

Dark matter in QCD-like theories with a theta vacuum Cosmological and Astrophysical implications

Giacomo Landini

29/05/2025

based on Phys.Rev. D 111 (2025) 6, arXiv [**2405.10367**] C. García-Cely, **GL**, Ó. Zapata

Dark Matter evidence

Dark Matter evidence at very different scales

d

Dark Matter evidence

Dark Matter evidence at very different scales

I Galaxies DM-uominaleu

low DM velocity $v \sim \mathcal{O}(10 - 100) \text{ Km/sec}$

Small scale problems

N-body simulations of collision-less DM vs observations

(d < 100 Kpc) Small scales (dwarf galaxies) - low DM velocity DM-dominated $v \sim \mathcal{O}(10-100) \text{ Km/sec}$

Small scale problems

Small scale problems

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave et al. (2001) Vogelsberger et al. (2001)

•••

Reduction of central density at small scales if

 $\sigma(v)/m_{\rm DM} \sim 1 - 10 \ {\rm cm}^2/{
m g}$ for $v \sim \mathcal{O}(10 - 100) \ {
m Km/sec}$

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave *et al.* (2001) Vogelsberger *et al.* (2001)

Reduction of central density at small scales if

 $\sigma(v)/m_{\rm DM} \sim 1 - 10 \ {\rm cm}^2/{
m g}$ for $v \sim \mathcal{O}(10 - 100) \ {
m Km/sec}$

BUT

Clowe *et al*. (2006) Harvey *et al*. (2015) Robertson *et al*. (2017)

Giacomo Landini

Bullet Cluster and other galaxy clusters $\sigma(v)/m_{\rm DM} \lesssim 0.5~{
m cm}^2/{
m g}$ for $v \sim {\cal O}(2000)~{
m Km/sec}$

Elastic Dark Matter scatterings

Spergel and Steinhardt (2000) Dave *et al.* (2001) Vogelsberger *et al.* (2001)

...

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Need for a velocity-dependent self-interaction cross section $\sigma(v)/m_{\rm DM} \sim 1 - 10 \text{ cm}^2/\text{g}$ and $\sigma(v)/m_{\rm DM} \lesssim 0.5 \text{ cm}^2/\text{g}$ for $v \sim \mathcal{O}(10 - 100) \text{ Km/sec}$ for $v \sim \mathcal{O}(2000) \text{ Km/sec}$

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave *et al.* (2001) Vogelsberger *et al.* (2001)

Need for a **velocity-dependent** self-interaction cross section

 $\sigma(v)/m_{\rm DM} \sim 1 - 10 \ {\rm cm}^2/{
m g}$ and $\sigma(v)/m_{\rm DM} \lesssim 0.5 \ {\rm cm}^2/{
m g}$

for $v \sim \mathcal{O}(10 - 100) \text{ Km/sec}$

[Tulin, Yu, Zurek] *(2013)*

SIMP Dark Matter

Dark Matter is in thermal equilibrium with the SM bath in the early Universe

First proposed as *The SIMP Miracle* by Y. Hochberg, E. Kuflik, T. Volanksy, J.G. Wacker (2014)

See also Y. Hochberg,E.Kuflik,H.Murayama T.Volanksy,J.G.Wacker (2014) Y. Hochberg,E.Kuflik,H.Murayama (2015) A.Kamada,H.Kim,T.Sekiguchi (2017) A.Katz,E.Salvioni,B.Shakya (2020) Chu, Nikolic, Pradler (2024)

Strongly coupled theories provide a natural realization of SIMP DM

$$m_{\rm DM} \sim (T_{\rm eq}^2 M_{\rm Pl})^{1/3} \sim {\rm MeV}$$
 - GeV

• • •

SIMP Dark Matter

Dark Matter is in thermal equilibrium with the SM bath in the early Universe

First proposed as *The SIMP Miracle* by Y. Hochberg, E. Kuflik, T. Volanksy, J.G. Wacker (2014)

See also Y. Hochberg,E.Kuflik,H.Murayama T.Volanksy,J.G.Wacker (2014) Y. Hochberg,E.Kuflik,H.Murayama (2015) A.Kamada,H.Kim,T.Sekiguchi (2017) A.Katz,E.Salvioni,B.Shakya (2020) Chu, Nikolic, Pradler (2024)

Strongly coupled theories provide a natural realization of SIMP DM

$$m_{\rm DM} \sim (T_{\rm eq}^2 M_{\rm Pl})^{1/3} \sim {
m MeV}$$
 - GeV

• • •

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave *et al.* (2001) Vogelsberger *et al.* (2001) ...

