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Scalar field in curved space-time

Consider a spectator scalar field in a classical gravitational background
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Scalar field in curved space-time

Consider a spectator scalar field in a classical gravitational background
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=» £ non-minimal coupling of the spectator scalar field
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Scalar field in curved space-time

Consider a spectator scalar field in a classical gravitational background
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In a classical Cosmological background g, (z) = a*(n) diag(1, -1, -1, -1)

R(n) = —6a”/a® | gravitational “potential” term
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Scalar field in curved space-time

Consider a spectator scalar field in a classical gravitational background
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o . . 2 %
In a classical Cosmological background g, (z) = a*(n) diag(1, -1, -1, -1)

R(n) = —6a”/a® | gravitational “potential” term

o

5 (14 6¢) Xz=0

XE:CLX]};’ X]g—l— [k2+a2mf<+

m2g(n) = m3 + (3 + £)R(n)

=» Time-dependent effective mass which sources gravitational effects

=» For £ =-1/6 (conformally coupled), no gravitational effective mass
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Modes equation in cosmological background
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Modes equation in cosmological background
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Time-dependent frequency through the background evolution

=» observers at different times may decompose operators onto different bases of mode functions and
ladder operators

=» vacuum can be further populated by scalar excitations throughout background evolution

- Technical University of Munich



Modes equation in cosmological background

1 2 0 o @R
Xe+ |k +amX—I—T(1+6§) Xp;=0

N /
Y

wi(n)

Time-dependent frequency through the background evolution

=» observers at different times may decompose operators onto different bases of mode functions and
ladder operators

=» vacuum can be further populated by scalar excitations throughout background evolution

Already outlined by Schroédinger in 1939, as a potentially

“alarming phenomenon” for expanding Universe
The Proper Vibrations of the Expanding Universe, Physica (1939)
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Modes equation in cosmological background
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Time-dependent frequency through the background evolution

=» observers at different times may decompose operators onto different bases of mode functions and
ladder operators

=» vacuum can be further populated by scalar excitations throughout background evolution
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Bogoliubov transformation
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=» find “in” mode functions at late asymptotic times and project on the “out” base to “count” excitations

d*k

<0|N|N()I'T|0|N> =V (27‘.)3

|8k |?

ouT

/ /
Bi :i(Xk X —x XZUT)

k‘3

~ lim ﬁ&(n)

nN—+00

- Technical University of Munich

spectrum for scalar modes
sourced by gravity




Bogoliubov transformation
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=» find “in” mode functions at late asymptotic times and project on the “out” base to “count” excitations
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Inflaton oscillations during Reheating

15x10710 V(¢)/6M}’ Slow-roll

inflaton

WAAAAAAAAAE
ALK

0

Redshifted envelop and frequency of
EOM qb(t) 4 3H(ﬁ(t)—|— V’(gb(t)) —0 the oscillations depend on the shape

of the potential near the minimum

L/7i2x —
Couplings of the inflaton with the other fields induce W = ﬁ _ 2 (¢7) — V(9)) — w2
transfer of energy during the oscillations : reheating P %<¢2> +(V(¢)) n -+ 2
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Long wavelength modes during Reheating

Matter Domination
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% 1/aH ' Super-horizon and reentry during reheating

In(1/aH)

} k? < (%l — a2m>2<) lo. = a2(2H? — mi)

r
k * X N, reh
| |

Inay Inaeyg Inayep Ina., Inag

Ina
From (P)reheating Effects of the Kdhler Moduli Inflation | Model, Islam Khan, Aaron C. Vincent and Guy Worthey, 2111.11050

=» occupation number is affected by the equation of state during reheating | Wy

=» fast inflaton oscillations do not affect the occupation number of the long-wavelength modes
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Long wavelength modes during Reheating

Matter Domination
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=» occupation number is affected by the equation of state during reheating | Wy

=» fast inflaton oscillations do not affect the occupation number of the long-wavelength modes

1 .

