

Finanziato dall'Unione europea NextGenerationEU

Interplay of vertical and horizontal gauge symmetry for a high-quality axion

Vasja Susič

Laboratori Nazionali di Frascati (LNF), INFN PRIN 2022K4B58X

2025-05-29

Based on 2503.16648 with L. Di Luzio, G. Landini, F. Mescia

PLANCK 2025 — Padova, May 26-30 2025

Motivation — Peccei-Quinn and axions

Strong CP problem:

ightarrow Standard Model (SM) allows the term

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} \bar{\theta} \, \boldsymbol{G}_{\mu\nu} \tilde{\boldsymbol{G}}^{\mu\nu}; \qquad \qquad \bar{\theta} = \theta + \arg \det M_q \tag{1}$$

 \rightarrow Bound from neutron EDM: $\overline{\theta} \lesssim 10^{-10}$. Why is $\overline{\theta}$ so small?

Motivation — Peccei-Quinn and axions

Strong CP problem:

ightarrow Standard Model (SM) allows the term

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} \bar{\theta} \, \underline{G}_{\mu\nu} \tilde{G}^{\mu\nu}; \qquad \qquad \bar{\theta} = \theta + \arg \det M_q \tag{1}$$

 $\rightarrow~$ Bound from neutron EDM: $\ensuremath{\left|\bar{\theta} \lesssim 10^{-10}\right|}$. Why is $\ensuremath{\bar{\theta}}$ so small?

Axion solution: via Peccei-Quinn (PQ) [1, 2, 3, 4]

- (1) Implement a global $\mathrm{U}(1)_{\mathsf{PQ}}$ anomalous under QCD
- (2) Break $U(1)_{PQ}$: low energy theory has a Goldstone boson a the axion

$$\mathcal{L} \supset \frac{\alpha_s}{8\pi} (\bar{\theta} + Na/f_a) \, \boldsymbol{G}_{\mu\nu} \tilde{\boldsymbol{G}}^{\mu\nu} \tag{2}$$

(3) Axion potential \mathcal{V}_a and mass m_a generated by QCD instantons.

$$\mathcal{V}_a(a)$$
 minimum: $\bar{\theta} + N\langle a \rangle / f_a = 0,$ $m_a f_a \simeq m_\pi f_\pi$ (3)

(4) Hence $|\bar{\theta}_{eff} = 0|$ and strong CP is conserved.

PQ quality:

- $\rightarrow~U(1)_{\text{PQ}}$ is a global symmetry, thus not fundamental
- ightarrow \mathcal{PQ} : non-renormalizable $\mathcal O$ from e.g. gravity (M_{Planck} suppressed)
- \rightarrow contribution to axion potential \mathcal{V}_a : shift in vacuum $\langle a \rangle \Rightarrow$ shift in $\bar{\theta}_{eff}$

PQ quality:

- $\rightarrow~U(1)_{\text{PQ}}$ is a global symmetry, thus not fundamental
- ightarrow \mathcal{PQ} : non-renormalizable $\mathcal O$ from e.g. gravity (M_{Planck} suppressed)
- \rightarrow contribution to axion potential \mathcal{V}_a : shift in vacuum $\langle a \rangle \Rightarrow$ shift in $\bar{\theta}_{eff}$
- Goal for model building:
 - $\rightarrow~U(1)_{\text{PQ}}:$ accidental at renormalizable level (not imposed)
 - \rightarrow high quality PQ: $\bar{\theta}_{\rm eff} < 10^{-10}$ from PQ operators

PQ quality:

2 / 12

- $\rightarrow~U(1)_{\text{PQ}}$ is a global symmetry, thus not fundamental
- ightarrow **PQ**: non-renormalizable ${\cal O}$ from e.g. gravity ($M_{\sf Planck}$ suppressed)
- \rightarrow contribution to axion potential \mathcal{V}_a : **shift in vacuum** $\langle a \rangle \Rightarrow$ shift in $\bar{\theta}_{eff}$
- Goal for model building:
 - $\rightarrow~U(1)_{\mbox{PQ}}:$ accidental at renormalizable level (not imposed)
 - \rightarrow high quality PQ: $\bar{\theta}_{\rm eff} < 10^{-10}$ from PQ operators
- **This talk**: PQ quality from vertical and horizontal symmetry
 - $\rightarrow\,$ More strongly connected to SM than adding unrelated symmetry
 - \rightarrow Vertical and horizontal symmetry for Yukawa sector: Berezhiani [7, 8, 9]
 - \rightarrow Vertical for quality: Vecchi [10], Babu+ [11]
 - \rightarrow Horizontal for quality: Darmé+ [12, 13]

PQ quality:

