PLANCK 2025 @ PADOVA Dynamical origin of neutrino masses and dark matter from a new confining sector

> [2403.17488] Phys.Rev.D 110 (2024) 3 w. Juan Herrero-Garcia & Giacomo Landini Maximilian Berbig (BERBIG@IFIC.UV.ES)











Financiado por la Unión Europea NextGenerationEU





Plan de Recuperación, Transformación y Resiliencia

## Neutrino masses from QCD confinement

[Thomas, Xu 1992]



 $\langle \phi_2^0 
angle \simeq y_u rac{\Lambda^3}{m_{\phi_2}^2}$ 

- QCD chiral condensate  $\Lambda^3 \equiv \langle \overline{u}u \rangle \simeq (200 \, \text{MeV})^3$
- inert doublet  $\phi_2$  ( $m_{\phi_2}^2 > 0$ ) à la Type II Seesaw

[Schechter, Valle; Cheng, Li; Wetterich, Lazarides, Shafi 1980]

•  $Z_2$  (*N*,  $\overline{u}$ ,  $\phi_2$  odd) forbids couplings to  $\phi_{SM}$ 

$$m_{\nu} = y_{\nu} y_{u} \frac{\Lambda^{3}}{m_{\phi_{2}}^{2}} \simeq 0.05 \,\mathrm{eV} \cdot y_{\nu} y_{u} \left(\frac{13 \,\mathrm{TeV}}{m_{\phi_{2}}}\right)^{2}$$

### Neutrino masses from QCD confinement

Problem:

- Massless *u*-quark due to  $\mathcal{Z}_2$  symmetry
- Massless *u*-quark ruled out by lattice [Funcke, Urbach et al. 2020] (QCD instantons not enough)
- QCD embedded in larger group: UV instantons
   e.g. SU(3)<sup>3</sup> [Agrawal, Howe 2017]
  - e.g. color-flavor unific. SU(9) [Cordova, Hong, Koren 2024]
- $\overline{u}$  even + dim. 5 operator  $\varphi$  odd [Davoudiasl et al. 2022]

$$c_5 rac{arphi}{\Lambda_{
m UV}} Q \phi_2^\dagger \overline{u}$$

### The basic idea

#### DM

- $\bullet$  use BSM group SU(3)\_D instead of QCD
- $\bullet$  hidden sector (HS) DM with conf. scale  $\Lambda_D$

• 
$$\Lambda_{
m D} \simeq (1-100)$$
 TeV fixed by  $h^2 \Omega_{
m DM} = 0.12$ 

#### Neutrino masses

- easier to couple HS to SM gauge singlets N
- keep low scale approach to  $m_{\nu}$

## Low scale: Inverse Seesaw (ISS)

- $(N_L, N_R^{\dagger})$  Dirac fermion with mass  $M_D = y_D \langle \phi \rangle$  for  $\mu = y_{N_L} \langle \sigma \rangle = 0$
- $(N_L, N_R^{\dagger})$  Pseudo-Dirac fermion for  $\mu \neq 0$

• 
$$m_{\nu} \simeq 0.05 \,\mathrm{eV} \cdot y_{\nu}^2 (rac{\mu}{1 \,\mathrm{keV}}) \left(rac{35 \,\mathrm{TeV}}{M_D}
ight)^2$$
 Why is  $\mu$  so small?



[Mohapatra, Valle 1986]

#### Small $\mu$ from HS confinement





|                | SU(3) <sub>D</sub> | $\mathcal{Z}_4$ | $U(1)_D$ | # |
|----------------|--------------------|-----------------|----------|---|
| $q_L$          | 3                  | — <i>i</i>      | 1        | 1 |
| $q_R$          | 3                  | i               | 1        | 1 |
| $N_L$          | 1                  | i               | 0        | 3 |
| N <sub>R</sub> | 1                  | i               | 0        | 3 |
| L              | 1                  | i               | 0        | 3 |
| e <sub>R</sub> | 1                  | i               | 0        | 3 |
| $\sigma$       | 1                  | -1              | 0        | 1 |

$$\mu_{L,R} \simeq 10 \text{ keV} \cdot y_Q y_{N_{L,R}} \left(\frac{\Lambda_D}{10 \text{ TeV}}\right)^3 \left(\frac{3.1 \times 10^8 \text{ GeV}}{m_\sigma}\right)^2$$