Solve numerically mode equations
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Long wavelength modes during Reheating

Matter Domination
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Super-horizon and reentry during reheating
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From (P)reheating Effects of the Kdhler Moduli Inflation | Model, Islam Khan, Aaron C. Vincent and Guy Worthey, 2111.11050

=» occupation number is affected by the equation of state during reheating | Wy

=» fast inflaton oscillations do not affect the occupation number of the long-wavelength modes
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Solve numerica”y mode equations Analytical derivation of the Spectrum
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Long wavelength modes during Reheating
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Long wavelength modes during Reheating
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Long wavelength modes during Reheating

2
X,’;’ 4 [k2 e F 1 %(1 +ﬁé)] X3 =0 from now consider only minimal gravitational coupling

We v

0 [3/2 3 (1—wy)
V= -7

L [ 2 (1 + 3wy)

1/2 |13/10

3/5 | 3/14 Spectral behavior of

2/3 | 1/6 gravitationally produced massless

5/7 |3/22 scalar perturbations (IR)

3/4 |3/26

4/5 |3/34 Generalizing the Bogoliubov vs Boltzmann

approaches in gravitational production,

9/10 3/74 Chakraborty, SC, Haque, Maity, Mambrini,
2503.21877

- spectral behavior in the IR varies from k=3 for we = 0 to a flat spectrum in the limit wg — 1
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Long wavelength modes during Reheating
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pt + Xt 6 | T 0 we can determine the effect of a dominant mass term
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Long wavelength modes during Reheating

2
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X7+ [k2 + i + T] Xz =0 we can determine the effect of a dominant mass term
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Long wavelength modes during Reheating

2
a“R
X7+ [k2 + i + T] Xz =0 we can determine the effect of a dominant mass term

1+3w

3(1+wy)
k 2 my \ . . , :
= X below this comoving scale, mass term dominates at horizon reentry

=» at smaller comoving scales , we obtain a flat spectrum | B |2 X (ke/k)3
for massive scalar modes whatever the EoS W
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Long wavelength modes during Reheating

2
a“R
X7+ [k2 + i + T] Xz =0 we can determine the effect of a dominant mass term

1+3w

3(1+wy)
k 2 my \ . . , :
= X below this comoving scale, mass term dominates at horizon reentry

=» at smaller comoving scales , we obtain a flat spectrum | B |2 X (ke/k)3
for massive scalar modes whatever the EoS W

_mx_ k?
- atlarge mass, (m, /H.) > 3/2, exponentially suppressed spectrum (3, oc e He (acHe)?
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Long wavelength modes during Reheating
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Generalizing the Bogoliubov vs Boltzmann approaches in gravitational production, Chakraborty, SC, Haque, Maity, Mambrini, 2503.21877
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Long wavelength modes during Reheating
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Long wavelength modes during Reheating
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Long wavelength modes during Reheating
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Short wavelength modes during Reheating

Matter Domination

In(1/aH)

Sub-horizon modes
} k> acH

Inaeq In ayen In Qeq Ina, T
From (P)reheating Effects of the Kdhler Moduli Inflation | Model, Islam Khan, Aaron C. Vincent and Guy Worthey, 2111.11050

=» no violation of adiabaticity in the evolution of mode frequency during inflation and reheating
=» expect small occupation number in the UV spectrum induced by gravity

=» fast inflaton oscillations affect the occupation number of the short-wavelength modes
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Short wavelength modes during Reheating

Matter Domination

In(1/aH)

Sub-horizon modes

L
|
Inay Inaeyg Inayep Ina., Inag

Ina
From (P)reheating Effects of the Kdhler Moduli Inflation | Model, Islam Khan, Aaron C. Vincent and Guy Worthey, 2111.11050
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=» advantage to compute the Bogoliubov coefficient without solving exactly the mode equations
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Inflaton fast oscillations and Fourier modes

Post-inflation background oscillations -» a decaying amplitude ® () and a quasi-periodic part P(t)

. both depends on w,
O(t)P(t) = O(t) Y P
V#£0 - develop the oscillating part in Fourier modes P,,
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Inflaton fast oscillations and Fourier modes

Post-inflation background oscillations -» a decaying amplitude ® () and a quasi-periodic part P(t)

. both depends on w,
O(t)P(t) = O(t) Y P
V#£0 - develop the oscillating part in Fourier modes P,,

(PR R T) - e

=» extract slowly varying amplitude and fast oscillations of all background quantities

=» higher order oscillating terms are suppressed during reheating by the decay of the inflaton amplitude
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Inflaton fast oscillations and Fourier modes

Post-inflation background oscillations -» a decaying amplitude ® () and a quasi-periodic part P(t)

