

PLANK2025 — The 27th International Conference From the Plank Scale to the Weak Scale

Search for Baryogenesis and Dark Matter in Bmeson decays at BaBar

BABAR

garzia@fe.infn.it isabella.garzia@unife.it

Padova, Centro Culturale Altinate San Gaetano 26-30 May, 2025

Outline

- Introduction
 - Baryogenesis and Dark Matter in B decays
- The Babar Experiment
- BaBar analysis searches for Baryogenesis & Dark matter in B-meson decays
 - $B^+ \rightarrow p^+ \psi_D$ PRL **131**, 201801(2023)
 - $B^0 \rightarrow \Lambda^+ \psi_D$ PRD **107**, 092001(2023)
 - $B^+ \rightarrow \Lambda_c^+ \psi_D$ PRD **111**,L031101(2025)
- Results and Interpretations
- Conclusions

Introduction

Standard Model (SM) is extremely successful theory

• It describes and explains what we observe in nature with extraordinary precision

BUT

There are still several things that we do not understand:

- What is Dark Matter (DM)?
- What is Dark Energy?
- How can we explain the Baryon Asymmetry of the Universe (BAU)?
- Origin of the neutrino mass
- Hierarchy problem
- No quantum theory of gravity

Introduction

Standard Model (SM) is extremely successful theory

• It describes and explains what we observe in nature with extraordinary precision

BUT

There are still several things that we do not understand:

- What is **Dark Matter** (DM)?
 - Existence of DM is well established from astrophysical evidence, but its nature in still not known
 - Weakly Interacting Massive Particles (WIMPs) as a favored dark matter candidate, but never observed
 - > Dark sector model:
 - DM could be not just one new particle, but particles from a whole new "dark sector"
 - Dark sector particles could couple weakly to ordinary SM particles

Searches for the Dark Sector at BaBar

Collider experiments

- allow for a direct search of DM through decays to SM particles
- electron-positron collider experiments provide particularly clean environments and are well suited for exploring low-energy signatures of New Physics (NP)

No evidence for any dark sector particles from collider experiments

• Stringent limits on dark sector production

It is interesting to consider models that simultaneously generate a baryon asymmetry and produce the DM abundance in the early Universe

Baryogenesis and Dark Matter from Bmeson decay

Baryon Asymmetry of the Universe (BAU) implies baryogenesis, which requires Sakarov conditions:

- 1. Baryon number violation
- 2. C and CP violation

A.D. Sakarov,JETP 5, (1967) 24

- 3. Deviation from thermal equilibrium
- Conditions are all compatible with SM, but we currently don't have an explanation for the level of baryogenesis required to account for the BAU
- Several New Physics models could introduce necessary ingredients to explain observed level of baryogenesis

B-mesogenesis is a mechanism of baryogenesis which simultaneously explains the baryon asymmetry AND the existence and formation of dark matter

<u>G. Elor, M. Escudero, A.E. Nelson, PRD **99**, 035031 (2019)</u> <u>G. Alonso-Álvarez, G. Elor, M. Escudero, PRD **104**, 035028 (2021)</u>

B-mesogenesis

<u>G. Elor, M. Escudero, A.E. Nelson, PRD **99**, 035031 (2019)</u> <u>G. Alonso-Álvarez, G. Elor, M. Escudero, PRD **104**, 035028 (2021)</u>

- Matter-antimatter asymmetries are generated in the visible and dark sectors with equal but opposite magnitudes: total baryon number is conserved
- The mechanism requires a positive leptonic charge asymmetry in B-meson decays
- New B decay mode into a baryon and missing energy

Observables testable at current and upcoming collider experiments

 $\underline{B} \to \psi + \mathcal{B} + \mathcal{M}$

 $Y_B \propto \sum A_{ll}^q \times \operatorname{Br}(\mathbf{B} \to \psi + \mathcal{B} + \mathcal{M})$