# Particle Spectrum



• meson  $\mathcal{M} = |\overline{q}q\rangle$ 

- single flavor of  $q \rightarrow$  no pNGB  $\pi_{\rm D}$  (overclosure, decays during BBN...)
- $J^p = 0^-$  analogous to  $\eta'$  of QCD
- $m_{\mathcal{M}} \simeq \Lambda_{\mathsf{D}}$
- baryon  $\mathcal{B} = |qqq
  angle$ 
  - spin 3/2 analogous to  $\Delta$  in QCD
  - stabilized by U(1)<sub>D</sub> at renormalizable lvl. (expl. U(1)<sub> $\emptyset$ </sub> at d = 8)
  - mass between  $(N_c, 10)\Lambda_D$ , set  $m_B \simeq 5\Lambda_D$

## Cosmology

**1** RD with  $m_{\sigma} \gg T_{\rm RH} \gg M_D$ ,  $\Lambda_D$ ,  $\sigma$  only acts as portal

 $\begin{array}{l} \textcircled{O} \quad N \text{ produced from SM via } LH \leftrightarrow N \\ \mathcal{T}_N^{\text{in}} \simeq 7 \times 10^7 \, \text{GeV} \cdot \left(\frac{y_\nu}{10^{-4}}\right)^2 \end{array}$ 

• HS q produced from N bath via NN  $\leftrightarrow$  qq, qq  $\leftrightarrow$  gg  $\Lambda_{\rm D} > T_q^{\rm in} > 100 \,{\rm GeV} \cdot (y_q y_N)^{-\frac{1}{3}} \left(\frac{m_{\sigma}}{10^6 \,{\rm GeV}}\right)^{\frac{4}{3}}$ 

 $\begin{tabular}{ll} \bullet & \mathcal{T}\simeq \Lambda_D \mbox{ HS confines} \rightarrow \mbox{ bound states } \mathcal{B}, \mbox{ } \mathcal{M} \mbox{ formed} \end{tabular} \end{tabular}$ 

## Cosmology

•  $\overline{\mathcal{B}}\mathcal{B} \leftrightarrow \overline{\mathcal{M}}\mathcal{M}$  via s-wave  $\rightarrow$  fixes  $\Lambda_D$  for relic abund.

$$\langle \sigma_{\rm D} | \vec{v} | \rangle \simeq \frac{\pi}{\Lambda_D^2} \simeq 2.2 \times 10^{-26} \, \frac{\rm cm^3}{\rm s} \cdot \left( \frac{41 \, {\rm TeV}}{\Lambda_{\rm D}} \right)^2$$

Freezes out at

$$T_{\mathcal{BM}}^{ ext{out}}\simeq rac{m_{\mathcal{B}}}{25}\simeq rac{ega _{ ext{D}}}{5}$$

• HS temp. 
$$=$$
 SM temp. via  $\overline{N}N \leftrightarrow \mathcal{M}$ 

• Freezes out later at

$$T_{\overline{N}N\mathcal{M}}^{\mathrm{out}} \simeq \frac{m_{\mathcal{M}}}{25} \simeq \frac{\Lambda_{\mathrm{D}}}{25}$$

• meson  $\mathcal{M}$  later decays via  $\mathcal{M} \to \overline{N}N$ 

## IDD signal: neutrinos

•  $\overline{\mathcal{B}}\mathcal{B} o \overline{\mathcal{M}}\mathcal{M}$  produces  $\mathcal{M}$  with  $E_{\mathcal{M}}\simeq m_{\mathcal{B}}$ 

