

Baryogenesis via bubble collisions

Kristjan Müürsepp, in collaboration with

Martina Cataldi (UHH, DESY) and Miguel Vanvlasselaer (Brussels U, IIHE)

Laboratori Nazionali di Frascati (INFN - LNF), Frascati, Italy

Keemilise-Bioloogilise Füüsika Instituut (KBFI), Tallinn, Estonia

PLANCK 2025,

Centro Culturale Altinate San Gaetano

29.05.2025

The asymmetry of the Universe

The Universe contains more matter the antimatter as evidenced by the structure around us.

This can be observed in two equivalent ways:

These values are inferred independently from

- 1. Enhancement of the odd peaks in CMB
- 2. Abundances of D, 3He during BBN

$$\eta \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \Big|_{0} = (6.21 \pm 0.16) \times 10^{-10},$$

$$Y_{\Delta B} \equiv \frac{n_B - n_{\bar{B}}}{s} \Big|_{0} = (8.75 \pm 0.23) \times 10^{-11}$$

Credit: Wikipedia

Sakharov conditions

The observed baryon asymmetry should be created dynamically after inflation:

This can be achieved by the 3 Sakharov conditions:

- 1. Baryon number violation
- 2. C- and CP- violation
- 3. Departure from thermal equilibrium

Credit: Wikipedia

Asymmetrizing within the SM

Can we satisfy Sakharov conditions in the SM...? Not really!

$$\Delta B = \Delta L = \pm 3.$$

- 1. **Sphalerons** conserve B-L but violate B+L with *unsuppressed* decay rate at **high temperatures**. **OK!**
- 2.1 Weak interactions violate C maximally. OK!
- 2.2 The CP-violation from the CKM matrix however is $\sim 10^{-20}$. NOT ENOUGH!
- 3. EWSB does not give a first order phase transition Higgs is too heavy! NOT OK!

Look for explanation in connection with other unsolved problems of the SM.

Neutrinos to the rescue

Baryogenesis can be nicely connected to an explanation of neutrino masses.

- 1. Light neutrino masses from a heavy right-handed neutrino -> seesaw mechanism
- 2. CP violating decays of RHN are out of equilibrium and produce ΔL
- 3. Δ L is converted into Δ B by *sphalerons*.

Features of the THERMAL LEPTOGENESIS scenario:

- 1. RHN has to be very heavy mN> 10^9 GeV => High reheating temperatures needed
- 2. Not many clear experimental signatures.
- 3. CP-asymmetry in the DECAY of on-shell RHN.

LINK WITH PHASE TRANSITIONS.

We use the ideas first outlined in

M.Cataldi and B.Shakya, JCAP 11 (2024) 047

Artwork by Sandbox Studio, Chicago with Ana Kova

The boiling Universe

The key observables that we are interested in:

1. Energy released by the PT

$$\Delta V \equiv V_{\langle \phi \rangle = 0} - V_{\langle \phi \rangle = v} = c_V v^4$$

2. Inverse duration of the PT

$$\beta(T) = T \frac{d}{dT} \left(\frac{S_3}{T} \right)$$

3. Lorentz boost factor of the bubble

$$\gamma_w = 1/\sqrt{1 - v_w^2}.$$

4. Bubble wall thickness
$$l_w = l_{w_0}/\gamma_w$$
 with $l_{w_0} \sim \mathcal{O}(v_\phi^{-1})$

Bubble radius at collision

$$R_{\rm coll} pprox rac{(8\pi)^{1/3} v_w}{H(T_{\rm reh})\beta(T_{\rm reh})},$$

False vacuum True vacuum

Particles popping from bubbles

For that runaway bubbles are needed. We need to limit the *friction* on the bubble walls

$$\mathcal{P}_{\mathrm{LO}} pprox \frac{1}{24} m^2 T^2$$

$$\mathcal{P}_{\mathrm{NLO}} \sim g^2 \, \gamma_w \, m_V \, T^3$$

Dorsch, Huber, Konstandin, JCAP 12 (2018) 034 Bödeker, Moore

Bödeker, Moore *JCAP* **05** (2017) 025 Gouttenoire, Jinno, Sala JHEP 05 (2022) 004 Ai, *JCAP* **10** (2023) 052, JCAP 05, JCAP 05 (2009) 009 Long, Turner, JCAP 11 (2024) 024

Maximum energy for particle production $E \sim \gamma v$

$$\gamma_w^{\rm coll} \sim \frac{2\sqrt{10}M_{
m pl}T_{
m nuc}(8\pi)^{1/3}v_w}{\pi\sqrt{g_\star}\beta T_{
m reh}^2} \approx 5.9 \frac{M_{
m pl}T_{
m nuc}v_w}{\sqrt{g_*}\beta T_{
m reh}^2}$$

Compared to bubble – plasma collision : vev does not have to be related to the heavy particle mass!