. both depends on w,
O(t)P(t) = O(t) Y P
V#£0 - develop the oscillating part in Fourier modes P,,

T (i) (—)_) H = H.(a/ac) "

o (1 2 : 1 ..
oull) _ @ e o _sHi— L
wi(t)  w; i 2

=» adiabatic variation of modes frequency in terms of the inflaton slowly decaying amplitude and fast
oscillating part
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Short wavelength modes during Reheating
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Short wavelength modes during Reheating
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Short wavelength modes during Reheating

Case w, < 1/3
1 1/ , t 3 ) ’ t, % / . /
B ~ § Z / dt (t_el?> [Noez(IH—l)wt (t_> a5 ewwt -|—N2 . N v+l)wt e
Ll ) \

use stationary phase approximation integrate by parts and take the large momentum contribution
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Short wavelength modes during Reheating

Case w, < 1/3
1 t , t 3 ) ’ t, % / . /
Br= 5 > / dt (?/) 'Noe7’(”+l)“t (7) + NPT 4 Ny + NgevFbet (2
v.1#0 7t ’ \

use stationary phase approximation integrate by parts and take the large momentum contribution

9(w¢—1) 45wy —21

R +{\_f0./\_/'2k4(1_3w¢) cosy wy < 1/9

interference term
45 21

k=6 b No N2k TE=3%¢) cosap we > 1/9
interferevnce term

|Bk|%v,w¢<% -

=» recover the well known k_g/z behavior for Wy = 0
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Short wavelength modes during Reheating

Case wy, > 1/3

1 . ’ 15 e ; ’ t’ % . / . /
p O — aGt | — i(v+hwt [ 2 ivwt i(v+lwt [ Le
Br = 3 Z/ (t> 'Noe (t> FNE LN, + Nae é

v, l#0

=» no stationary phase within integration range: extract only the large momentum contribution

1
‘5]“'%\/,1%2% = 16f2(w¢) X ZZ NO +N1 ‘|’N2 +N3

-» on the whole range 1/9 < w, < 1 spectrum independent of wg inthe UVand o kO
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Effective graviton portal from perturbative computation

Graviton portal from effective gravitational interaction
to small metric perturbations

Juv = TNuv oK 2h,u1//MP

1 1
L kY pv KV _ 9HGaY G — gHv | Z 9o _

=» consider massless gravitons (perturbations) coupled to 0 > p? _
stress-energy and compute the amplitude of the process Z IM,)? = = x Z %|P3“|2
v=1 MP -

v=1

Spin-2 Portal Dark Matter, Bernal, Dutra, Mambrini, Olive, Peloso, Pierre, 1803.01866
Gravitational Production of Dark Matter during Reheating, Mambrini, Olive, 2102.06214

Gravitational portals in the early Universe, SC, Mambrini, Olive, Verner, 2112.15214
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Boltzmann approach

Transition amplitude computed perturbatively

o X

Inflaton as a coherently oscillating N .
homogeneous condensate

folK 1) = (2m)*ny(£)5) (K7) vy

Post-inflation background oscillations

O(t)P(t) = O(t) Y P

v#0

=» each Fourier mode can contribute to
the transition amplitude
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Short wavelength modes from Boltzmann approach
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Short wavelength modes from Boltzmann approach

8X Ofy ~=mMP?_ vw
g =3 e (%5 —#) (L2400

A+ Saugs) 3(1+3wy)

O ams,\ 20-3wy) e :ll)‘( Z(1—3wg) ) 2k
f ¢ 2n|2 ( ) )b
LU 4|3wy — 1 Z Lo Vaemg,a

| (( 2 ) < 2%
X0 = =
(e 1/(1‘6777,';0“

- for wy < 1/3 same stationary phase contribution as in the Bogoliubov approach
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Short wavelength modes from Boltzmann approach

8X Ofy ~=mMP?_ vw
g =3 e (%5 —#) (L2400

S(1+Swy) 3(1+3wy)

97 ams,\ 2Za—3wy) 2 :ll)‘( (1—3w,) ) 2k
f ¢ 2n|2 ( ) )b
(k,a) = 4|3wy — 1 Z 7.l Vaemg,a
1