Strongly coupled theory $\sigma/m_{\rm DM} \sim \alpha_{\rm eff}^2/m_{\rm DM}^3$ $m_{\rm DM} \sim {\rm MeV} - {\rm GeV}$ scale predicted by SIMP DM $\sigma(v)/m_{\rm DM} \sim 1 - 10 {\rm ~cm}^2/{\rm g}$

Typical values required to solve the small-scale problems!

QCD-like theories

We introduce a new dark gauge interaction (e.g a $SU(N_c)$ sector)

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\not{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$
 usually ignored

 $M = \operatorname{diag}(m_1, \cdots, m_{N_f})$ with $N_f \ge 2$

QCD-like theories

We introduce a new dark gauge interaction (e.g a $SU(N_c)$ sector)

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}iDq - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$
 usually ignored

$$M = \operatorname{diag}(m_1, \cdots, m_{N_f})$$
 with $N_f \ge 2$

<u>Gauge confinement</u> $\Lambda_D \gg m_q$

 N_f^2-1 pseudo-goldstone bosons $m_\pi pprox \sqrt{m_q \Lambda_D}$

QCD-like theories

We introduce a new dark gauge interaction (e.g a $SU(N_c)$ sector)

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\not{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$
 usually ignored

$$M = \operatorname{diag}(m_1, \cdots, m_{N_f})$$
 with $N_f \ge 2$

<u>Gauge confinement</u> $\Lambda_D \gg m_q$

 N_f^2-1 pseudo-goldstone bosons $m_\pi pprox \sqrt{m_q \Lambda_D}$

The low-energy dynamics of dark pions is described by ChPT

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0Tr[M\ U + U^{\dagger}M^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

The low-energy dynamics of dark pions is described by ChPT

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M \ U + U^{\dagger}M^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a / f_\pi)$ $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

The low-energy dynamics of dark pions is described by ChPT

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M \ U + U^{\dagger}M^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a / f_\pi)$ $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

First proposed in the context of SIMP DM by

Y. Hochberg,E.Kuflik,H.Murayama T.Volanksy,J.G.Wacker, *The SIMPlest Miracle* (2014)

$$\mathcal{L}_{\rm WZW} = -\frac{N_c}{240\pi^2 f_\pi^5} \epsilon^{\mu\nu\rho\sigma} Tr[\pi \partial_\mu \pi \partial_\nu \pi \partial_\rho \pi \partial_\sigma \pi]$$

DM number changing processes

DM self-interactions

19

Giacomo Landini

SIMP DM ($\theta = 0$)

This framework predicts GeV DM

Perturbativity breakdown

The self-interactions cross section is constant

$$\sigma/m_\pi \propto rac{m_\pi}{f_\pi^4}$$

No SIDM realization

The low-energy dynamics of dark pions is described by

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M_{\theta}U + U^{\dagger}M_{\theta}^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a / f_\pi)$ $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

$$M_{\theta} = e^{i\theta M^{-1}/Tr[M^{-1}]}M$$

The low-energy dynamics of dark pions is described by

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M_{\theta}U + U^{\dagger}M_{\theta}^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a/f_\pi)$ $\Lambda \sim 4\pi f_\pi/\sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

$$M_{\theta} = e^{i\theta M^{-1}/Tr[M^{-1}]}M$$

New odd interactions induced by θ

$$\mathcal{L}_{\theta} = \frac{B_0 \theta}{3f_{\pi} T r M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right)$$

The low-energy dynamics of dark pions is described by

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M_{\theta}U + U^{\dagger}M_{\theta}^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a/f_\pi)$ $\Lambda \sim 4\pi f_\pi/\sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

$$M_{\theta} = e^{i\theta M^{-1}/Tr[M^{-1}]}M$$

New odd interactions induced by θ

$$\mathcal{L}_{\theta} = \frac{B_0 \theta}{3f_{\pi} T r M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10 f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right)$$
$$d_{abc} = \operatorname{Tr}(\{\lambda_a, \lambda_b\}\lambda_c)/4$$