Zooming in on the bubble collisions

The number of particles produced per unit area:

$$\frac{N}{A} = \frac{1}{2\pi^2} \int_{p_{\min}^2}^{p_{\max}^2} dp^2 f(p^2) \operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)].$$

A. Falkowski, J.M.No *JHEP* **02** (2013) 034

The imaginary part of the 1PI 2-point Green function

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)] = \frac{1}{2} \sum_{k} \int d\Pi_k |\bar{\mathcal{M}}(\phi_p^* \to k)|^2$$

R. Watkins and L. M. Widrow, Nuc. Phys B **02** (1992) 347

The Fourier transform has been computed numerically:

$$f_{\text{elastic}}(p^2) = f_{\text{PE}}(p^2) + \frac{v_\phi^2 L_p^2}{15m_{\text{t}}^2} \exp\left(\frac{-(p^2 - m_{\text{t}}^2 + 12m_{\text{t}}/L_p)^2}{440 \, m_{\text{t}}^2/L_p^2}\right)$$

$$f_{\text{inelastic}}(p^2) = f_{\text{PE}}(p^2) + \frac{v_\phi^2 L_p^2}{4m_{\text{f}}^2} \exp\left(\frac{-(p^2 - m_{\text{f}}^2 + 31m_{\text{f}}/L_p)^2}{650 m_{\text{f}}^2/L_p^2}\right)$$

(elastic collisions)

(inelastic collisions)

Number of particles produced

H. Mansour, B.Shakya. *Phys.Rev.D* **111** (2025) 2

For very heavy particles only the first part is important

$$f_{\text{PE}}(p^2) = \frac{16v_\phi^2}{p^4} \operatorname{Log} \left[\frac{2(1/l_w)^2 - p^2 + 2(1/l_w)\sqrt{(1/l_w)^2 - p^2}}{p^2} \right]$$

$$\frac{n}{s} = \frac{1}{s(T_{\rm reh})} \underbrace{\frac{N}{A}\bigg|_{N}}_{\text{production per surface}} \times \underbrace{\frac{\text{diffusion}}{3}}_{2R_{\rm coll}}$$

Introducing the heavyweights

We consider the simplified Lagrangian

with the hierarchy

$$\mathcal{L} = Y\phi P_R ar{N}\chi + rac{1}{2}M_N Nar{N} + rac{1}{2}m_\chi \chiar{\chi} + \sum_lpha y_lpha P_R N(ilde{H}ar{L}_lpha) - V(\phi,T)$$

$$m_N \gg m_\chi \gg T_{\rm reh} \sim v \gg v_{\rm EW}$$
.

The yield of the heavy particles produced is given by

$$Y_N^{\rm BC} \simeq 0.012 N |Y|^2 \frac{\beta}{v_w} \left(\frac{\pi^2 \alpha}{30(1+\alpha)g_* c_V} \right)^{1/4} \frac{v}{M_{\rm pl}} \log \left(\frac{2\gamma_w v}{m_\chi + m_N} \right)$$

To avoid **backreaction** one needs

$$\rho_N^{\rm BC} \approx 0.03N|Y|^2 v^5 \frac{T_{\rm nuc}}{T_{\rm reh}^2} \sim 0.03N|Y|^2 v^3 T_{\rm nuc} \ll \Delta V = c_V v^4$$

$$0.03N \times |Y|^2 \frac{T_{\text{nuc}}}{v} \ll c_V$$

which gives a rough constraint

Boosted light(ning) fast particles

Boosted SM particles can also be produced directly via off-shell N

$$\Gamma_{\phi^{\star} \to HL\chi}(p^2) = \frac{2}{(2\pi)^3} \frac{|y|^2 |Y|^2}{32\sqrt{p^6}} \int_{s_{12}^{\min}}^{s_{12}^{\max}} \int_{s_{23}^{\min}}^{s_{23}^{\max}} \frac{m_N^2 (s_{23} - m_L^2 - m_\chi^2)}{(s_{12} - m_N^2)^2 + m_N^2 \Gamma_N^2} \mathrm{d}s_{12} \, \mathrm{d}s_{23} \, .$$

The production is always dominated by the mN resonance!

