

Universität Zürich

Flavour Deconstructing the Composite Higgs*

1

Marko Pesut University of Zürich

29.05.2025, Padova

*2407.10950 with Sebastiano Covone , Joe Davighi and Gino Isidori

Open questions:

> Origin of neutrinos masses

CP violation in the strong sector

Why BSM?

 $\bullet \bullet \bullet$

Flavour Puzzle

-3	10 ⁻²	10 ⁻¹	1	10 ¹	10 ²	GeV
d						
		l S	C			
			70		t	

[See Gino's & Barbieri's talk]

nich^{uzu}

Flavour Puzzle

 $\mathcal{L}^{d\leq 4} = \mathcal{L}_{\text{gauge}} +$

In the basis where Y_d is diagonal

-3	10 ⁻²	10 ⁻¹	1	10 ¹	10 ²	GeV
d						
		l S	C			
			70		t	

[See Gino's & Barbieri's talk]

Flavour-universal

Yukawa hierarchies

$\Rightarrow U$ $(2)^n$ approx. flavour symmetries

Barbieri et al. 2011, Isidori & Straub 2012, Kagan et al. 2009, Blankenburg et al. 2012

Experimental Constraints on NP Scale

- > No clear direct signals of NP -> Mass gap is a « fact » of life
- > Proton decay, neutrino masses, EDMs, ... -> NP scale could be very high
 - > Flavour probes very high scale too!

Observable

The Hierarchy Problem

[See Rattazzi's & Giudice's talk]

Any heavy NP will destabilize the Higgs mass

$m_H^2 \sim \Lambda_{\rm NP}^2$ vs $m_H = 125 \,{\rm GeV}$

Protection mechanism

Inescapable link between Higgs and Flavour*

*Davighi & Isidori 2023

Joint solution to the Flavour Puzzle and the Higgs hierarchy problem

Mission for the youngsters !

Inescapable link between Higgs and Flavour*

*Davighi & Isidori 2023

Joint solution to the Flavour Puzzle and the Higgs hierarchy problem

Higgs Compositeness

- No elementary
 - scalars
- Higgs emerges as a
- composite pseudo-Goldstone boson of S.S.B
- [See Rattazzi's & Giudice's talk]

Higgs Compositeness

Compositeness scale cuts off quantum corrections to the Higgs potential

> Dugan et al. 1985, Agashe, Contino & Pomarol 2005,...

Higgs Compositeness

Explicit Breaking

Dugan et al. 1985, Agashe, Contino & Pomarol 2005,...

Natural Higgs -> close by NP scale ... What about Flavour ?

Lessons from SM & EXP:

 \blacktriangleright Exact $U(3)^5$ flavour symmetry in the gauge and fermion sectors of the SM Peculiar breaking $U(3)^5 \rightarrow U(2)^n$ w \blacksquare No large breaking of U(2) @TeV & stringent flavour bounds on light families

Back to Flavour

with only
$$y_t \sim \mathcal{O}(1) \longrightarrow Y_u \sim \begin{pmatrix} < 0.01 & 0.04 \\ 1 \end{pmatrix}$$

Any NP at the TeV scale has a highly non-generic flavour structure $\Rightarrow U(2)^n$ approx. flavour symmetry as BSM guide

3rd Gen. is the least constrained!

Back to Flavour

 \blacksquare 3rd gen. NP is the least constrained & $y_{33} \sim 1$

13

UV ... -> $G_{12} \times G_{3+H}^* \rightarrow G_{SM}$

Flavour symmetries *encoded* in the gauge!

*Different options to Flavour deconstruct: Davighi & Isidori 2023 ... or split the families -> Fuentes-Martin & Lizana 2024

[See Gino's & Barbieri's talk]

14

UV ... -> $G_{12} \times G_{3+H}^* \rightarrow G_{SM}$

Flavour symmetries *encoded* in the gauge!

*Different options to Flavour deconstruct: Davighi & Isidori 2023 ... or split the families -> Fuentes-Martin & Lizana 2024

[See Gino's & Barbieri's talk]

Higgs as pNGB

Exploring the Flavor Symmetry Landscape, Glioti et al. 2024 -> Flavour symmetries options to reduce scale of NP

 $SU(3)_c \times Sp(4) \times U(1)_{B-L}^{[3]} \times U(1)_V^{[12]}$ Non-perturbative Dynamics $\int \Lambda_{\rm HC} \int H \sim (\mathbf{2}, \mathbf{2})$ $SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$

 $\mathcal{L} \supset \lambda_L \bar{q}_L^{[3]} \mathcal{O}_R$ –

D.B Kaplan (1991)

$$\times U(1)_{B-L}^{[3]} \times U(1)_{Y}^{[12]}$$

$$+ HC \int H \sim (\mathbf{2}, \mathbf{2})$$

$$U(2)_{R}^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_{Y}^{[12]}$$

Third-family Partial Compositeness:

Flavour for light fam.