Quark masses determine the meson spectrum

Quark masses determine the meson spectrum

Quark masses determine the meson spectrum

With a proper choice of M the spectrum can account for a resonance

$$m_{\eta} = \left(2 + \frac{v_R^2}{4}\right) m_{\pi} \quad v_R \lesssim 0.1$$

 v_R may originate from θ

Quark masses determine the meson spectrum

 $\boldsymbol{\theta}$ induces the following resonant interactions

Resonant self-scattering

Today in halos — SIDM

Resonant 3-to-2 processes

Similar to resonant triple- α reactions in stellar burning $3\alpha \rightarrow {}^{12}C^* \stackrel{\text{res}}{\simeq} \alpha\alpha \rightarrow {}^{8}Be - - - \bullet {}^{8}Be \alpha \rightarrow {}^{12}C^*$

$$\frac{dY}{dz} \simeq -\langle \sigma_{\eta\pi} v \rangle \frac{sY_{\eta,\mathrm{eq}}}{zH} \left(\frac{Y_{\pi_{\mathrm{DM}}}^3}{Y_{\pi_{\mathrm{DM}},\mathrm{eq}}^2} - \frac{Y_{\pi_{\mathrm{DM}}}^2}{Y_{\pi_{\mathrm{DM}},\mathrm{eq}}} \right)$$

 $\theta \neq 0$ induces velocity dependent resonant self-interaction cross section

 $\theta \neq 0$ induces velocity dependent resonant self-interaction cross section

 $\theta \neq 0$ induces velocity dependent resonant self-interaction cross section

Giacomo Landini

Current work

[2506.xxxxx] in collaboration with C. García-Cely, L. Marsili, O.Zapata
Comments on the results

DM is a pion of a QCD-like dark sector

We reproduce the **relic abundance** with a resonant 3-to-2 process avoiding tensions with BC and perturbativity

We can solve **small-scale problems** with resonant self-scatterings <u>No need for light mediator</u>

Backup slides

NFW profile

Dwarf galaxies

	Name	Discovery	Position	Distance	$r_{ m HL}$
			(b,ℓ)	in kpc	in pc
	Sculptor	1938	$(-83.2^{\circ}, 287.5^{\circ})$	86 ± 6	$283\ \pm 45$
	Fornax	1938	$(-65.7^{\circ}, 237.1^{\circ})$	$147\ \pm 12$	$710~\pm77$
T	Leo I	1950	$(+49.1^{\circ}, 226.0^{\circ})$	$254\ \pm 15$	$251~{\pm}27$
sica	Leo II	1950	$(+67.2^{\circ}, 220.2^{\circ})$	$233\ {\pm}14$	$176\ \pm 42$
las	Ursa Minor	1955	$(+44.8^{\circ}, 105.0^{\circ})$	76 ± 3	$181\ {\pm}27$
C	Draco	1955	$(+34.7^{\circ}, 86.4^{\circ})$	$76\ \pm 6$	$221\ \pm 19$
	Carina	1977	$(-22.2^{\circ}, 260.1^{\circ})$	$105\ \pm 6$	$250\ \pm 39$
	Sextans	1990	$(+42.3^{\circ}, 243.5^{\circ})$	86 ± 4	$695\ \pm 44$

+ ultra-faint dwarf galaxies

Cirelli, Strumia, Zupan (2024)

Resonant SIDM

Ultra-Faint Dwarf galaxies

Data from 23 UFDs associated to the Milky Way DM-dominated (few baryons), $v \sim 10 \ {\rm Km/sec}$ Kamada et al. (2023) Hayashi et al. (2020) 10^{4} 10^{4} 1508.03339 Dwarf LSB Cluster $\langle \sigma v_{\rm rel} \rangle / m \, \left[{\rm cm}^2 / {\rm g} \times {\rm km/s} \right]$ 10^3 10^{3} $\langle \sigma v \rangle / m ~ [\mathrm{cm}^2/\mathrm{g} \times \mathrm{km/s}]$ 10^{2} 10^{2} 2.01. cm2 [8. 10-3-002 8-2 10^{1} 10^{-10} Willman $10^{(}$ 10^{0} Segue 10^{-1} 10^{2} 10^{3} 10^{0} 10^{1} 10^{1} 10^{2} 10^{3} 10^{0} 10^{4} $\langle v \rangle \, [\rm km/s]$ $\langle v_{\rm rel} \rangle ~[\rm km/s]$

