BBN disintegration constraints from neutrino injections

PLANCK2025 29th May 2025 Based on 2505.01492

Sara Bianco

In collaboration with: P. F. Depta, J. Frerick, T. Hambye, M. Hufnagel, and K. Schmidt-Hoberg

Many Beyond Standard Model (BSM) scenarios predict the existence of new particles. Their presence can, in general, have an impact on:

- light elements formation during Big Bang Nucleosynthesis (BBN)
- Cosmic Microwave background (CMB)

Many Beyond Standard Model (BSM) scenarios predict the existence of new particles. Their presence can, in general, have an impact on:

- light elements formation during Big Bang Nucleosynthesis (BBN)
- Cosmic Microwave background (CMB)

Very strong constraints arise if they decay into electromagnetic (EM) material (such as photons or charged leptons) and/or hadronic material (such as quarks or gluons). (Kawasaki, Moroi '94; Kawasaki, Kohri, Moroi '04)

Many Beyond Standard Model (BSM) scenarios predict the existence of new particles. Their presence can, in general, have an impact on:

- light elements formation during Big Bang Nucleosynthesis (BBN)
- Cosmic Microwave background (CMB)

Very strong constraints arise if they decay into electromagnetic (EM) material (such as photons or charged leptons) and/or hadronic material (such as quarks or gluons). (Kawasaki, Moroi '94; Kawasaki, Kohri, Moroi '04)

What happens when we inject neutrinos?

Reach their asymptotic values ~ **10 keV**.

Reach their asymptotic values ~ **10 keV**.

Astrophysical observations allow to compare with the SM predictions.

Reach their asymptotic values ~ **10 keV**.

Astrophysical observations allow to compare with the SM predictions.

The great agreement between these values allow us to use BBN to probe new physics!

Reach their asymptotic values ~ **10 keV**.

Astrophysical observations allow to compare with the SM predictions.

The great agreement between these values allow us to use BBN to probe new physics!

Introduction: Big Bang Nucleosynthesis

The presence of additional particles can in general alter Standard BBN predictions.

Introduction: Big Bang Nucleosynthesis

The presence of additional particles can in general alter Standard BBN predictions.

★ Modified Hubble rate: increase in the **energy density** of the universe.

 $H(T) \sim [\rho_{\rm SM} + \rho_{\rm D}(T)]^{1/2}$

Introduction: Big Bang Nucleosynthesis

The presence of additional particles can in general alter Standard BBN predictions.

★ Modified Hubble rate: increase in the **energy density** of the universe.

 $H(T) \sim [\rho_{\rm SM} + \rho_{\rm D}(T)]^{1/2}$

★ Modified time-temperature relation: a dark sector can heat the SM bath.

$$\dot{T} = \frac{\dot{q}_{\rm SM} - 3H(\rho_{\rm SM} + P_{\rm SM})}{d\rho_{\rm SM}/dT}$$

The presence of additional particles can in general alter Standard BBN predictions.

★ Modified Hubble rate: increase in the **energy density** of the universe.

 $H(T) \sim [\rho_{\rm SM} + \rho_{\rm D}(T)]^{1/2}$

★ Modified time-temperature relation: a dark sector can heat the SM bath.

$$\dot{T} = \frac{\dot{q}_{\rm SM} - 3H(\rho_{\rm SM} + P_{\rm SM})}{d\rho_{\rm SM}/dT}$$

★ Baryon-to-photon ratio and N_{eff} change in the **neutrino temperature** or additional **dark** radiation.

$$N_{\rm eff} = \frac{\rho_{\nu}^{\rm th}(t_{\rm rec}) + \rho_{\nu}^{\rm n-th}(t_{\rm rec})}{2\frac{7}{8}\frac{\pi^2}{30} \left(\frac{4}{11}\right)^{4/3} T(t_{\rm rec})^4} \equiv \left[3 + \Delta N_{\rm eff}(t_{\rm rec})\right] \left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}(t_{\rm rec})}{T(t_{\rm rec})}\right)^4$$

The presence of additional particles can in general alter Standard BBN predictions.

★ Modified Hubble rate: increase in the **energy density** of the universe.