( ( " ) < o
RE1Y =— g
Ue I/(Le’ln¢a‘

=» recover the well known k‘9/2 behavior for Wy = 0
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Spectrum forw =0

m,=0
my=10"*H,
my=10"2H,
it =10"2H,
my=0.1H,

Analytic (k>>k,)

-=:== Analytic (k<<ke, my=0)

010

Generalizing the Bogoliubov vs Boltzmann approaches in gravitational production, Chakraborty, SC, Haque, Maity, Mambrini, 2503.21877
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Short wavelength modes from Boltzmann approach

8X Ofy ~=mMP?_ vw
g =3 e (%5 —#) (L2400

3(1+31u¢,)

e 3(1+3
2(1—31L!d)) Gt uh)

“:—Z|7D2”|2< )2(1 Bwg)

I/ae'nzzd‘

-» for w, > 1/3 negative spectral index but only suppressed higher inflaton Fourier modes contribute
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Spectrum for higher EoS w > 1/3

m,=0 / / 1 m,=0
my=10-H, ) f my=10-H,
my=10"2H, ' | . i my=10"2H,
my=0.1H, 1 1 my=0.1H,
m,=0.3H, : j m,=0.3H,
Analytic (k>>kg) I Analytic (k>>ke)
------ Analytic (k<<ke, m,=0) » 1 r Analytic (k<<ke, my=0)

10—14 L
~ Boltzmann 1 Boltzmann

0.001 0.010 0.100 100 0.001 0.010 0.100 100 1000

Generalizing the Bogoliubov vs Boltzmann approaches in gravitational production, Chakraborty, SC, Haque, Maity, Mambrini, 2503.21877
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Conclusion

Generalize results of scalar gravitational production by including the
Reheating dynamics

Increasing EoS during Reheating leads to flatter spectrum of light scalar
fluctuations (flat spectrum in the limit of kination)

Oscillatory features in the UV tail can be computed using Bogoliubov
transformation

UV tail in the spectrum is independent of the EoS foraw > 1/9

Agreement for the UV tail power-law behavior between the non-perturbative
Bogoliubov approach and the solution to the Boltzmann equation from
perturbative gravitational portal
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Conclusion

Generalize results of scalar gravitational production by including the
Reheating dynamics

Increasing EoS during Reheating leads to flatter spectrum of light scalar
fluctuations (flat spectrum in the limit of kination)

Oscillatory features in the UV tail can be computed using Bogoliubov
transformation

UV tail in the spectrum is independent of the EoS foraw > 1/9
Agreement for the UV tail power-law behavior between the non-perturbative

Bogoliubov approach and the solution to the Boltzmann equation from
perturbative gravitational portal

Thank you'!
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Conformal invariance and gravitational production

Cosmological spacetimes (FLRW) are related to Minkowski by a time-dependent conformal
transformation

G () = @* ()

Under a generic conformal transformation of the metric

Guw|@) — 62Q(x)gw (z)

S = %/d‘lx\/—gTwég“” = /d‘lx\/—g 0Q(z)

For non-minimally

coupled scalar n (6§ —1) (Q'wap',\?au‘,\’_ + xOx) + mix_Z
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Conformal invariance and gravitational production

Cosmological spacetimes (FLRW) are related to Minkowski by a time-dependent conformal
transformation

G () = @* ()

Under a generic conformal transformation of the metric

Guw|@) — 62Q(x)gw (z)

S = %/d‘lm\/—gTwég‘“’ = /d‘lx\/—g 0Q(z)

- — p

For a massless spin-1 vector field For a massive spin-1/2 fermion field
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Asymptotic adiabatic modes and mixing of frequencies

How to track the excitations of the fields due to expansion ?

=» consider asymptotic early and late times, for which the comoving frequency is slowly varying

IN e~ 1S wi(
X,; (n) ~

n')

2wy (1)
e—i S7dn’ w(

n’)

X2 () ~
2w (1)

wi.(n)
wi(n)

< 1| (n— £oo0) asymptotic adiabatic condition

=» at intermediate times, write the mixing of positive and negative frequency modes

X%N( ) =

k(1)

v 2wk(n)

1 e—z’ S wi(7)dr +

Br(n)

loe() 2 — |Be(n)]? = 1

; i [ wi(T)dT

e
2wi(n)

CCR preserved by EOM
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Mode functions during and after inflation (IR)