Low energies $p \ll m_N$: $\Gamma_{\phi \to HL\chi} \simeq 2 \frac{|y|^2 |Y|^2}{1536\pi^3} \frac{p^3}{m_N^2}$ High energies $p \gg m_N$: $\Gamma_{\phi \to HL\chi} \simeq 2 \frac{|y|^2 |Y|^2 p}{512 \pi^2} \frac{m_N}{\Gamma_N}$

CP-violation in the production

We generalize the Lagrangian to include flavours

$$\mathcal{L} = \sum_{iI} Y_{iI} \phi \bar{N}_i P_R \chi_I + \sum_{i\alpha} y_{i\alpha} P_R N_i (\tilde{H} \bar{L}_{\alpha}) + \sum_i M_i^N \bar{N}_i N_i + \sum_I M_I^{\chi} \bar{\chi}_I \chi_I - V(\phi, T) + h.c.$$

Equal and opposite asymmetries produced, but SEPARATED into two sectors

$$\begin{split} \epsilon_{iI} &\equiv \frac{|\mathcal{M}_{\phi \to N_{i} \chi_{I}^{c}}|^{2} - |\mathcal{M}_{\phi \to N_{i}^{c} \chi_{I}}|^{2}}{\sum_{iI} |\mathcal{M}_{iI}|^{2} + |\mathcal{M}_{\bar{i}I}|^{2}} \\ &= \frac{2 \sum_{j,J} \text{Im}(Y_{iI} Y_{iJ}^{*} Y_{jJ} Y_{jI}^{*}) \text{Im} f_{ij}^{(\chi \phi)}}{\sum_{i,I} |Y_{iI}|^{2}} + \frac{2 \sum_{\alpha,j} \text{Im}(Y_{iI} y_{i\alpha}^{*} y_{j\alpha} Y_{jI}^{*}) \text{Im} f_{ij}^{(HL)}}{\sum_{i,I} |Y_{iI}|^{2}} \end{split}$$

$$n_{N_i} - n_{ar{N}_i} = n_{\Delta N_i}^i pprox \sum_I \epsilon^{iI} n_{N_i} \qquad n_{\chi_I} - nar{\chi}_I = n_{\Delta \chi_I} pprox - \sum_i \epsilon^{iI} n_{\chi_I}$$

$$n_{\Delta N} + n_{\Delta \chi} = 0.$$

N talks to the SM => transmits its asymmetry to the SM χ talks to a light dark sector => its asymmetry is secluded from the SM.

Combining CP violation from *production* and *decay*

$$\begin{split} \frac{n_{L_{\alpha}} - n_{\bar{L}_{\alpha}}}{s(T_{\text{nuc}})} &\approx \frac{1}{s(T_{\text{nuc}})} \bigg(\sum_{i} \epsilon^{i\alpha} n_{N_{i}} + \sum_{Ii} \epsilon^{iI} n_{N_{i}} \bigg) \text{Br}[N_{i} \to HL_{\alpha}] \\ &\approx \frac{1}{32\pi} \sum_{i} \frac{n_{N_{i}}}{s(T_{\text{nuc}})} \bigg(\frac{\sum_{I,j \neq i} \text{Im} \big[y_{j\alpha}^{*} y_{\alpha i} Y_{iI} Y_{jI}^{*} \big] \frac{m_{j} m_{i}}{m_{j}^{2} - m_{i}^{2}}}{\sum_{i,\beta} |y_{i\beta}|^{2}} + \\ &\qquad \qquad 2 \times \frac{\sum_{j \neq i,\beta} \text{Im} \big[y_{i\beta} y_{\beta j}^{*} Y_{jI}^{*} Y_{iI} \big] \frac{m_{i} m_{j}}{m_{j}^{2} - m_{i}^{2}}}{\sum_{i,I} |Y_{iI}|^{2}} \bigg) \text{Br}[N_{i} \to HL_{\alpha}] \,, \end{split}$$

$$\leftarrow \text{ Fraction of asymmetry transferred to SM}$$

CP violation from the decay of N

Bubble wall plasma contribution subdominant due to

 $m_N \gg m_\chi \gg T_{\rm reh} \sim v \gg v_{\rm EW}$.