 $H(T) \sim [\rho_{\rm SM} + \rho_{\rm D}(T)]^{1/2}$

★ Modified time-temperature relation: a dark sector can heat the SM bath.

$$\dot{T} = \frac{\dot{q}_{\rm SM} - 3H(\rho_{\rm SM} + P_{\rm SM})}{d\rho_{\rm SM}/dT}$$

★ Baryon-to-photon ratio and N_{eff} change in the **neutrino temperature** or additional **dark** radiation.

$$N_{\rm eff} = \frac{\rho_{\nu}^{\rm th}(t_{\rm rec}) + \rho_{\nu}^{\rm n-th}(t_{\rm rec})}{2\frac{7}{8}\frac{\pi^2}{30} \left(\frac{4}{11}\right)^{4/3} T(t_{\rm rec})^4} \equiv \left[3 + \Delta N_{\rm eff}(t_{\rm rec})\right] \left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}(t_{\rm rec})}{T(t_{\rm rec})}\right)^4$$

★ Photo- and Hadrodisintegration!

Introduction: Photodisintegration

Introduction: Photodisintegration

Even after BBN abundances reach their asymptotic values, late EM injections can still alter the abundances!

High-energy photons with energies above the pair-production threshold:

$$E_{e^{\pm}}^{\mathrm{th}} \simeq m_e^2/(22T)$$

are efficiently depleted via *double-photon pair creation* ($\gamma \gamma_{\rm th} \rightarrow e^+ e^-$).

High-energy photons with energies above the pair-production threshold:

 $E_{e^{\pm}}^{\mathrm{th}} \simeq m_e^2/(22T)$

are efficiently depleted via *double-photon pair creation* ($\gamma \gamma_{\rm th} \rightarrow e^+ e^-$).

ightarrow As a result, photodisintegration can only occur if $~E_N^{
m th} \lesssim E_{e^\pm}^{
m th}$

High-energy photons with energies above the pair-production threshold:

 $E_{e^{\pm}}^{\mathrm{th}} \simeq m_e^2/(22T)$

are efficiently depleted via *double-photon pair creation* ($\gamma \gamma_{\rm th} \rightarrow e^+ e^-$).

As a result, photodisintegration can only occur if $~E_N^{ m th} \lesssim E_{e^\pm}^{ m th}$

At these T, BBN has already finished and we can simply factor out the two processes.

	T (keV)	E^{th} (MeV)
D	5.34	2.22
$^{3}\mathrm{H}$	1.90	6.26
³ He	2.16	5.49
⁴ He	0.60	19.81
⁶ Li	3.21	3.70
⁷ Li	4.81	2.47
⁷ Be	7.48	1.59
	<pre>\</pre>	

Publicly available code <u>2011.06518</u>, P. F. Depta, M. Hufnagel, and K. Schmidt-Hoberg.

https://github.com/hep-mh/acropolis/tree/main/acropolis

Similarly to photodisintegration, hadrodisintegration describes the late-time destruction of the light elements, this time driven by hadrons.

Even if few hadrons are injected compared to EM material:

- 1) He-4 destruction cross-section via p/n is ~2 orders of magnitude bigger than D destruction via a photon.
- 2) He-4 is >3 orders of magnitude more abundant than D.

Even if few hadrons are injected compared to EM material:

- 1) He-4 destruction cross-section via p/n is ~2 orders of magnitude bigger than D destruction via a photon.
- 2) He-4 is >3 orders of magnitude more abundant than D.

To track down the hadronic cascade, we have to consider:

★ energy loss due to EM interactions;

Kawasaki, Kohri, Takeo Moroi '04 Kawasaki, Kohri, Moroi, Takaesu, '17

Even if few hadrons are injected compared to EM material:

- 1) He-4 destruction cross-section via p/n is ~2 orders of magnitude bigger than D destruction via a photon.
- 2) He-4 is >3 orders of magnitude more abundant than D.

To track down the hadronic cascade, we have to consider:

★ energy loss due to EM interactions;

Kawasaki, Kohri, Takeo Moroi '04 Kawasaki, Kohri, Moroi, Takaesu, '17

Even if few hadrons are injected compared to EM material:

- 1) He-4 destruction cross-section via p/n is ~2 orders of magnitude bigger than D destruction via a photon.
- 2) He-4 is >3 orders of magnitude more abundant than D.

