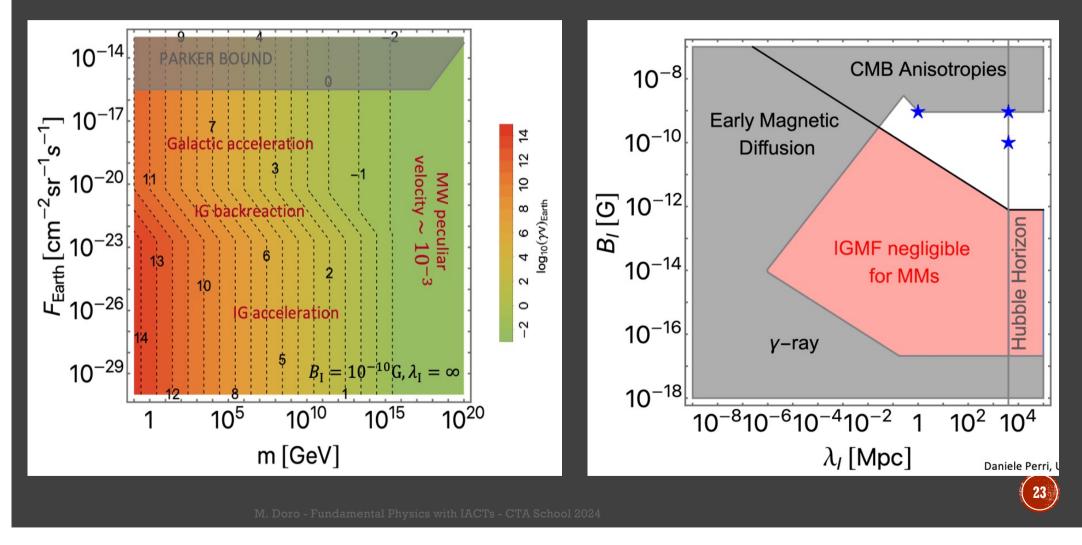
 10^{-21}

- In 1970 Parker proposed a bound on the monopole flux today inside our Galaxy:
 - The Galaxy presents a magnetic field of $\sim 2 \times 10^{-6}$ G;
 - The Galactic magnetic field accelerates the monopoles losing its energy;
 - The survival of the field provides a bound on the monopole flux today.
- The bound can be even extended considering the seed field of the Galaxy.

← Seed Parker bounds are weakened by acceleration into IGMF

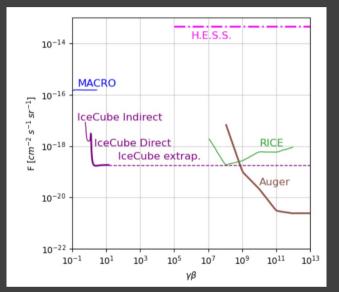
Acceleration in GMF

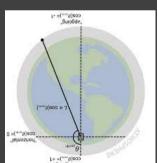

$$m \left(\gamma_{\rm G} - 1
ight) \sim g B_{\rm G} \sqrt{R \lambda_{\rm G}} \sim 10^{11} \, {\rm GeV} \left(rac{g}{g_{\rm D}}
ight).$$


SPEED-MASS RELATION (DEP. FLUX)

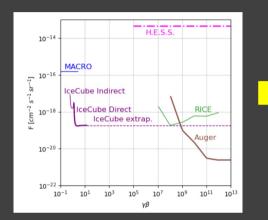
• One can compute the speed-mass relation for different scenarios of IGMF (and flux)