Production via off-shell N

$$\epsilon \equiv rac{|\mathcal{M}|^2_{\phi o ar{\chi} ilde{H} L} - |\mathcal{M}|^2_{\phi o \chi H ar{L}}}{|\mathcal{M}|^2_{\phi o ar{\chi} ilde{H} L} + |\mathcal{M}|^2_{\phi o \chi H ar{L}}}.$$

$$\left[\left(\Gamma_{\phi^{\star} \to HL\chi}^{\epsilon} \right)_{\alpha I} = \frac{1}{(2\pi)^3} \frac{1}{32p^3} \int_{s_{12}^{\min}}^{s_{12}^{\max}} \int_{s_{23}^{\min}}^{s_{23}^{\max}} \left| \mathcal{M}_0^{\alpha I}(s_{12}, s_{23}) \right|^2 \epsilon_{\alpha I}(s_{12}) \mathrm{d}s_{12} \, \mathrm{d}s_{23} \right]$$

The rate of production of the asymmetry

The asymmetry produced as a result:

$$\frac{N_{\Delta L}}{A}\bigg|_{\phi^* \to \chi HL} \approx \int \frac{dp_z d\omega}{(2\pi)^2} \Gamma_{\phi^* \to \chi HL}(p) \big|\phi(p^2)\big|^2 \qquad \Rightarrow n_{\Delta L} \approx \frac{3\beta H}{2} \times \frac{N_{\Delta L}}{A}\bigg|_{\phi^* \to \chi HL}$$

Two special cases of the off-shell production

We focus on 2 generations of N, and assume m1<< m2 and m2 $>> \gamma v$

- a. When $\gamma v \gg m1$:
 - 1. N1 resonance dominates the 1->3 production
 - 2. We recover the CP-violation from the production and decay of an *on-shell* N1.
- b. When $\gamma v < m1$:
 - 1. CP-violation can still occur via off-shell production

$$\left. \frac{N_{\Delta L}}{A} \right|_{\phi \to \chi HL} \approx 10^{-3} \frac{N \times C}{16 \pi^6} (|y|^4 |Y|^2 \frac{m_1}{m_2} + \frac{1}{2} |y|^2 |Y|^4) \frac{p_{\rm max}^4 v^2}{m_1^3 m_2}$$

WASH-OUTS

Thermalization much faster than the inverse decay

$$au_{HL o N} \sim rac{1}{rac{|y|^2}{8\pi} rac{Tm_N^2}{E_{L, ext{initial}}^2}} ext{Exp} iggl[rac{m_N^2}{E_{L, ext{initial}}T} iggr] > au_{ ext{therm}} \sim rac{64\pi^3}{g^4} rac{E_{L, ext{initial}}}{T^2}$$

credit: Walmart

Lepton asymmetry produced is suppressed by

$$Y_{\Delta L}^{
m fin} pprox igg(\Pi_i W_iigg) Y_{\Delta L}^{
m init} \,,$$

$$W_{HL o \phi \chi} pprox \mathrm{Exp} \left[- \frac{|y|^2 |Y|^2 M_{\mathrm{pl}} T_{\mathrm{reh}}}{0.3 \times 64 \pi^5 m_N^2} \right].$$

$$W_{HL\to N} \approx \mathrm{Exp}\bigg[-\frac{2}{g_*^{1/2}}\left(\frac{M_{\mathrm{pl}}}{m_N}\right)\left(\frac{\left|\sum_{\alpha}y_{\alpha 1}\right|^2}{8\pi}\right) \times \Gamma\bigg[\frac{7}{2},\frac{m_N}{T_{\mathrm{reh}}}\bigg]\bigg] \,.$$