To track down the hadronic cascade, we have to consider:

- ★ energy loss due to EM interactions;
- ★ hadronic scattering reactions.

Kawasaki, Kohri, Takeo Moroi '04 Kawasaki, Kohri, Moroi, Takaesu, '17

We consider some relic ϕ with lifetime $\tau_{\phi} > 10^4$ s. We are interested in studying the effect of the *neutrino cascade* that follows these decays.

We consider some relic ϕ with lifetime $\tau_{\phi} > 10^4 s$.

We are interested in studying the effect of the *neutrino cascade* that follows these decays.

a) Final-state radiation (FSR)

Decay particle produce a neutrino emitting a Wor Z-boson

 \rightarrow EW shower that leads to EM and HD injections

Final-state radiation (FSR)

Decay particle produce a neutrino emitting a Wor Z-boson

 \longrightarrow EW shower that leads to EM and HD injections

) Thermal scattering

Interactions with neutrino from the background → EM injections

Final-state radiation (FSR)

Decay particle produce a neutrino emitting a Wor Z-boson

 \rightarrow EW shower that leads to EM and HD injections

b) Thermal scattering

Interactions with neutrino from the background → EM injections

c) Non-thermal scattering

Interactions with other non-thermal neutrinos

→ EM and HD injections

) Final-state radiation (FSR)

Decay particle produce a neutrino emitting a Wor Z-boson

 \rightarrow EW shower that leads to EM and HD injections

) Thermal scattering

Interactions with neutrino from the background → EM injections

c) Non-thermal scattering

Interactions with other non-thermal neutrinos

-> EM and HD injections

Background cosmology

The presence of an additional relic will modify the thermal history of the universe.

Conclusions

- \star Thorough study of neutrino injections after BBN.
- ★ For most of the masses considered, the bounds are stronger than the $\Delta N_{\rm eff}$ constraints.
- ★ At high masses, the EW shower dominates the limits.
- ★ Hadron injections boost the bounds by several order of magnitudes.
- ★ @ low lifetimes some assumptions break down
 → other effects have to be considered (e.g. pion induced p/n conversions): stay tuned!

Conclusions

- \star Thorough study of neutrino injections after BBN.
- ★ For most of the masses considered, the bounds are stronger than the $\Delta N_{\rm eff}$ constraints.
- ★ At high masses, the EW shower dominates the limits.
- ★ Hadron injections boost the bounds by several order of magnitudes.
- ★ @ low lifetimes some assumptions break down
 → other effects have to be considered (e.g. pion induced p/n conversions): stay tuned!

Thank you for the attention!

...and check 2505.01492

Backup slides

Photodisintegration

The *late-time* injection of *high-energetic* EM particles into the SM plasma induces an EM cascade that leads to non-thermal parts of the photon, electron, and positron spectra.

- inverse Compton scattering $e^{\pm}\gamma_{\rm th} \rightarrow e^{\pm}\gamma$
- double photon pair creation $\gamma\gamma_{\rm th}
 ightarrow e^+e^-$
- Bethe-Heitler pair creation $\gamma N \rightarrow e^+ e^- N$, with $N \in \{{}^1H, {}^4He\}$
- Compton scattering $\gamma e_{\rm th}^- \rightarrow \gamma e^-$
- photon-photon scattering $\gamma\gamma_{\mathrm{th}}
 ightarrow \gamma\gamma$