•  $\mathcal{M} \to \overline{N}N$  produces N with

$$E_N\simeq \frac{m_B}{2}$$

•  $N \rightarrow \nu_L h_{SM}$  produces  $\nu_L$  with

$$E_{\nu}\simeq rac{m_{\mathcal{B}}}{4}$$



source: PoS QG-PH (2007) 02

$$\Lambda_{\text{D}} > 12 \,\text{TeV} \cdot \sqrt{\frac{0.25 \times 10^{-24} \,\,\text{cm}^3/\text{s}}{\langle \sigma | \vec{v} | \rangle}} \quad \text{[ANTARES, 2015]}$$

## IDD signal: neutrinos

•  $N \rightarrow \nu_L h_{\rm SM}$  produces  $\nu_L$  with

$$E_{
u}\simeq rac{m_{\mathcal{B}}}{4}\simeq rac{5}{4}\Lambda_{
m D}$$

- projection  $\Lambda_D > 54\,\text{TeV}$  [KM3NeT]
- recently observed 220 PeV event requires too large

$$\Lambda_D = 176\,\text{PeV}$$

• event not be explained in this model  $\rightarrow$  astrophysics!



source: IFIC website

## Parameter Space (1): $M_D = 5 \text{ TeV}$



## Summary

•  $\mu > \mathcal{O}(10 \text{ MeV})$  for ISS from confining HS

- $|V_{iN}|^2 \simeq m_
  u/\mu \lesssim \mathcal{O}\left(10^{-9}
  ight)$
- DM: spin 3/2 dark baryon  $\mathcal{B} \leftrightarrow \text{lowest U}(1)_{\not\!\!D}$  operator at d = 8

•  $\Lambda_{
m D} \simeq (1-100)$  TeV fixed by  $h^2 \Omega_{
m DM} = 0.12$ 

• N portal thermalizing HS and SM

• signals at neutrino telescopes [KM3NeT]

#### Outro

Thank you for your time and attention!

# Appendix

Here be dragons

Parameter Space (2) :  $M_D = 54 \text{ GeV}$ 



#### Displaced Vertex Searches for N



#### DM decay via higher dimensional operators

- global  $U(1)_D$  not expected to be exact (quantum gravity)
- spin  $3/2 \leftrightarrow \text{lowest U}(1)_{\noti}$  operator at d = 8

• 3-body decays 
$$\mathcal{B}_{\mu} \to \sum_{i} H_0 Z_{\mu} \nu_i$$
 and  $\mathcal{B}_{\mu} \to \sum_{i} H_0 W_{\mu} I_i$ 

$$\frac{\Lambda_{\rm UV}}{10^{12}\,{\rm GeV}}\gtrsim \left|c_8^{(1)}\right|^{\frac{1}{4}} \left(\frac{m_{\mathcal{B}}}{5\Lambda_{\rm D}}\right)^{\frac{5}{8}} \left(\frac{\Lambda_{\rm D}}{40\,{\rm TeV}}\right)^{\frac{11}{8}} \left(\frac{10^{28}~{\rm s}}{\tau_{\mathcal{B}}}\right)^{\frac{1}{8}}$$

• 2-body decays  ${\cal B}_\mu o {\cal A}_\mu N$  and  ${\cal B}_\mu o {\cal Z}_\mu N$ 

$$\frac{\Lambda_{\rm UV}}{6\times10^{11}\,{\rm GeV}} > \left|c_8^{(2)}\right|^{\frac{1}{4}} \left(\frac{m_{\mathcal{B}}}{5\Lambda_{\rm D}}\right)^{\frac{3}{8}} \left(\frac{\Lambda_{\rm D}}{40\,{\rm TeV}}\right)^{\frac{9}{8}} \left(\frac{10^{28}~{\rm s}}{\tau_{\mathcal{B}}}\right)^{\frac{1}{8}}$$