Massless scalar mode in de Sitter Massless scalar mode during Reheating

e—ikn ; ; s 1 il —
;w9m>=iﬁf[1‘ e XPm) = | 2Ot K (k)

K are modified Bessel function with

3 (1 —wy) (1 +wg)

"= 3l asug)| P (1 3wy)

Massive scalar mode in de Sitter No generic solution for arbitrary
EoS and for massive scalar
1 Vg o 1 =» Use a WKB approximation :
X" (n) = Y= AT L (k) - PP

2w (n)
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Short wavelengths spectrum for w=1/3

m,=0

m=10H,
my=10"2H,
=182 H,

mX=0.1He

Analytic (k>>k)
— - Analytic (k<<ke, m,=0)

Boltzmann

0010  0.100 100 1000

- Technical University of Munich



UV and IR modes contributions to Reheating

Determine the contribution to radiation bath from gravitational production at the end of reheating

4 ke kg 5 kPlanck k.3 5
PRO :/k kaz‘mdk*‘/k ﬁ‘ﬁkfuvdk

RH

104! ] Bogoliubov Boltzmann
we | Tru (GeV)|we | Tru (GeV)
3/5[1.12 x 10*{3/5(9.40 x 10~*
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Generalizing the Bogoliubov vs Boltzmann
approaches in gravitational production,
Chakraborty, SC, Haque, Maity, Mambrini,
2503.21877
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Primordial GWs constraints
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Primordial GWs strength as function of its frequency f. Blue curves fix §, = 0 and Red curves fix Ty = 300TeV

for k in [6,20]. The sensitivity of several future GWs experiments are shown.




Primordial GWs constraints
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Reheating temperature from gravitational portals as
function of k, for different &,

=» GWs leave the same imprint as free-streaming dark
radiation on CMB

The case of minimal gravitational reheating is excluded
by the CMB + BBN bound of Q2,,4? < 1079 from excessive
GWs as dark radiation

=» The constraint is relaxed when radiation production is
increased by non-minimal gravitational interactions § >0

Gravity as a Portal to Reheating, Leptogenesis and Dark Matter, Barman, SC,
Co, Mambrini, Olive, 2210.05716




Primordial GWs constraints
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=> An important part of the parameter space for
. . . . Y reheating could be probed by future GWs experiments
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Done more generically in Measuring Inflaton Couplings via Primordial

) o Gravitational Waves, Barman, Ghoshal, Grzadkowski, Socha,
Reheating temperature from gravitational portals as 2305.00027

function of k, for different &,




Bogoliubov approach with non-minimal couplin
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Diagram illustrating the dependence of the produced comoving number density spectrum Nk on non-minimal
coupling & as a function of rescaled horizon modes momenta

From A New Window into Gravitationally Produced Scalar Dark Matter, Garcia, Pierre, Verner, 2305.14446
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Isocurvature perturbations

Starobinsky
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DM isocurvature power spectrum for different inflaton-DM couplings with my/Hend = 1072

From Isocurvature Constraints on Scalar Dark Matter Production from the Inflaton, Garcia, Pierre, Verner, 2303.07459




Starobinksy and a-attractor models

Inflation driven by an homogeneous scalar field ¢ in the potential | V(¢) = AM} [\/_tanh (

)]
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=» determined by the CMB scalar power spectrum
amplitude Ag
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- PLANCK measurements give|\ ~ 10~ !|for k = 2
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~10 —5 0
é/Mp Reheating and Post-inflationary Production of Dark Matter, Garcia,
Kaneta, Mambrini, Olive, 2004.08404

Inflaton potential for T-models and for different values of k.

Universality Class in Conformal Inflation, Kallosh and Linde, 1306.5220

- Technical University of Munich
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Inflaton perturbations from gravity

Looking at inflaton perturbations during inflation Mode equation in (quasi)-de Sitter background

X (k2 +a2mi — Gega’H? — —) X =0 - " + (k2 —
a

X = ado

=» Near constant
superhorizon (IR) modes of
inflaton perturbations

Simon Clérv - Technical University of Munich



Inflation fluctuations and Cosmological perturbations

Scalar perturbations during slow-roll Py
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Super-horizon scales
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near scale-invariant spectrum
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Tensor perturbations during slow-roll

ds®* = a*(n) [dn2 — (6:5 + iL;";T da:idxj]

Predicted amplitude of primordial GW spectrum

Simon Clérv - Technical University of Munich



Parametric resonances

Time dependent background coupled to fields can lead to parametric resonance or tachyonic instability
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Instabilities in the colored regions

=» increasing occupation number of the modes

Freeze-in from preheating, Garcia, Kaneta, Mambrini, Olive, Verner, 2109.13280
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Preheating through non-perturbative processes

10
8 :
| 6! i ‘
4 :
2 Y
25 5.0 75 100 125 15.0 17.5 200 -

Instabilities in the colored regions

=

o
o
o
1

Stochastic
resonance

-

, Lattice
, Pert.