									Eth [MeV]
D	+	γ	\rightarrow	p	+	n			2.22
^{3}H	+	γ	\rightarrow	D	+	n			6.26
^{3}H	+	γ	\rightarrow	p	+	n	+	n	8.48
³ He	+	γ	\rightarrow	D	+	p			5.49
³ He	+	γ	\rightarrow	n	+	p	+	p	7.12
⁴ He	+	γ	\rightarrow	^{3}H	+	p			19.81
⁴ He	+	γ	\rightarrow	$^{3}\mathrm{He}$	+	n			20.58
⁴ He	+	γ	\rightarrow	D	+	D			23.84
⁴ He	+	γ	\rightarrow	D	+	$\frac{n}{n}$	+	p	26.07
⁶ Li	+	γ	\rightarrow	$^{4}\mathrm{He}$	+	n	+	p	3.70
⁶ Li	+	γ	\rightarrow	Х	+	^{3}A			15.79
⁷ Li	+	γ	\rightarrow	^{3}H	+	$^{4}\mathrm{He}$			2.47
⁷ Li	+	γ	\rightarrow	n	+	⁶ Li			7.25
7 Li	+	γ	\rightarrow	2n	+	p	+	$^{4}\mathrm{He}$	10.95
⁷ Be	+	γ	\rightarrow	^{3}He	+	$^{4}\mathrm{He}$			1.59
⁷ Be	+	γ	\rightarrow	p	+	⁶ Li			5.61
⁷ Be	+	γ	\rightarrow	2p	+	n	+	$^{4}\mathrm{He}$	9.30

Hadrodisintegration

We consider the following hadrodisintegration processes:

Process	i = n	i = p	Reaction Type
(i, $p_{BG}; 1$)	$n + p_{BG} \rightarrow n + p$	$p + p_{BG} \rightarrow p + p$	elastic
(i, $p_{BG}; 2$)	$n + p_{BG} \to n + p + \pi$	$p + p_{BG} \rightarrow p + p + \pi$	inelastic
(i, $p_{BG}; 3$)	$n + p_{BG} \to n + n + \pi$	$p + p_{BG} \rightarrow p + n + \pi$	inelastic
(i, $p_{BG}; 4$)	$n + p_{BG} \rightarrow p + p + \pi$	$p + p_{BG} \rightarrow n + p + \pi$	inelastic
(i, $p_{BG}; 5$)	$n + p_{BG} \to p + p + \pi$	$p + p_{BG} \rightarrow n + n + \pi$	inelastic

Process	i = n	i = p	Reaction Type
(i, α ; 1)	$n + \alpha_{BG} \to n + \alpha$	$p + \alpha_{BG} \to p + \alpha$	elastic
(i, α ; 2)	$n + \alpha_{BG} \to \mathrm{D} + \mathrm{T}$	$p + \alpha_{BG} \rightarrow \mathrm{D} + {}^{3}\mathrm{He}$	inelastic
(i, α ; 3)	$n + \alpha_{BG} \rightarrow 2n + {}^{3}\text{He}$	$p + \alpha_{BG} \rightarrow p + n + {}^{3}\mathrm{He}$	inelastic
(i, α ; 4)	$n + \alpha_{BG} \rightarrow p + n + T$	$p + \alpha_{BG} \to 2p + T$	inelastic
$(i, \alpha; 5)$	$n + \alpha_{BG} \rightarrow n + 2D$	$p + \alpha_{BG} \rightarrow p + 2D$	inelastic
(i, α ; 6)	$n + \alpha_{BG} \to p + 2n + D$	$p + \alpha_{BG} \rightarrow 2p + n + D$	inelastic
(i, α ; 7)	$n + \alpha_{BG} \to 2p + 3n$	$p + \alpha_{BG} \to 3p + 2n$	inelastic
$(i, \alpha; 8)$	$n + \alpha_{BG} \rightarrow n + \alpha + \pi$	$p + \alpha_{BG} \to p + \alpha + \pi$	inelastic

Hadrodisintegration

In order to account for the effect of the injected hadrons, we must consider energy loss processes.

$$\begin{array}{c}
H_i + e^{\pm} \to H_i + e^{\pm} \\
H_i + \gamma \to H_i' + \pi \\
H_i + \gamma \to H_i + \gamma \\
H_i + \gamma \to H_i + e^{+} + e^{-}
\end{array} \xrightarrow{dE_{H_i}} \frac{dE_{H_i}}{dt} = \left(\frac{dE_{H_i}}{dt}\right)_{\text{Coulomb}} + \left(\frac{dE_{H_i}}{dt}\right)_{\text{Compton}} + \left(\frac{dE_{H_i}}{dt}\right)_{\text{BH}} + \left(\frac{dE_{H_i}}{dt}\right)_{\text{photo-pion}}$$

$$R_{H_i+A_j\to A_k}\left(E_{H_i}^{(\mathrm{in})}, E_{H_i}'; T\right) \equiv \int_{E_{H_i}^{(\mathrm{in})}}^{E_{H_i}'} \underbrace{\Gamma_{H_i+A_j\to A_k}}_{\Gamma_{H_i+A_j\to A_k}} \underbrace{\left(\frac{\mathrm{d}E_{H_i}}{\mathrm{d}t}\right)^{-1}}_{\Gamma_{H_i+A_j\to A_k}} dE_{H_i}$$

for unstable hadrons there is an additional contribution from the decay rate.