Sharp velocity-dependence favour Resonant SIDM models

SIDM vs CDM

Tulin, Yu (2017)

$$R_{\rm scat} = \sigma v_{\rm rel} \rho_{\rm dm} / m \approx 0.1 \ \rm Gyr^{-1} \times \left(\frac{\rho_{\rm dm}}{0.1 \ \rm M_{\odot}/pc^3}\right) \left(\frac{v_{\rm rel}}{50 \ \rm km/s}\right) \left(\frac{\sigma / m}{1 \ \rm cm^2/g}\right)$$

Cross section: observations vs constraints

Positive observations	σ/m	$v_{\rm rel}$	Observation	Refs.				
Cores in spiral galaxies	$\gtrsim 1 \ {\rm cm}^2/{\rm g}$	$30-200 \mathrm{~km/s}$	Rotation curves	[102, 116]				
(dwarf/LSB galaxies)								
Too-big-to-fail problem								
Milky Way	$\gtrsim 0.6~{\rm cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion	[110]				
Local Group	$\gtrsim 0.5 \ {\rm cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion	[111]				
Cores in clusters	$\sim 0.1 \; \rm cm^2/g$	$1500 \ \mathrm{km/s}$	Stellar dispersion, lensing	[116, 126]				
Abell 3827 subhalo merger	$\sim 1.5 \; \rm cm^2/g$	$1500 \ \mathrm{km/s}$	DM-galaxy offset	[127]				
Abell 520 cluster merger	$\sim 1 \; \rm cm^2/g$	$2000-3000~\rm km/s$	DM-galaxy offset	[128, 129, 130]				
Constraints								
Halo shapes/ellipticity	$\lesssim 1 \ {\rm cm^2/g}$	$1300 \ \mathrm{km/s}$	Cluster lensing surveys	[95]				
Substructure mergers	$\lesssim 2 \ {\rm cm^2/g}$	$\sim 500-4000 \; \rm km/s$	DM-galaxy offset	[115, 131]				
Merging clusters	$\lesssim {\rm few} \; {\rm cm}^2/{\rm g}$	2000 - 4000 km/s	Post-merger halo survival	Table II				
			(Scattering depth $\tau < 1$)					
Bullet Cluster	$\lesssim 0.7 \ { m cm}^2/{ m g}$	4000 km/s	Mass-to-light ratio	[106]				

TABLE I: Summary of positive observations and constraints on self-interaction cross section per DM mass. Italicized observations are based on *single individual systems*, while the rest are derived from sets of multiple systems. Limits quoted, which assume constant σ/m , may be interpreted as a function of collisional velocity v_{rel} provided σ/m is not steeply velocity-dependent. References noted here are limited to those containing quoted self-interaction cross section values. Further references, including original studies of observations, are cited in the corresponding sections below.

Tulin, Yu (2017)

Dark photon portal Hochberg et al. (2015)

Gauging a $U(1)_D$ subgroup of unbroken global symmetry $G \to H$ $U(1)_D \supset H$ $SU(N_f)_L \otimes SU(N_f)_R \to SU(N_f)_V$

Dark photon portal Hochberg et al. (2015)

Gauging a $U(1)_D$ subgroup of unbroken global symmetry $G \to H$ $U(1)_D \supset H$ $SU(N_f)_L \otimes SU(N_f)_R \to SU(N_f)_V$

Make sure that:

thermalization is efficient

$$\pi\pi \to \pi V$$

$$\pi\pi \to V \to e^+ e^-$$

are subdominant for DM relic

Allowed by bounds on DP and indirect detection (p-wave) 48

Dark photon portal Work in progress...