Energy densities p(a) (GeV)*

=

o
[
N
1

=> number of occupation increasing

Xk X exp |xt]

Preheating corresponds to resonances and exponential production

/

‘
I
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0

161 162
a(ﬁ)/aend

=

For large couplings, reach a regime of large backreactions of the fields on the background =» Lattice

Freeze-in from preheating, Garcia, Kaneta, Mambrini, Olive, Verner, 2109.13280



https://inspirehep.net/literature/1932636
https://inspirehep.net/authors/1327985
https://inspirehep.net/authors/1078184
https://inspirehep.net/authors/1019683
https://inspirehep.net/authors/994945
https://inspirehep.net/authors/1813573
https://arxiv.org/abs/2109.13280

Numerical Lattice simulations

E—

CosmoLattice

The art of simulating the early Universe, Figueroa, Florio, Torrenti, Valkenbug, 2006.15122

Cosmolattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe,
Figueroa, Florio, Torrenti, Valkenbug, 2102.01031
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Inflation self-fragmentation
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10788

— pss (particles)
— ps (total)

10—54 L

10—57 L

[3{1 \.-] s:(plmu/“)oy“

107%F

_, 3 6 10
= 0.6} ] a/aena [x10%]
704}

Oeff Tru
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From Garcia, Gross, Mambrini, Olive, Pierre, and Yoon, 2308.16231
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Weak Field Gravity and gravitons

In the weak field limit of the gravity EFT, we assume that we can expand the local metric field around Minkowski

2
I = N + Mphw/ and  |hu| < Mp

1 .
We are free to fix the gaugeas ~ J,h", — §3Vh)‘ — (harmonic or de Donder gauge)

Linearized Einstein equations reduce to the wave equation DhW - =

v
Mp "

Expanding EH action with the matter action at second order in the metric perturbation we have the following
Lagrangian density for the canonical gravitons

1 1
V9L = SO R — 203k

One can extract the Green function, and the Feynman
propagator for the massless graviton




Gravitational portals

T8
— Bj M4
P

for spinj=0, %2 DM final state

R;(T)

See Spin-2 Portal Dark Matter, Nicolas Bernal, Maira Dutra, Yann Mambrini,
Keith Olive, Marco Peloso, 1803.01866
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Gravitational portals in the early Universe, SC, Mambrini, Olive, Verner, 2112.15214
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Observable signal of effective gravitational interaction

and depends on the details of reheating

- Look at particle origin for stochastic GWs background that generates a spectrum at high frequencies,

34

n=2
Tyn = 10 GeV,
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Graviton bremsstrahlung
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Probing Reheating with Graviton Bremsstrahlung,
Bernal, SC, Mambrini and Xu, 2311.12694
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Direct gravitons production

Minimal production of prompt gravitational waves
during reheating, Choi, Ke, Olive, 2402.04310


https://arxiv.org/abs/2311.12694

Dark Matter gravitational production during reheating

Qxh* > 0.12
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Qxh? =0.12 inthe case of a spin 0 DM Qxh? =0.12 inthe case of a spin %2 DM, all
all contributions added contributions added

Gravitational portals in the early Universe, SC, Mambrini, Olive, Verner, 2112.15214



https://inspirehep.net/literature/1998966
https://inspirehep.net/authors/1019683
https://inspirehep.net/authors/994945
https://inspirehep.net/authors/1813573

Radiation production

(/) b ™~
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Gravitational effects provide a maximum
temperature

k=2 k=4 k=6
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which is unavoidable and model independent !