$$R^{H_{i}}\left(E_{H_{i}}^{(\text{in})}, E_{H_{i}}'; T\right) \equiv \sum_{j,k} R_{H_{i}+A_{j}\to A_{k}}\left(E_{H_{i}}^{(\text{in})}, E_{H_{i}}'; T\right) \longrightarrow R^{H_{i}}\left(E_{H_{i}}^{(\text{in})}, \tilde{E}_{H_{i}}^{(R=1)}; T\right) = 1$$

Hadrodisintegration

In order to account for the effect of the injected hadrons, we must consider energy loss processes.

Neutrino injections

★ Thermal scattering of the form $\nu\nu_{\rm th} \rightarrow e^+e^-$

Note on thresholds and timescales. In order to inject electron-positron pairs:

$$E_{ee} \sim \frac{m_e^2}{T} \gtrsim 26 \,\mathrm{MeV}\left(\frac{10 \,\mathrm{keV}}{T}\right)$$

For heavier particles we need:

$$E_{\mu\mu/\pi\pi} \sim \frac{m_{\mu/\pi}^2}{T} \gtrsim (1.1/1.8) \text{ TeV} \left(\frac{10 \text{ keV}}{T}\right)$$

for such high E, limits are dominated by FSR!

It can happen that, depending on the energy of the injected neutrino, the scattering time is faster than the Hubble time:

$$t_H \sim \frac{1}{H(T)} \sim \frac{m_P}{T^2} \sim 1 \, s \left(\frac{T}{\text{MeV}}\right)^{-2} \qquad \qquad t_{\text{th}} < t_H \qquad \qquad E \gtrsim 100 \, \text{GeV} \left(\frac{10 \, \text{keV}}{T}\right)^2$$
$$t_{\text{th}} \sim \frac{1}{G_F^2 T^4 E} \sim 10^{-3} \, \text{s} \left(\frac{T}{\text{MeV}}\right)^{-4} \left(\frac{E}{10 \, \text{GeV}}\right)^{-1} \qquad \qquad E \gtrsim 100 \, \text{GeV} \left(\frac{10 \, \text{keV}}{T}\right)^2$$

Neutrino injections

★ Thermal scattering of the form $\nu \nu_{\rm th} \rightarrow e^+ e^-$ We can compute the interaction rate:

$$\Gamma_{ee}(T,E) = \frac{g_{\nu}}{16\pi^2 E^2} \int_0^\infty \mathrm{d}\epsilon \ f_{\nu,\mathrm{th}}(\epsilon) \int_0^{4E\epsilon} \mathrm{d}s \ s \cdot \overline{\sigma_{ee}(s)} \xrightarrow{s \ll m_Z^2} \sigma(s) = \Sigma(s) \frac{G_F^2 s}{6\pi}$$

Assuming for simplicity $m_e = 0$, $\Sigma(s) = \mathrm{const.} \equiv \Sigma_\infty$

$$\Gamma_{ee}(T,E) \stackrel{m_e=0}{\simeq} \frac{7\pi}{90} \Sigma_{\infty} G_F^2 E T_{\nu}^4$$

Let us now introduce the quantity:

$$\mathrm{d}\zeta_{\mathrm{em}} \simeq \frac{E(t)}{E_{\mathrm{inj}}}\Gamma_{ee}(t)\mathrm{d}t$$

as **fraction of EM energy** that is transferred into the plasma in a certain time dt.

A note on model-building

Possible realization of this scenario include:

- ★ Majoron, with loop-suppressed decay into electrons.
- ★ Gauge boson coupled to two sterile neutrinos + seesaw mixing
- ★ Neutral component of a scalar triplet of hypercharge 2

 \star Decay into one neutrino and one DS state is potentially also relevant.