• charge assignment 1: $Q_d^{(1)} = \text{diag}(+1, +1, -1);$

• charge assignment 2:
$$Q_d^{(2)} = \text{diag}(+1, -1, -1).$$

NO axial anomaly

O(p^6) operators

$$\frac{1}{(4\pi)^2 f_{\pi}} i\epsilon_{\mu\nu\rho\sigma} V^{\mu\nu} V^{\rho\sigma} \operatorname{Tr}(Q_d) \operatorname{Tr}(Q_d M U^{\dagger}) + h.c.$$

$$\tau_{\rm DM} \sim 1.4 \times 10^{29} \, \sec \left(\frac{0.1}{\sin \theta_{\pi\eta}}\right)^2 \left(\frac{10^{-3}}{\alpha_d}\right)^2 \left(\frac{5 \times 10^{-4}}{\varepsilon}\right)^4 \left(\frac{m_V}{0.5 \, {\rm GeV}}\right)^8 \left(\frac{20 \, {\rm MeV}}{m_{\rm DM}}\right)^9 \left(\frac{0.5}{m_{\rm DM}/f_{\pi}}\right)^6$$

Dark photon portal Work in progress...

$$\Gamma_{\text{scatt}} = \frac{\sum_{\pi=\pi^{\pm}} Q_{\pi}^2}{2} \sum_{f=e^-, e^+} \langle \sigma v(\pi^{\pm} f \to \pi^{\pm} f) \, n_f^{\text{eq}} \rangle = \frac{45\zeta(5)e^2 e_d^2 \varepsilon^2 T^5}{2\pi^3 m_V^4} (g_{e^+} + g_{e^-})$$

$$n_{\pi^{\pm}}(T)\langle \sigma v(\pi^{\pm}\pi^{0} \to \pi^{\pm}\pi^{0}) \rangle \frac{T}{m_{\pi}} \gtrsim H \big|_{T_{\text{fo}}}$$

50

Dark photon portal wor

Work in progress...

charge assignment 2

charge assignment 1:

charge assignment 1:

charge assignment 2

Resonance and θ

Example: M = (m, m, m, 5m)

$$\int m_{\pi}^{2} = 2B_{0}m(1 - 25\theta^{2}/512) \\ m_{\eta}^{2} = 8B_{0}m(1 - 5\theta^{2}/1024) \\ \end{pmatrix} \\ m_{\eta} = \left(2 + \frac{v_{R}^{2}}{4}\right)m_{\pi} \qquad v_{R} \sim 0.4 \ \theta$$

It works for DM relic if $10^{-4} \lesssim \theta \lesssim 0.5$

It works for small scale anomalies if $\theta \sim 10^{-3}$

Resonance and θ

Resonant 3-to-2 processes

$$\begin{cases} sHz \frac{dY_{\pi_{\rm DM}}}{dz} = +2\gamma_D(\eta \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},\rm eq}^2}\right) + \gamma_2(\eta\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} \frac{Y_{\pi_{\rm DM}}}{Y_{\pi_{\rm DM},\rm eq}} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},\rm eq}^2}\right) \\ sHz \frac{dY_{\eta}}{dz} = -\gamma_D(\eta \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM}}^2}\right) - \gamma_2(\eta\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} \frac{Y_{\pi_{\rm DM}}}{Y_{\pi_{\rm DM}}^2} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM}}^2}\right) \right) \end{cases}$$

Neglecting the non-resonant piece of 3-to-2 processes

Giacomo Landini

Condition for chemical equilibrium

The Boltzmann equations simplify!

Condition for chemical equilibrium

Resonant 3-to-2 processes

In this regime the relic abundance is indipendent on $heta, v_R$

Giacomo Landini

Resonant 3-to-2 processes

$$\frac{dY}{dz} = -\langle \sigma_{\eta\pi} v \rangle \frac{sY_{\eta,eq}}{zH} \begin{pmatrix} Y_{\pi_{\rm DM}}^3 \\ Y_{\pi_{\rm DM},eq}^2 \end{pmatrix} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},eq}} \end{pmatrix} \qquad z = m_{\pi}/T$$
$$\langle \sigma_{\eta\pi} v \rangle \propto m_{\pi}^2/f_{\pi}^4$$
$$Y = Y_{\pi_{\rm DM}} + 2Y_{\eta} \simeq Y_{\pi_{\rm DM}}$$

In this regime the relic abundance is indipendent on $heta, v_R$

. In this regime the relic abundance is indipendent on $heta, v_R$

Resonant 3-to-2 processes

$$\frac{dY}{dz} = -\langle \sigma_{\eta\pi} v \rangle \frac{sY_{\eta,\text{eq}}}{zH} \begin{pmatrix} Y_{\pi_{\text{DM}}}^3 - \frac{Y_{\pi_{\text{DM}}}^2}{Y_{\pi_{\text{DM}},\text{eq}}} - \frac{Y_{\pi_{\text{DM}}}^2}{Y_{\pi_{\text{DM}},\text{eq}}} \end{pmatrix} \qquad z = m_{\pi}/T$$
$$\langle \sigma_{\eta\pi} v \rangle \propto m_{\pi}^2/f_{\pi}^4$$