Pend = 1.e+64

BUT late time reheating is still given by the decay A iy 8
1029<

-> No gravitational reheating when | £ = 2
1025
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dend
Gravitational portals in the early Universe, SC, Mambrini, Olive, Evolution of energy densities of the inflaton (blue), radiation from
Verner, 2112.15214 Yukawa decay (orange) and graviton exchange (green)
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Non minimal coupling to gravity

The natural generalization of this minimal interaction is to introduce non-minimal couplings to gravity of
the form :

M} . €¢¢2 Enh?  Ex X7
Lnon——min. — P QzR + E(;S 4 ﬁh =t »CX with Q M2 + M2 + M2
in theJordan frame inflaton SM DM

h/é
Non-minimal couplings induce \
leading-order interactions in
Loon—min. = —05xh*X? = 05,¢*X? — 05,6°h?  the small fields limit, involved
in radiation and DM
in the Einstein frame production

Reheating and Dark Matter Freeze-in in the Higgs-R? Inflation Model, Aoki, Lee, Menkara, Yamashita, 2202.13063
Gravitational Portals with Non-Minimal Couplings, SC, Mambrini, Olive, Shkerin, Verner, 2203.02004

- Technical University of Munich
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Non-minimal coupling : the small-field limit

Vo+ W+ Vx
Q4

M? 1 o
TPR—F §K”g“”8u5i8l,5j —

in Einstein frame

S = /d4:c\/—_g [—

with

9 _ Ep0°  Eph? Ex X ii _ o0logQl dlog ) 6“7 non-canonical
Q° =1+ M2 + M3 + M2 and KY =6 33, S, a7 kinetic term

Impossible to make a field redefinition to the canonical form, unless all three non-minimal couplings vanish

Small-field limit; expand the action in powers of M52
€sl0*  [&nlh®  |Ex| X7 P p P

<1 obtain canonical kinetic term and leading-order interactions

2 2 2 2
Mp Mp Mp induced by the non-minimal couplings

At the end of inflation we have |¢.,q ~ Mp |and the inflaton field is decreasing during the reheating

€ol S 1

Gravitational Portals with Non-Minimal Couplings, SC, Mambrini, Olive, Shkerin, Verner, 2203.02004
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- Small field approximation is valid if : \/|{s| < Mp/(S) with S = ¢, h, X

= At the end of inflation we have ®ena ~ Mp and the inflaton field is decreasing during the reheating

€o| S 1

=» Perturbative computations involve effective couplings in the Einstein frame that depend on all £, the

small value of g‘(p can be compensated by ¢, . Current constraints on ¢, from collider experiments is §, <
015
See Cosmological Aspects of Higgs Vacuum Metastability, Tommi Markkanen, Arttu Rajantie, Stephen Stopyra, (2018)

=» To prevent the EW vacuum instability at inflation scale, we can stabilize through effective Higgs mass
from the non-minimal coupling : ¢, > 10

-» In the case of Higgs inflation, large ¢, is fixed, or can consider conformal coupling for inflation at the pole
See Bezrukov and Shaposhnikov, Phys. Lett. B (2008), and Higgs inflation at the pole, SC, Lee, Menkara 2306.07767
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Non-minimal production of Dark Matter
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Contours respecting ) xh* = 0.12 for spin 0 DM, for different values of €, = €, = &
Both minimal and non-minimal contributions are added.

Gravitational Portals with Non-Minimal Couplings, SC, Mambrini, Olive, Shkerin, Verner, 2203.02004
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Radiation perturbative production
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Pend = 9x10% GeV 4

h g
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Inflaton decay

Energy densities of inflaton (blue), total radiation (red), radiation from Non-minimal coupling

inflaton decay (orange), from scattering mediated by graviton (purple)
and from non-minimal coupling (green), with ¢ =2

Gravitational Portals with Non-Minimal Couplings, SC, Mambrini, Olive, Shkerin, Verner, 2203.02004
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Gravitational reheating

=» Graviton exchange processes can be sufficient to reheat entirely, for
sufficiently steep inflaton potential : &£ > 9

Gravity as a Portal to Reheating, Leptogenesis and Dark Matter, Barman, SC,
Co, Mambrini, Olive, 2210.05716
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=» Requirement of large k can be relaxed adding the L T S U S S

non-minimal contribution to radiation production . S
(but still need k > 4)

inconsistent
reheating

i iy i i oy i o by B B B B B B B B

Reheating temperature from gravitational portals as
function of k, for different &,