 $SU(3)_c \times$

nich^{uzu}

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Gauge contribution $\Delta V(h)_A$

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

$$\left. \frac{c_2}{F^4} \right|_{\text{phys.}}$$

$$\frac{m_h^2}{F^2} \lesssim 0.06$$
 (from Exp.)

$$= \frac{2m_h^2}{v^2} \approx \frac{1}{2} \qquad \text{Natural}$$

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Fermionic resonances

$$\frac{c_1}{F^4} = \frac{N_c}{8\pi^2} \left[\left(\lambda_R^t\right)^2 \kappa_R^t - \left(\lambda_L^t\right)^2 \kappa_L^t \right] \frac{M_f^2}{F^2} + \frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2} \stackrel{\checkmark}{\longrightarrow} \frac{Gauge \ contributions}{32\pi^2} \left(1 - \frac{g_R^2 v_{\Sigma}^2}{2M_{\rho}^2} \right) \frac{M_{\rho}^2}{F^2} + \mathcal{O}\left(g_L g_R, g_L^2\right)$$

Increase size of gauge contribution _____

Avoid suppression / sign flip $\longrightarrow]$

Higgs Potential

$$\rightarrow g_{R,3} = O(1) \gg g_{R,12} \approx g_Y^{SM}$$

(Natural in flavour non-universal scenario !)

$$M_{W_R}^2 = \frac{1}{4}g_R^2 v_{\Sigma}^2 < \frac{1}{2}M_{\rho}^2$$

Phenomenological Constraints

Constraints related to strong dynamics

- Modification of VVh- and VVhh-couplings $F \gtrsim 500 \,\mathrm{GeV}$
- Top partners and heavy resonances searches $M_T \gtrsim 1.5 \text{ TeV} \longrightarrow F \gtrsim 600 \text{ GeV}$ $M_{\rho} \gtrsim 5 \text{ TeV}$
- EWPO (S and T parameters)

$$g_{L,R}^2 \frac{v^2}{M_{\rho}^2} \lesssim 10^{-3}$$

Constraints related to flavoured gauge bosons

- $B \to X_s \gamma$ Bound on Z-pole obs. $\left. \begin{array}{c} v_{\Sigma} \gtrsim 3 \ \mathrm{TeV} \end{array} \right.$
- Bounds on Z masses from FCNC (B_s -mixing)

 $v_\Omega \gtrsim 2.7~{
m TeV}$ (up- vs down-alignment)

• LHC bound from Drell-Yan data

 $v_{\Sigma} \gtrsim 2.0 \text{ TeV}$

Phenomenological Constraints

Typical scenario

- \succ Large 3rd gen. RH gauge coupling: $g_{R,3} = O(1)$
- \blacktriangleright Light Top partner $M_T \approx 2 \text{ TeV}$ and $M_\rho \approx 10 \text{ TeV}$
- > Flavour deconstruction breaking $v_{\Sigma} \approx 3 \text{ TeV}$

All constraints are satisfied and $\delta_{\rm EW} \lesssim 10^{-3}$ $\rightarrow 3\%$ tuning in the potential $\rightarrow O(1\%)$ corrections to Higgs couplings

Allwicher et al. 2022

Naturalness has played a crucial role in NP searches in the past ...

Bounds on flavour violation suggest either a high NP scale or non-generic flavour of BSM Approx. U(2)-preserving + 3rd gen. NP compatible with TeV scale

> Well-motivated *model* for addressing *simultaneously* Higgs & flavour

Conclusion

Null results @LHC put pressure on *natural* solutions to the hierarchy problem...

> Flavour non-universal NP @TeV compatible with exp. bounds & accessible at current and near future exp.

Thank You !

nich^{uzu}

 $+\left\{\overline{q}_L\left[\mathcal{M}_t(p^2)u_L^{\dagger}\Delta_+u_R\right]q_R+\text{h.c.}\right\}$

Fermion

contribution

 $\Delta V(h)_f$

Higgs potential induced at 1-loop

$$q_L \qquad \Pi_1^{t_L}(0) = \frac{F^2}{M_T^2} \left(\lambda_L^t\right)^2 \kappa_L^t$$
$$\left|\mathcal{M}_t(0)\right| = y_t \sqrt{2}F$$

27

Higgs potential induced at 1-loop

Higgs potential induced at 1-loop

Composite Higgs @ HL-LHC and FCC-ee

- $m_* \gtrsim 25 \text{ TeV}$

 $SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_V^{[12]}$ Horizontal Breaking $\langle \Sigma_R \rangle$

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

 $SU(3)_c \times SU(2)_L \times SU(2)_L$

$$U(2)_{R}^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_{Y}^{[12]}$$

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

 $Y_{u,d,e} \sim$

 $\epsilon_{\Omega} = O\left(|V\right|$

 $\epsilon_R = O\left(m_c\right)$

$$\begin{pmatrix} \epsilon_R & \epsilon_\Omega \\ \epsilon_R \epsilon_\Omega & 1 \end{pmatrix}$$

$$\langle cb | \rangle = O\left(10^{-1}\right)$$
$$\langle m_t \rangle = O\left(10^{-2}\right)$$

impact on the Higgs potential

 $+\left\{\overline{q}_L\left[\mathcal{M}_t(p^2)u_L^{\dagger}\Delta_+u_R\right]q_R+\text{h.c.}\right\}$

Fermion

contribution

 $\Delta V(h)_f$

Higgs potential induced at 1-loop

$$q_L \qquad \Pi_1^{t_L}(0) = \frac{F^2}{M_T^2} \left(\lambda_L^t\right)^2 \kappa_L^t$$
$$\left|\mathcal{M}_t(0)\right| = y_t \sqrt{2}F$$

34

Higgs potential induced at 1-loop

35

Higgs potential induced at 1-loop

The Hierarchy Problem

« Beyond QFT / EFT » option

Solution: « Elsewhere »

Multiverse / Anthropics Cosmological evolution (Failure of EFT)

Agrawal et al., 1997 Kawai & Okada, 2011 Giudice et al. 2021 Kephart & Päs 2024, ...