B-mesogenesis: Baryogenesis and DM from Bmeson decay

- Kinematic constraints require that the $\psi_{\rm D}$ mass lies between 0.94 4.34 GeV/c²
- Br > 10⁻⁴, and depends on semileptonic asymmetries A_{11}^{q}
- The type of baryon produced depends on the operator mediating the interaction, leading a variety of final state

Operator and decay	Initial state	Final state	ΔM (MeV)
$\mathcal{O}_{ud} = \psi bud$	B_d	$\psi + n(udd)$	4340.1
$\bar{b} \rightarrow \psi u d$	B	$w + \Lambda(uds)$	4251.2
	B^+	$\psi + p(duu)$	4341.0
	Λ_b	$ar{\psi}+\pi^0$	5484.5
$\mathcal{O}_{u\underline{s}} = \psi bus$	B_d	$\psi + \Lambda(usd)$	4164.0
$\bar{b} \rightarrow \psi us$	B_s	$\psi + \Xi^0(uss)$	4025.0
	B^+	$\psi + \Sigma^+(uus)$	4090.0
	Λ_b	$ar{\psi}+K^0$	5121.9
$\mathcal{O}_{cd} = \psi bcd$	B_d	$\psi + \Lambda_c + \pi^-(cdd)$	2853.6
$\bar{b} \rightarrow \psi c d$	Bs	$\psi + \Xi_c^0(cds)$	2895.0
	B^+	$\psi + \Lambda_c^+(dcu)$	2992.9
	Λ_b	$ar{\psi}+D^0$	3754.7
$\mathcal{O}_{cs} = \psi bcs$	B_d	$\psi + \Xi_c^0(csd)$	2807.8
$\bar{b} \rightarrow \psi cs$	B_s	$\psi + \Omega_c(css)$	2671.7
	B^+	$\psi + \Xi_c^+(csu)$	2810.4
	Λ_b	$\bar{\psi} + D^- + K^+$	3256.2

PEP-II and the BaBar experiment

- Asymmetric e^+e^- collider operating at centerof-mass (cms) energy \sqrt{s} close to 10.58 GeV
- Total integrated luminosity of 514 fb⁻¹ collected, mostly at the Υ(4S) resonance
 - Initial-State-Radiation (ISR): the emission of a photon in the initial state allows to exploit a lower cms energy range, from threshold to √s

Event Reconstruction and Preselection

B-tag: fully reconstructed B in Standard Model decay channel **B-sig**: possible signal, search here for missing mass

B-tag selection criteria:

$$-0.2 \text{ GeV} < \Delta \text{E} < 0.2 \text{ GeV}$$

$$5.2 \; {\rm GeV/c^2} < m_{\rm ES} < 5.3 \; {\rm GeV/c^2}$$

B-sig selection criteria (channel dependent)

 N_{BB} ~2x10⁸ before selection criteria or reconstruction applied

center-of-mass energy within range of the CM beam energy:

energy substituted mass in range close to B mass:

$$\Delta E = E_{beam} - E_{B_{tag}}$$

$$m_{ES} = \sqrt{E_{beam}^2 - p_{B_{tag}}^2}$$

Analysis Strategy

- Use MC to determine signal selection cuts
- Functional forms of fit used to extract selection efficiency and signal resolution for 8 possible masses, and interpolate for any given ψ_D mass
- Scan across the missing-mass distribution with a step size equal to the signal mass resolution
- Perform a profile likelihood fit to determine upper limits on branching fraction for each channels for given mass

Yields determined via data-driven Poisson counting method, with background and signal regions defined from the study of the background and signal MC simulations

Signal Selection

- \mathcal{O}_{ud}
- Only one charged track in the signal side
- Proton PID algorithm used to identify proton candidate
- $v_{BDT} > 0.95$

- \mathcal{O}_{us}
- 2 charged tracks required on the signal side
- $\Lambda \rightarrow p\pi^-$: PID requirements for π and p
- A flight length significance > 1.0
- four-momentum kinematic fit for Λ reconstruction $\chi^2 < 100$

• $v_{BDT} > 0.75$

- \mathcal{O}_{cd}
- 3 charged tracks required on the signal side
- $\Lambda_c^+ \rightarrow pK^-\pi^+$: high quality charged tracks plus PID requirements for kaon and proton