 $Y = Y_{\pi_{\rm DM}} + 2Y_{\eta} \simeq Y_{\pi_{\rm DM}}$

We can integrate the Boltzmann Equation (both analytically and numerically)

$$Y_{\pi_{
m DM}}\simeq Y_{\pi_{
m DM},
m eq}(z_{
m fo})\,$$
 defined as $\,n_{\eta,
m eq}(z_{
m fo})\langle\sigma_{\eta\pi}v
angle\sim H(z_{
m fo})\,$

Giacomo Landini

Explicit benchmark model

Explicit benchmark model

Explicit benchmark model

Co-annihilations

Boltzmann Equation benchmark model

Stable states =
$$\{\pi^0, \pi^{\pm}, K\}$$

Negligible
 $\pi^+\pi^- \to \pi^0\pi^0$ \longrightarrow Chemical equilibrium \longrightarrow $Y_{\pi_{\rm DM}} = Y_{\pi^0} + 2Y_{\pi^{\pm}}$

$$\dot{n} + 3Hn = -\left(n_{\eta}n_{\pi_{\rm DM}}\langle\sigma_{\eta\pi}v\rangle - n_{\pi_{\rm DM}}^2\langle\sigma_{\pi\pi}v\rangle\right) \qquad n = n_{\pi_{\rm DM}} + 2n_{\eta}$$

Detailed balance
$$n_{\eta}^{\text{eq}}\langle\sigma_{\eta\pi}v\rangle = n_{\pi_{\text{DM}}}^{\text{eq}}\langle\sigma_{\pi\pi}v\rangle$$

+
Chemical equilibrium $n_{\eta}/n_{\pi_{\text{DM}}}^2 = (n_{\eta}/n_{\pi_{\text{DM}}}^2)_{\text{eq}}$
 $\gamma \leftrightarrow \pi^0 \pi^0$
 $z = m_{\pi}/T$
 $Y = n/s$
 $\frac{dY}{dz} = -\langle\sigma_{\eta\pi}v\rangle\frac{sY_{\eta,\text{eq}}}{zH}\left(\frac{Y_{\pi_{\text{DM}}}^3}{Y_{\pi_{\text{DM}},\text{eq}}} - \frac{Y_{\pi_{\text{DM}}}^2}{Y_{\pi_{\text{DM}},\text{eq}}}\right)$

Boltzmann Equation benchmark model

All $\eta\pi \to \pi\pi$ involving the different pion species must be taken into account

Boltzmann Equations (numerical)

FIG. 1. Yield as function of z for $\pi_{\rm DM}, \pi^0, \pi^{\pm}, \eta$.

Boltzmann Equations (numerical)

Boltzmann Equations (numerical)

DM self-interactions in halos

$$\pi^{0}\pi^{0} \to \pi^{0}\pi^{0} \qquad \sigma(v) = \sigma_{0} + \frac{128\pi}{m_{\pi}^{2}v_{R}^{2}} \frac{\Gamma^{2}}{m_{\pi}^{2}(v^{2} - v_{R}^{2})^{2} + 4\Gamma^{2}v^{2}/v_{R}^{2}}$$
$$\sigma_{0} = \frac{m_{\pi}^{2}}{128\pi f_{\pi}^{4}}$$

 $\pi^+\pi^- \to \pi^0\pi^0$ Efficient conversions in the Early Universe deplete the $\pi^+\pi^-$ population Negligible amount of π^{\pm} today in halos

 $\begin{array}{ll} \pi^0\pi^0 \to \pi^+\pi^- & \mbox{ Up-scatterings are kinematically forbidden as } \delta \gg v^2 \\ v \lesssim 0.0033 & \longrightarrow & v^2 \lesssim 10^{-5} \\ \mbox{ DM velocity in clusters} \end{array}$

 $\delta\gtrsim 10^{-5}$ in (almost) all the parameter space (plot) $_{_{71}}$

DM self-interactions in halos

r_{ud}

Large theta angle

Large theta angle

$$\mathcal{L}_{\text{eff, odd terms}} = \frac{B_0 \alpha(\theta)}{3f_{\pi}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right)$$

 $m_i \to m_i^{\text{eff}} \equiv \sqrt{m_i^2 - \alpha(\theta)^2}$

The mass of the η' is determined by U(1) axial anomaly practically it is a free parameter $m_{\eta'} = \left(2 + \frac{v_R^2}{4}\right) m_{\pi}$

Gravitational Waves?

