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Main message

Recently, several papers claim that superhorizon curvature perturbations
are not conserved at one loop level.

| point out that the counterterm plays a crucial role in the curvature
conservation at one loop, which was overlooked in the recent papers.
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Cosmological perturbations
We have observed cosmological density perturbations in the Universe.

(Credit: DESI Collaboration/NOIRLab/NSF/AURA/R. Proctor) (Credit: ESA and the Planck Collaboration)

CMB anisotropies

Large Scale Structure

Pe = 2.1 x 1077 (Planck 2018)

— Op/p =~ 107° {: curvature perturbation




Large perturbations on small scales

Large-amplitude perturbations can produce primordial black holes (PBHs)
and secondary GWs.
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Inflaton potentials for large amplification

Single field models for large amplification of density perturbations:

atter region &

step feature

oscillatory feature

Keisuke Inomata (JHU)

\/\ or \l\
bump/dip feature (Ozsoy+ 2018,
or Mishra and Sahni 2019)

Yo

(Starobinsky 1992, lvanov+ 1994,
Inoue and Yokoyama 2001, Kinney 2005)

(Kefala et al. 2020,
Inomata+ 2021)

(R.G. Cai+ 2019, Zhou+ 2020,
Peng+ 2021)
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One loop corrections

Lagrangian: L=- %8%8,@ —V(¢)

E.o.m. for the inflaton fluctuationS' (slow roll-parameter suppressed terms neglected)

7 / (V(n) =90"V/0¢")
8" + 2HY — V25 + a? a ¢2 5¢ SS— Z v(n) (6)"™

beyond liner order corrections
In-in formalism: (ordan 1986, Calzetta and Hu 1987, Weinberg 2005)

(Sorc(mddre () = (0] (Te o 0 Hon)  ()di () (T /e 41 Het") o)

1
(Hint,n = /dg!l? a* My, Hi(s2) = mv(n)(@&ﬁn)

The non-linear corrections to the power spectrum can be characterized with loop diagrams.

Tree One loop

(We will discuss how to introduce the counterterms later.)
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Question this talk addresses

Long mode and short modes are coupled at non-linear level.

E (short mode) ]
IR ‘Ei (long mode)

k_z) (short mode)

PC PBH scale

2x10°9 f———— —- |
CMB/LSS scale

(For experts: | will not discuss the IR divergence issue.)

>k
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Superhorizon curvature evolves?

. (Note: the conservation of linear ¢ is well-known.)
Recent claim:

Superhorizon-limit curvature perturbations are not conserved at one-loop level
in the transitions of slow-roll (SR) — ultra-slow roll (USR) — SR.

e.o.m. \Kl\nﬂaton Kristiano & Yokoyama (2022), followed by
y / o Riotto, Choudhury+, Firouzjahi, Motohashi & Tada,
3Ho +V (¢) =0 (SR) SR Franciolini+, Gianmassimo, Cheng+, Maity+, Davies+
é n 3Hq5 _0 (USR) USR \ (2023), Saburov & Ketov, Ballesteros & Egea (2024), ...
SR
¢ horizon scale at the —>: _» PBH production

beginning of USR

CM_B_scale
- “\E After USR

‘L Before USR

\~——’,

> &k

large scale < » small scale

The one loop corrections can be comparable to the tree-level power spectrum in
some PBH models. — Break down of perturbation theory? — models constrained?

However, this is inconsistent with the separate Universe picture...
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Papers against the recent claim

The papers that have shown the conservation of superhorizon curvature at one loop:

.

Fumagalli (2023, 2024) and Tada et al. (2023) point out the importance of the boundary
terms.

Kawaguchi+ (2024) uses the path integral approach.

Comoving gauge without field redefinition

Inomata (2024) uses the spatially-flat gauge. Spatially flat gauge

On the other hand, Kristiano & Yokoyama (2022) and some following papers claim non-
conservation of curvature by using the comoving gauge with field redefinition.