2 / 12

- $\rightarrow~U(1)_{\text{PQ}}$ is a global symmetry, thus not fundamental
- ightarrow \mathcal{PQ} : non-renormalizable $\mathcal O$ from e.g. gravity (M_{Planck} suppressed)
- \rightarrow contribution to axion potential \mathcal{V}_a : shift in vacuum $\langle a \rangle \Rightarrow$ shift in $\bar{\theta}_{eff}$
- Goal for model building:
 - $\rightarrow~U(1)_{\text{PQ}}:$ accidental at renormalizable level (not imposed)
 - \rightarrow high quality PQ: $\bar{\theta}_{\rm eff} < 10^{-10}$ from PQ operators
- **This talk**: PQ quality from vertical and horizontal symmetry
 - \rightarrow Our model [5]: $SU(4)_{PS} \times SU(2)_L \times SU(2)_R \times SU(3)_{f_R}$

PQ quality:

- $\rightarrow~U(1)_{\text{PQ}}$ is a global symmetry, thus not fundamental
- ightarrow \mathcal{PQ} : non-renormalizable $\mathcal O$ from e.g. gravity (M_{Planck} suppressed)
- \rightarrow contribution to axion potential \mathcal{V}_a : shift in vacuum $\langle a \rangle \Rightarrow$ shift in $\bar{\theta}_{eff}$
- Goal for model building:
 - $\rightarrow~U(1)_{\text{PQ}}:$ accidental at renormalizable level (not imposed)
 - \rightarrow high quality PQ: $\bar{\theta}_{eff} < 10^{-10}$ from PQ operators
- **This talk**: PQ quality from vertical and horizontal symmetry
 - \rightarrow Our model [5]: $SU(4)_{PS} \times SU(2)_L \times SU(2)_R \times SU(3)_{f_R}$
 - \rightarrow Inspired by $\mathrm{SO}(10) \times \mathrm{SU}(3)_f$ from Di Luzio [6]

PQ quality:

2 / 12

- $\rightarrow~U(1)_{\text{PQ}}$ is a global symmetry, thus not fundamental
- ightarrow \mathcal{PQ} : non-renormalizable $\mathcal O$ from e.g. gravity (M_{Planck} suppressed)
- \rightarrow contribution to axion potential \mathcal{V}_a : shift in vacuum $\langle a \rangle \Rightarrow$ shift in $\bar{\theta}_{eff}$
- Goal for model building:
 - $\rightarrow~U(1)_{\text{PQ}}:$ accidental at renormalizable level (not imposed)
 - \rightarrow high quality PQ: $\bar{\theta}_{\rm eff} < 10^{-10}$ from PQ operators
- **This talk**: PQ quality from vertical and horizontal symmetry
 - \rightarrow Our model [5]: $SU(4)_{PS} \times SU(2)_L \times SU(2)_R \times SU(3)_{f_R}$
 - \rightarrow Inspired by $\mathrm{SO}(10) \times \mathrm{SU}(3)_f$ from Di Luzio [6]
 - \rightarrow Pati-Salam (PS) easier to **work out details**; only *R*-flavor gauged

PQ quality:

- $\rightarrow~U(1)_{\text{PQ}}$ is a global symmetry, thus not fundamental
- ightarrow \mathcal{PQ} : non-renormalizable $\mathcal O$ from e.g. gravity (M_{Planck} suppressed)
- \rightarrow contribution to axion potential \mathcal{V}_a : shift in vacuum $\langle a \rangle \Rightarrow$ shift in $\bar{\theta}_{eff}$
- Goal for model building:
 - $\rightarrow~U(1)_{\text{PQ}}:$ accidental at renormalizable level (not imposed)
 - \rightarrow high quality PQ: $\bar{\theta}_{eff} < 10^{-10}$ from PQ operators
- **This talk**: PQ quality from vertical and horizontal symmetry
 - \rightarrow Our model [5]: $SU(4)_{PS} \times SU(2)_L \times SU(2)_R \times SU(3)_{f_R}$
 - \rightarrow Inspired by $\mathrm{SO}(10) \times \mathrm{SU}(3)_f$ from Di Luzio [6]
 - ightarrow Pati-Salam (PS) easier to work out details; only R-flavor gauged
 - $\rightarrow~$ Interesting features: anomalons, quality mechanism can be probed \ldots

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
\overline{Q}_L	(0, 1/2)	$(ar{4}, m{2}, m{1}, m{1})$	3	+3
Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

Not much freedom in choice of irreps for a realistic model...

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

	Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
\rightarrow	\overline{Q}_L	(0, 1/2)	$(ar{4}, m{2}, m{1}, m{1})$	3	+3
\rightarrow	Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
	Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
	Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
	Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
	Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
	χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
	ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

■ Fermions: → \overline{Q}_L and Q_R contain SM fermions and ν_R (standard in PS) → only Q_R transforms under gauged flavor, \overline{Q}_L in 3 copies

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

	Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
	\overline{Q}_L	(0, 1/2)	$({f \overline{4}},{f 2},{f 1},{f 1})$	3	+3
	Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
\rightarrow	Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
	Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
	Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
	Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
	χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
	ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

• Anomalons Ψ : \rightarrow Needed to cancel anomalies due to $SU(3)_{f_R}$ factor \rightarrow They are SM singlets