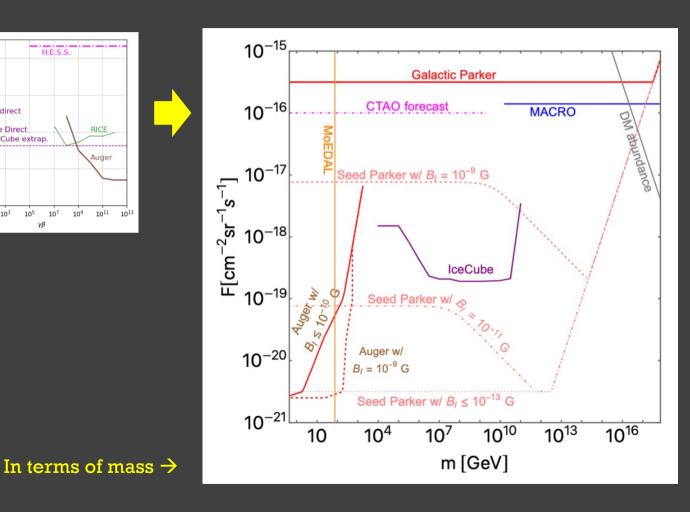
22


ALL CONSIDERERED



FROM SPEED-LIMITS TO MASS-LIMITS


- Assuming a model of IGMF one can related speed to mass
- Terrestrial experiments required relativistic and ultrarelativistic speeds
- One should consider 'kinetic energy at the detector'
 - Compute energy loss in matter (if required)
 - Acceptance direction depedent

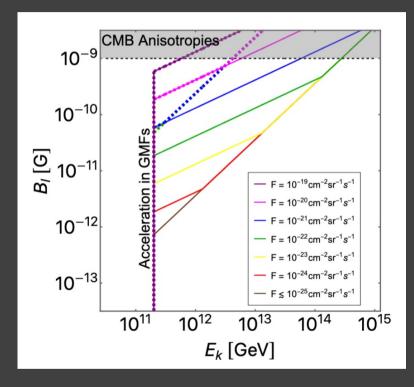


- E.g. MMs are clearly seen by IC only if coming from below
- Small kinetic energy MMs are lost (and this depends on the angle)
- Similar argument for MACRO
- We carefully checked Icecube and MACRO acceptance

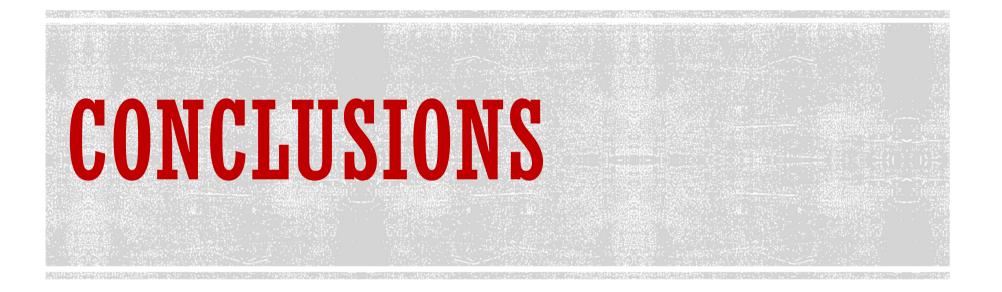
25

RESULTS

Ah! I need a navigator!

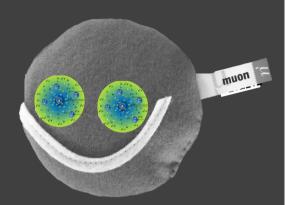

1/ Instruments have different mass sensitivity

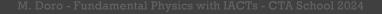
2/Seed Parker bounds significantly modulated by IGMF strength


3/ For small fluxes, IGMFs must be considered

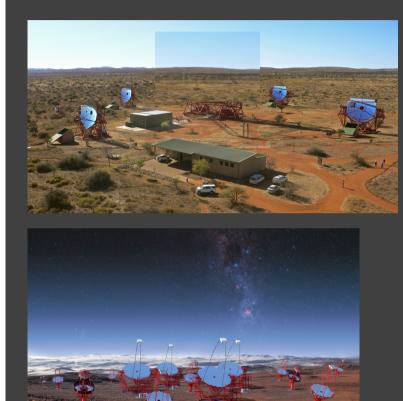
26

BONUS


The argument can be reversed
A MM flux limit, assuming a certain kinetic energy, could be translated into an IGMF limit


TAKE-HOME

- We have developed a framework that computes the relation MM mass-speed in cosmic MFs (that includes back-reaction)
- We have made assumptions on MFs, if better models come out, more accurate estimations can be made
- Strong IGMFs impact MM acceleration (could contribute, could dominate)
- Terrestrial instruments are sensitive to different MM mass (related to their formation mechanisms)


29

FOCUS ON IACTS

- Only MSc work from Gerrit Spengler (2009) for H.E.S.S. data
 - Simplified Monte Carlo, strong data selection
- Cherenkov Telescope Array Observatory will improve
 - Larger FOV
 - Larger effective area
 - Longer exposure
- All considered, sensitivity can improve 200 times wrt H.E.S.S. and on wider MM speed range
- A topic so far not investigated by current IACTs