 $v_{BDT} > 0.99$

Further signal and background separation found using a Boosted Decision Tree (BDT) custom to each channel

Further Selections

BDT provides extremely high suppression of remaining backgrounds with little loss of signal efficiency

- 14 inputs, based on overall event shape, B_{tag} properties, Λ_c^+ candidate properties, and additional detector activity in the event
- 32 fb⁻¹ data sample used for input validation and training, then discarded
- Signal samples spanning full kinematically accessible ψ_D mass range

Require $\boldsymbol{v}_{BDT} > \mathbf{0}.99$

Provide signal purity > 99% 0 events pass

Three events close to signal region were examined and found to be consistent with $q\bar{q}$ continuum production of Λ_c^+

FinalAnalysis

Final analysis proceeds by:

- Reconstructing $\psi_{\rm D}$ from missing energy 4-vector on signal side
- Extracting the resolution (σ) and efficiency (ε) from fits to MC, and interpolating the results to the full mass range
- scanning across mass range, with step size equivalent to the resolution at that mass
- estimating signal and backgrounds in data using definitions from MC study

Results

- → World-leading result for $B^0 \rightarrow \Lambda + \psi_D(\mathcal{O}_{us})$, improving on previous result and further constraining model
- ► First direct search for $B^+ \rightarrow p + \psi_D(\mathcal{O}_{ud})$ and $B^+ \rightarrow \Lambda_C^+ + \psi_D(\mathcal{O}_{cd})$ place tight constraints on specific model
- \blacktriangleright Remaining analysis to probe fourth operators \mathcal{O}_{cs}

B-mesogenesis parameter space is vastly reduced / almost excluded for some operators. Need to examine other operators to fully exclude the B-mesogenesis model

Results

Because these analyses are essentially looking for missing mass in the final state, this search can be applied to any such model (eg SUSY)

• Extended search to provide first limit on R-Parity Violation (RPV) SUSY model is described in JHEP 02, (2023) 224

BF upper limits converted to limits on the RPV coupling λ "₁₁₃

Limits on λ''_{123} from BaBar B⁰ $\rightarrow \Lambda + \psi_D$ results reinterpreted in term of B⁰ $\rightarrow \Lambda + \tilde{\chi}_1^0$

Summary and Conclusions

BaBar has conducted a search for signatures in a model which explains both dark matter and baryogenesis using the full data set available on the $\Upsilon(4S)$ invariant mass

- Improved limits on $B^0 \rightarrow \Lambda + \psi_D$ channel
- First direct limits on $B^+ \rightarrow p + \psi_D$ and $B^+ \rightarrow \Lambda_c^+ + \psi_D$
- Large amounts of parameter space reduced; model not fully excluded until all operators are explored
- Results applied to SUSY model, providing first direct constraints on that model too
 - Results can also apply to other models with missing energy in final state
- Upcoming BaBar analysis with $B^+ \rightarrow \Lambda_c \pi + \psi_D$

BABAR still publishing many world-leading results after all these years!!!

bkslide

BaBar Data Sets

- BaBar collected data from 1999-2008
- 432 fb⁻¹ at Υ(4S) ("onpeak") →
 ~ 470 × 10⁶ BB pairs
- 53 fb⁻¹ non-resonant data ("offpeak") collected about 40 MeV the Υ(4S) peak
- 122 × 10⁶ Υ(3S) decays and 99 × 10⁶ Υ(2S) decays collected during last few months of running

Process	Cross section (nb)
bb	1.1
- D D	1.3
light quark	qq ~2.1
$\tau^+ \overline{\tau}$	0.9
e⁺e⁻	~40

$\mathcal{B} \rightarrow \Lambda \psi_{\mathcal{D}}$

Further Selections

Require v_{BDT} > 0. 95
 Provide signal purity > 99%
 47 events pass all cuts

> Require $v_{BDT} > 0.75$

Provide signal purity > 99% 41 events pass all cuts