What possible theoretical frameworks can address the Hierarchy problem?

Elementary scalars are protected by symmetry

No elementary scalars

Higgs emerges as a composite pseudo-Goldstone boson of S.S.B

Dugan et al. 1985, Agashe, Contino & Pomarol 2005,...

3rd Gen. is the least constrained

Back to Flavour

Allwicher et al. 2022 D'Ambrosio et al. 2002 Li & Ma 1981

3rd Gen. is the least constrained

Experiments have imposed strong bounds on flavour universal NP (Naturalness (==))

Back to Flavour

Flavour non-universal NP @TeV-scale, mainly coupled to 3rd gen.

Allwicher et al. 2022 D'Ambrosio et al. 2002 Li & Ma 1981

Flavour Non-Universal Composite Higgs

Ingredients:

• Spontaneously broken strong sector: ${\cal G}\equiv Sp$

• Field Content:

Elementary fie	$U(1)_{B-L}^{[3]}$	$U(1)_{Y}^{[12]}$	$SU(2)_L$	
chiral	$q_L^{[12]}$	0	1/6	2
light quarks	$u_R^{[12]}$	0	2/3	1
	$d_R^{[12]}$	0	-1/3	1
chiral	$q_L^{[3]}$	1/6	0	2
3 rd gen. quarks	$q_R^{[3]}$	1/6	0	1
vector-like	F_L^q	1/6	0	2
quarks	F_R^q	0	1/6	1
scalar	Σ_R	0	1/2	1
link fields	Ω_q	-1/6	1/6	1
	Ω_ℓ	1/2	-1/2	1

$$p(4) \xrightarrow{\Lambda_{\mathrm{HC}}} SU(2)_L \times SU(2)_R^{[3]} \equiv \mathcal{H}$$

nich^{uzu}

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Flavour and Higgs Compositeness

OG approach in strongly-coupled EWSB models:

$$\mathcal{L} \supset \frac{\lambda_b}{\Lambda_{\rm UV}^{d-1}} \bar{q}_L \mathcal{O}_S b_R$$

Scalar Op. from the strong sector

 \succ Reintroduces the Hierarchy problem for \mathcal{O}_S^2

 \succ Enforce hierarchy of $\lambda_{t,b}$ in the UV because only one scalar op \mathcal{O}_{S}

- \blacktriangleright Difficult to have $y_t \sim \mathcal{O}(1)$ and $\Lambda_{\rm UV}$ high enough to avoid extra flavour-violation

Wulzer & Panico 2015 Agashe et al. 2005, Rattazzi et al. 2008

Partial Compositeness

Partial Compositeness:

$$|y_q| = \lambda_L^q \lambda_R^{q*} \kappa_{LR}^q \frac{F}{\sqrt{2}M_q}$$

Composite partner

 \succ Fermionic Ops -> No risk of reintroducing a hierarchy problem for \mathcal{O}_F^2

> Partners for each fermions -> can reproduce Yukawa pattern

Kaplan 1991 Wulzer & Panico 2015

Higgs Compositeness

Wulzer & Panico 2015 Agashe et al. 2005,

Higgs Compositeness

$$g_{VVh} = g_{VVh}^{SM} \sqrt{1 - \xi}$$

$$g_{VVhh} = g_{VVhh}^{SM} (1 - 2\xi) \qquad \xi = \frac{v_{EY}^2}{4F}$$

Wulzer & Panico 2015 Agashe et al. 2005,

Particle mass (GeV)

 $G_{12} \times G_{3+H} \longrightarrow G_{SM}$ $SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$ $\langle \Sigma_R \rangle$ $U(1)_{Y}$

Davighi & Isidori 2023 Glioti et al. 2024

 $G_{12} \times G_{3+H} \rightarrow G_{SM}$ $SU(2)_{R}^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_{Y}^{[12]}$ $\langle \Sigma_{R} \rangle \int \langle \Omega \rangle$ $U(1)_{Y}$

Flavour non-universal NP @TeV mainly coupled to 3rd generation

Low compositeness scale -> naturalness

Davighi & Isidori 2023 Glioti et al. 2024

 $Sp(6)_{\text{global}} \longrightarrow SU(2)$

Composite scalars needed for flavour deconstruction breaking

Suppression in light Yukawas from heavy pNGBs -> no VLFs needed

$$(2)_L \times SU(2)_R^{[3]} \times SU(2)_R^{[12]}$$