Figure by NANOGrav collaboration [2306.16219]

Chiral Phase Transition is first-order if $N_f \geq 3$

The PT critical temperature is $T_* \sim f_\pi \sim \mathcal{O}(10 - 100) \text{ MeV}$

It could be relevant in view of **PTA signal!**

NANOGrav collaboration 2023

Need to introduce extra d.o.f. to study PT dynamics (e.g. Linear sigma model)

A value $\theta \neq 0$ may deeply alter the PT properties!

SM QCD PT becomes first-order when $\theta \sim \pi$ Bai, Chen, Korwar (2023)

DM relic abundance with $\theta \neq 0$

Degenerate quark spectrum gives degenerate pions

$$M = \begin{pmatrix} m & & \\ & \ddots & \\ & & m \end{pmatrix} \qquad \qquad \mathcal{L}_{\theta} = \frac{B_0 \theta}{3f_{\pi} T r M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10 f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right) \\ m_{\pi}^2 = 2B_0 m$$

DM number changing processes

DM self-interactions

DM relic abundance with $\theta \neq 0$

Tension among DM relic and Bullet Cluster bound

Tension among DM relic and perturbativity

The self-interactions cross section is constant

$$\sigma/m_{\pi} \propto rac{m_{\pi}}{f_{\pi}^4}$$

No SIDM realization

DM relic abundance with $\theta \neq 0$

Tension among DM relic and Bullet Cluster bound

Tension among DM relic and perturbativity

The self-interactions cross section is constant

$$\sigma/m_{\pi} \propto rac{m_{\pi}}{f_{\pi}^4}$$

No SIDM realization

Dark Baryons

Chiral rotation

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\mathcal{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$

Choosing TrQ = 1 \longrightarrow Remove $F\widetilde{F}$

Choosing $Q = M^{-1}/TrM^{-1}$ \longrightarrow no linear terms in π in the chiral Lagrangian

Chiral rotation

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\mathcal{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$

More generically one can start from

$$-(\bar{q}_L M e^{i\theta_M} q_R + h.c) + \frac{g^2 \theta_F}{32\pi^2} F \widetilde{F}$$

anomalous rotation

 $q_{L,R} \to e^{\mp i\alpha} q_{L,R} \qquad \longrightarrow \qquad \begin{array}{c} \theta_F \to \theta_F - \alpha N_f \\ \theta_M \to \theta_M + \alpha \end{array}$

$$\theta \equiv \theta_F + \arg \det \mathcal{M} = \theta_F + N_f \theta_M$$
 Invariant

Physical quantity (if all quarks are massive) $\det \mathcal{M} \neq 0$

Mass spectrum benchmark

 $\frac{8\pi_a}{SU(3)_L \otimes SU(3)_R \to SU(3)_V}$

$$\pi^{\pm} = (\pi_1 \pm \pi_2)/\sqrt{2}$$
, $K^{\pm} = (\pi_4 \pm i\pi_5)/\sqrt{2}$, $K^0/\bar{K}^0 = (\pi_6 \pm i\pi_7)/\sqrt{2}$

$$\begin{pmatrix} \pi^{0} \\ \eta \end{pmatrix} = \begin{pmatrix} \cos \theta_{\eta\pi} & \sin \theta_{\eta\pi} \\ -\sin \theta_{\eta\pi} & \cos \theta_{\eta\pi} \end{pmatrix} \begin{pmatrix} \pi_{3} \\ \pi_{8} \end{pmatrix}, \quad \text{with} \quad \tan(2\theta_{\eta\pi}) = \frac{\sqrt{3}(m_{u} - m_{d})}{(m_{u} + m_{d} - 2m_{s})}.$$
(B1)