Due to the formalism differences, it has been unclear where this discrepancy comes from.

This talk will clarify what was overlooked in the recent works claiming the non-conservation.

(spoiler: counterterms were overlooked.)
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Field redefinition of curvature

H 0
(h =——00 = — \/2‘?4 (6¢: inflaton fluctuation in spatially-flat gauge)
eNVlp] (e=-H/H)
Redefined curvature (used in the original paper)

The relation between the original and the redefined curvature:
(2" order, Maldacena 2002)

Cn(n + azcn 2X¢(1) 6 281 (@'Cnaj)w(l))

o
¢ =Cn— f2(Cn) Cn+§¢c C2+ZEC2

- 1 (0606, - 07700 (06,0,(,)

During slow-roll (SR) period, we find
¢ = Cn

Since we discuss whether the superhorizon curvature evolves through SR — non-SR — SR,

we can use {, instead of (.

(See Jarnhus & Sloth 2007 for 3™ order)

Point: {,, is proportional to d¢ in the flat gauge.

Let’s first see the Lagrangian in the flat gauge in the following.
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Lagrangian in flat gauge

(We take the de-Sitter (or decoupling limit) e = 0, where metric perturbations are negligible.)
1
S = /dn dBratl, L= —58“¢8qu — Vi(9).
Vo(9) = V(@) + Ve(9)
7 t N

bare potential , '
P tree-level potential counter potential

We express ¢ = ¢ + 8¢, where the evolution of ¢ is determined by the tree-level potential:
¢ +2H¢ + a*V(1y(¢) =0 Viny($) = d"V ($)/dp™)

Substituting ¢ = ¢ + 8¢, we obtain the Lagrangian for §¢:

Lsy = % [(69")? = (0:d9)?] Z Vo) (¢ $)od" — Vo (1) (0)d¢)
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Hamiltonian for 6¢

L5 = 2— [(6¢") — (0:69)7] Z Vb () (@)00" — Ve (1)(¢)6¢

From this Lagrangian, we can obtain the free and interaction Hamiltonian:

H = HO + Z Hint,n

lV(2) (¢)d¢°

Ho = 2— [(6¢")° + (8;69)%] + 5

(

Hint,n = .

_ 1 _ B
\ EVbxn)(cb)&b” = — [Vi) (@) + Ve, (#)] 96" (others)

We here change the variable from §¢ to {, by using

(o= —L5p= 29
F

v 2e Mp;
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Hamiltonian for {,,

Then, we obtain
H = HO + Hint,3 =+ 7'[int,él + Hc
1

L e 2 .
7‘[0 — 2a2b [C + (azC) ] ) b(T) — —qb(T)/H — /26(’7')MP1
1 1
Hint,3 = 6W3)53C3, Hint,a = ﬂ‘f(4)b4C4,
b2
He = bV, (1)¢ + E‘/c,(2)<2 (The subscript n of ¢, is omitted)

Using these, we can calculate the two-point function:

(Gar)Gar(r) = (OlG4 (G (D) + 21 | [ ar” OICHT )G (7)o (7))

+2Re / T dr’ / T A" (O] (Hine,3(7") (1) (1) — gg(T)cg,(T)Him,g(T’))Hint,s(f”)(f”))0>]

w2t | [ ar 066 (A0

= (2m)°6 ’ﬁP
= (2m) (q+q)q3 (g, 7),

If we neglect H;,¢ 4 and H., we reproduce the results of many previous works.
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Key logic

Once we fix the linear counterterm (Ve (1)) as

(zero tadpole < ¢, >=<§¢ >=0)

. dv
the quadratic counterterm (V. 5y = <y cancel the one loops
9 (2 = “q¢ P

Q+—O—+—x— n

(superhorizon limit
& negligible IR power)
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Determine the counterterms

To determine the counter term, we here impose the zero-tadpole condition, ({,) = 0.