Washout can be easily avoided for mN/T>>10

Two birds with one stone: a tale of cogenesis

To explain the coincidence problem we slightly extend the Lagrangian

$$\mathcal{L} \supset y_1 \bar{\chi}(\tilde{\chi}\tilde{\phi}) + y_2 \phi \bar{\chi}\chi + \lambda_{\tilde{\phi}H} |H|^2 \tilde{\phi}^2 - \frac{1}{2} m_{\tilde{\chi}} \tilde{\chi} \bar{\tilde{\chi}} + h.c. \,,$$

Only connection to the SM

Sizeable Higgs portal, (kinetic mixing)

Avoids washout from DS decays to SM

Light from heavy: inverse seesaw mechanism

Introduce lepton number violating terms

$$\mathcal{L} \supset \sum_{I} \lambda_{N,R} \phi N_{R,I} \bar{N}^c_{R,I} + \lambda_{N,L} \phi N_{L,I} \bar{N}^c_{L,I} + \lambda_{\chi,R} \phi \chi_{R,I} \bar{\chi}^c_{R,I} + \lambda_{\chi,L} \phi \chi_{L,I} \bar{\chi}^c_{L,I} \; .$$

This results in the effective Weinberg operator

$$\mathcal{O}_{ ext{Weinberg}} = \sum_{I, lpha, eta} rac{y_{lpha I} y_{eta I}^* (ar{L}_{lpha}^c H) (L_{eta} H) \lambda_{N,R} v}{m_N^2} \,,$$

Giving a mass to the heaviest light neutrino

and the neutrino mass matrix

$$M = egin{pmatrix} 0 & 0 & yv_H & 0 & 0 \ 0 & \lambda_{L,R}v & m_N & 0 & Yv \ y^Tv_H & m_N^T & \lambda_{N,R}v & 0 & 0 \ 0 & 0 & 0 & \lambda_{\chi,L}v & m_\chi \ 0 & Y^Tv & 0 & m_\chi^T & \lambda_{\chi_R}v \end{pmatrix}$$

$$W_{H^cL \to HL^c} pprox \mathrm{Exp} igg[-rac{6}{2\pi^3 g_{\star}^{1/2}} rac{M_{
m pl} T_{
m reh} \sum m_{
u_i}^2}{v_{
m EW}^4} igg] \, .$$

Parameter space for on-shell and off-shell production

Gravitational wave signal

Since we have $\gamma >> 1$, we will use the *bulk flow* model, T.Konstandin, *JCAP* 03 (2018) 047, R.Jinno, M. Takimoto, *JCAP* 01 (2019) 060

$$h^2 \Omega_{\rm GW}^{\rm today} = h^2 \Omega_{\rm peak} S(f, f_{\rm peak})$$
 $S(f, f_{\rm peak}) = \frac{(a+b) f_{\rm peak}^b f^a}{b f_{\rm peak}^{(a+b)} + a f^{(a+b)}},$ $(a, b) \approx (0.9, 2.1),$

energy mostly in the sound waves

Fluid sources GW long after collision

The energy density and the peak frequency are given by

$$\begin{split} h^2 \Omega_{\rm peak} &\approx 1.06 \times 10^{-6} \bigg(\frac{H_{\rm reh}}{\beta}\bigg)^2 \bigg(\frac{\alpha \kappa}{1+\alpha}\bigg)^2 \bigg(\frac{100}{g_{\star}}\bigg)^{1/3} & \text{and} \,, \\ f_{\rm peak} &\approx 2.12 \times 10^{-3} \bigg(\frac{\beta}{H_{\rm reh}}\bigg) \bigg(\frac{T_{\rm reh}}{100 {\rm GeV}}\bigg) \bigg(\frac{100}{g_{\star}}\bigg)^{-1/6} & \text{mHz} \,. \end{split}$$

R.Jinno, M. Takimoto, *JCAP* 01 (2019) 060

Gravitational wave signals for the Einstein Telescope (ET)

Conclusions

- I. Bubble collisions from phase transitions allow to create very heavy particlesII. The same mechanism can also entail CP violation in the productionIII. We have applied this observation to a concrete realization of baryogenesis
 - IV. We computed CP violation both from the on-shell and off-shell production
- V. We start with zero asymmetry =|> the asymmetry is separated into two different sectors.
- VI. Consequently, we also attempt to explain the DM abundance via cogenesis.
- VII. Adding lepton violating terms can be used to also explain the neutrino masses

Thank you for attention!