The masses squared of the mesons are $m_{\pi^{\pm}}^2 = B_0(m_u + m_d)$, $m_{K^{\pm}}^2 = B_0(m_u + m_s)$, $m_{K,\bar{K}^0}^2 = B_0(m_d + m_s)$, while $m_{\pi^0}^2$ and m_n^2 are the eigenvalues of

$$\mathcal{M}_{\pi^{0},\eta}^{2} = \begin{pmatrix} B_{0}(m_{u} + m_{d}) & B_{0}(m_{u} - m_{d})/\sqrt{3} \\ B_{0}/(m_{u} - m_{d})/\sqrt{3} & B_{0}(m_{u} + m_{d} + 4m_{s})/3 \end{pmatrix}.$$
 (B2)

Mass spectrum benchmark

Cubic interactions

$$\mathcal{L}_{\eta\pi\pi}^{(\mathrm{BM1})} = \frac{B_0\theta}{\sqrt{3}f_{\pi}\mathrm{Tr}M^{-1}}\cos(3\theta_{\eta\pi})\eta\pi^0\pi^0$$

$$\tan(2\theta_{\eta\pi}) = \frac{\sqrt{3}(m_u - m_d)}{(m_u + m_d - 2m_s)}.$$

$$\Gamma(\eta \to \text{DM}\,\text{DM}) = \frac{\theta^2 B_0^2 \xi}{24\pi f_\pi^2 m_\eta (\text{Tr}M^{-1})^2} \sqrt{1 - \frac{4m_{\text{DM}}^2}{m_\eta^2}} \, d\eta$$

 $\xi = \cos^2 3\theta_{\eta\pi}$

Details of Symmetry Breaking

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\mathcal{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$

 $U(1)_V \qquad q_{L,R} \to e^{i\alpha} q_{L,R}$

$$U(1)_A \qquad q_{L,R} \to e^{\mp i\alpha} q_{L,R}$$

Anomalous! $\longrightarrow \qquad N_f \alpha F \widetilde{F}$

Resonances in QCD

$$\frac{m(^{8}\text{Be}) - 2m(\alpha)}{m(^{8}\text{Be})} = 0.000012, \qquad \frac{m(^{12}\text{C}^{*}) - m(^{8}\text{Be}) - m(\alpha)}{m(^{12}\text{C}^{*})} = 0.000026.$$

$$\alpha \alpha \rightarrow {}^{8}\text{Be}$$
 followed by ${}^{8}\overline{\text{Be}} \alpha \rightarrow {}^{12}\text{C}^{*}$

Important process in stars

Similar to our resonant 3-to-2 processes

Other examples:

$$\frac{m(\phi) - 2m(K^0)}{m(\phi)} = 0.024, \qquad \frac{m(B_{s1}) - m(B^*) - m(K^0)}{m(B_{s1})} = 0.0011,$$
$$\frac{m(D^{0*}) - m(D^0) - m(\pi^0)}{m(D^{0*})} = 0.0035, \qquad \frac{m(Y(4S)) - 2m(B^0)}{m(Y(4S))} = 0.0019.$$

Instantons

$$\int d^4x F^a_{\mu\nu} \widetilde{F}^{\mu\nu a} = \int d^4x \partial_\mu K^\mu = \int_{S_3} d\sigma_\mu K^\mu$$
 Total derivative

Instantons are (pure-gauge) field configurations which satisfies

$$\int d^4x F^a_{\mu\nu} \widetilde{F}^{\mu\nu a} = \frac{32\pi^2}{g^2} \nu$$
Integer (winding number)

Classical solution to (Euclidean) e.o.m.

Tunnelling among gauge configurations with different winding numbers

Instantons

$$\int d^4x F^a_{\mu\nu} \widetilde{F}^{\mu\nu a} = \int d^4x \partial_\mu K^\mu = \int_{S_3} d\sigma_\mu K^\mu$$
 Total derivative

Theta vacuum
$$|\theta\rangle = \sum_{n=-\infty}^{+\infty} e^{in\theta} |n\rangle$$
,
 \downarrow Vacuum with winding number n

$$\langle \theta_+ | \theta_- \rangle_J = \sum_{\nu} \int \mathcal{D}A \, e^{-\int d^4x \, \frac{1}{4} G \tilde{G} + i\theta \frac{g_s^2}{32\pi^2} \int d^4x \, G \tilde{G} + J \cdot \operatorname{term}} \delta \left(\nu - \frac{g_s^2}{32\pi^2} \int d^4x \, G \tilde{G} \right)$$