¢(x,7) —Z/dB/dT

/ 2/ 1 IN 21
X [VC,(l)(T ) + Eb (7 )‘/(3) (7 )JC (7 )] (The subscript n of ¢, is omitted)

)¢ 7), ¢y, )]

(C(x,7)=0—= V. q)(7") = —%b2(7’)v(3) (r")oé(r")  (zero-tadpole condition)
4 ; _ T )
¢!, 7) = / (gwl;se"“"‘cﬂﬂ Vi) (7) = Vi (9(7))
a(7)
_/ PPk e k) + G (r)al (~k oZ(r) = (0l(¢! (x T))2\0>=/IwV : dlnkk—g\C( )|
= | e (G (malk) + Gi(T)al (k)] (7)) = ) . AT
. . v,

Point: Once we fix V; (1), Vi (2) =
a(r) dVe, ) (7)

= dV, 1)/d¢ is automatically fixed:

Substitute the zero-
tadpole condition

1% _
C’(z)(T) (/3 dr
_ V@B | Vi) d
2 2Hb(T) dr 3¢ (034(1) = (01(89(x,7))?|0) = b*(7)0Z(T))
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One loop calculation

V(d) (o(7) = ¢s)
(Cq(T)Cqr (7)) = (01¢L(T)¢k (7)]0) + 2Im [/T dr’ (0|¢E ()¢ (7) Hing a (7 )|0>]

Ti

inflaton

\x
slow roll (SR)

non-SR

(unspecified) SR

V2)(¢) = const.

-—— -

+ 2Re

[ ar [ ar Ol ) G T) — I () Hinns () Hint,3(7//)(7//))\0>]

e ——

»

L]
NAVAVAY T
Vi (@) =const. |V é\ w2 | [ dr OICHrIG ) 0)
| i e
H H - (27T) 5(q +q ) q3 [PC,tr(Q7 T) + PC,].VX(g’ T) + P{,va(Qa T) + PC,C(qv T)]
T T > d)
of be

After straightforward calculation, we obtain
3

Peav(q,7) = q—/ dr'b* (") Viay (") Im[Cy (7)€ (7)Re[Gp (7) G (7] 02 (17)

7'('2

i Poann(0:7) = 5[ [ a0t a0 Vi () Vi GG R 1G )

dgk /! / * 124
< / oy IGH (7)) G (Rl ()G ()]

In the next slides, we will see P ..
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Cancellation of one loops

T , , . 272 B . B2 ,
2Im [/7_ dr <O‘CCI]_(T)Cé_/<T)HC(T )|O>] = (277)35(q+q)qi373<’c(q’ 7—) (HC—/d xa (bVC,(l)C"‘EVc,(z)C ))

(2

contributes to Pz .
From the zero-tadpole condition, we have obtained

Vi (T2 (1) o2 (1 a(T)Viay (T 5
Voo (7) = (4)(7) 2( )o¢(T) (231[1)(8() )%Uéqs(ﬂ

(734(7) = (0[(6(x,7))*]0) = b* (1) (7))

After some calculation, we find

d
Eagqb(ﬂ = Ha(T)b(T)QPmr (KR, T)

(see arXiv:2502.08707 for the intermediate steps)

~ da(r) / e a () ()R (1) HV gy () / % Tm[Ch ()¢} ()] RelGi (7) G (7).

i

Substituting this into V (), we obtain

Peolt.r) = 25 [ drt (Vo (') iy ()G (7] RelGy ()65 (7

(assumed P;(k;g) is negligibly small.

— _
Pe1vx(4:7) ql—r>r(l) Peavx(4:7) Namely, P (kg) is not enhanced by the non-SR period.)

The counterterm contribution cancels the other one-loop contributions.
2

. . 7
lim (Cq(7)¢q (7)) = Uim (27)°6(q + 4') =5 [Pe.er (a0, 7) + Peoivx(@, 7) + Pe2vx(a 7) + Pe,e(a, 7))
q—0 q—0 q
2
— lii%(%)?)d(q + q/)qi?)'])g,tr(q, 7)  Conservation of curvature at one loop
q
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Comparison with literature

The role of counterterms has already been stressed in Pimentel, Senatore, and
Zaldarriaga (2013), though they use comoving gauge without the field redefinition.

The counterterm in comoving gauge is introduced as

_ 493 00 4
Stad,counter - /d \/—[ 5]\4\( >+;A<t)}

counterterms

SM* and 8A are determined by the zero-tadpole condition ({) = 0.

Point: /=g and g°° include not only O(¢) but also 0(¢™).

O(6M* ¢?) and O(8A {?) cancel the other one-loop corrections so that the superhorizon
curvature perturbations are conserved at one loop.

See also Inomata (2502.08707) and Fang+ (2025) for the curvature conservation without

the zero-tadpole condition (< §¢ >+ 0), where the backreaction instead plays a crucial
role.

Keisuke Inomata (JHU) arXiv: 2502.12112




Outline

* |Introduction

« Role of counterterms in curvature
conservation

» Key logic
* One loop calculation
* Summary




23/23

Summary

We have shown the conservation of superhorizon curvature perturbations at one loop.

We have clarified the counterterm contribution plays a crucial role in the curvature
conservation, which was overlooked in the recent papers.

Ho = 550 (% + (2.0,
1

6
He =bVe (1)C+ EVC,(z)C

1
Hint,s = = V(3)0°C®, Hinea = ﬂ‘/(4)b4C47

were overlooked!

Under the condition ({) = 0, V 4y is fixed and V, 5y (= dV,1)/d¢) is also fixed.
We have seen VC,(Z)(Z cancel the other loop contributions.

A future direction:

... b3 : : :
The counterterm contribution (& Vc,(3)63) in the one-loop correction to the bispectrum (¢3).
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Case with non-zero tadpole

So far, we have seen the conservation of curvature under ({,,) = (6¢) = 0.

Given that most of the recent works do not take into account the tadpole contribution,
it seems that they implicitly or explicitly impose the zero-tadpole condition.

In the case of {(§¢) # 0 ({{,) # 0), we need to be careful about the tadpole
contribution and the backreaction.

(Fang+ (2025) also discusses the curvature conservation
considering the backreaction in comoving gauge.)

Short summary of 2502.08707

Tadpole contribution

(=0N=H— °¢ H_5—¢
(®) ¢ + (0¢p)<= backreaction

(2m)%3(a+ a') 25 Pog(a,m)  (27)%0(a+ Q)2 Psg.1(4,7) (1 + 7’6%1—10013(‘17”))

Psg,er(q:m)
(60 + (56 (60m)" (1+250)

(Ca(mCar (1)) =

After some calculation, we found

. P5¢,1—100p (Qa 77) <5¢(T/)> (27{)35((1 + q/) 2712-%2 P5¢,tr(Qa 77)
1 = 2— / = et = const.
ql—IE%) P5¢,tr (Q7 77) QB(U) » q—>0 <Cq( )Cq (77)> (92_5(77)) 2 '

(neglected the IR boundary term) .
Conservation of curvature at one loop
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Why controversial?

Separate universe picture (= cosmological principle + causality)

If we consider a very large region (typically larger than Hubble distance), that region

can be regarded as a homogeneous and isotropic Universe with the FLRW metric.
(Sasaki & Tanaka 1998, Wands+ 2000)

Separate universe in single-clock inflation

— Superhorizon-limit curvature perturbations are conserved at non-perturbative level
(Lyth, Malik, and Sasaki, 2004)

Single-clock = The universe evolution is characterized only by ¢ (inflaton field value).

Single-clock during Ultra Slow Roll (USR)?
— Depends on the scale of the region we consider.

For the superhorizon-limit region, which exits the horizon much before the USR, we can
regard that region as a single-clock.

The recent claim violates the separate universe (cosmological principle or causality)?
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