2 Vasja Susič (LNF, INFN) Vertical and horizontal gauge symmetry for a high-quality axion

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

	Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
	\overline{Q}_L	(0, 1/2)	$(ar{4}, m{2}, m{1}, m{1})$	3	+3
	Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
	Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
>	Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
>	Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
	Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
	χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
	ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

Scalars with EW VEVs Φ and Σ : contain SM Higgs

 \to terms $\overline{Q}_L\,Q_R\,\Phi$ and $\overline{Q}_L\,Q_R\,\Sigma$ for realistic Yukawa sector

 \rightarrow

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
\overline{Q}_L	(0, 1/2)	$(ar{4}, m{2}, m{1}, m{1})$	3	+3
Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

Scalar Δ : \rightarrow for ν Majorana mass term $Q_R Q_R \Delta^*$

 $\rightarrow\,$ involved in PS and flavor breaking

3 / 12 Vasja Susič (LNF, INFN) Vertical and horizo

 \rightarrow

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
\overline{Q}_L	(0, 1/2)	$({f \overline{4}},{f 2},{f 1},{f 1})$	3	+3
Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
χ	(0,0)	$({f 4},{f 1},{f 2},ar{f 3})$	1	-1
ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

• Scalar χ : \rightarrow helps Δ with PS and flavor braking

 $\rightarrow \mbox{ to break PQ}$ and rank of PS: need Δ and χ both

3 / 12 Vasja Susič (LNF, INFN) Vertical and horizontal gauge symmetry for a high-quality axion

 \rightarrow

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
\overline{Q}_L	(0, 1/2)	$(ar{4}, m{2}, m{1}, m{1})$	3	+3
Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

Scalar ξ : \rightarrow needed for **accidental PQ** to arise

 $\rightarrow \mbox{ connects } \Delta$ and χ in scalar potential: $\Delta \chi^2 \xi$

3 / 12 Vasja Susič (LNF, INFN) Vertical and horizontal gauge symmetry for a high-quality axion

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
\overline{Q}_L	(0, 1/2)	$(ar{4}, m{2}, m{1}, m{1})$	3	+3
Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

PQ accidental in

 $\mathcal{V}_{\mathbb{C}} = \Phi \Sigma^* \xi + \Phi \Sigma^* \left(|\Sigma|^2 + |\Delta|^2 + |\chi|^2 + \xi^2 \right) + \Sigma^{*2} \left(\Phi^2 + \Delta^2 \right) + \Delta \chi^2 \xi + \text{h.c.}$

Constructing the model

• Field content: $G_{PS} \equiv SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

Field	Lorentz	$G_{PS} \times \mathrm{SU}(3)_{f_R}$	copies	$\mathrm{U}(1)_{PQ}$
\overline{Q}_L	(0, 1/2)	$(ar{4}, m{2}, m{1}, m{1})$	3	+3
Q_R	(0, 1/2)	$({f 4},{f 1},{f 2},{f 3})$	1	+1
Ψ	(0, 1/2)	$({f 1},{f 1},{f 1},{f ar 3})$	8	+2
Φ	(0, 0)	$({f 1},{f 2},{f 2},{f ar 3})$	$N_{\Phi} \ge 1$	+2
Σ	(0,0)	$({f 15},{f 2},{f 2},{f ar 3})$	$N_{\Sigma} \ge 2$	+2
Δ	(0,0)	$({f 10},{f 1},{f 3},{f 6})$	1	+2
χ	(0,0)	$({f 4},{f 1},{f 2},{f ar 3})$	1	-1
ξ	(0,0)	$({f 15},{f 1},{f 3},{f 1})$	1	0

 $\blacksquare \text{ Breaking: } G_{\mathsf{PS}} \times \mathrm{SU}(3)_{f_R} \xrightarrow{\langle \Delta, \chi, \xi \rangle} G_{\mathsf{SM}} \xrightarrow{\langle \Phi, \Sigma \rangle} \mathrm{SU}(3)_C \times \mathrm{U}(1)_{\mathsf{EM}}$

4 / 12

 Quality check: find dominant *PQ* non-renormalizable invariants contributing to the vacuum

- Quality check: find dominant *PQ* non-renormalizable invariants contributing to the vacuum
- **Procedure** for finding invariant operators \mathcal{O} :
 - (0) Go through all possible field powers for a given dimension d of ${\cal O}$
 - (1) Necessary condition: trivial under gauge center $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$
 - (2) Automatized confirmation (GroupMath [14], LieART [15, 16], LiE [17])
 - (3) Explicit index contraction for confirming vacuum contribution $\langle {\cal O} \rangle \neq 0$

- Quality check: find dominant *PQ* non-renormalizable invariants contributing to the vacuum
- **Procedure** for finding invariant operators \mathcal{O} :
 - (0) Go through all possible field powers for a given dimension d of ${\cal O}$
 - (1) Necessary condition: trivial under gauge center $\mathbb{Z}_4\times\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_3$
 - (2) Automatized confirmation (GroupMath [14], LieART [15, 16], LiE [17])
 - (3) Explicit index contraction for confirming vacuum contribution $\langle {\cal O} \rangle \neq 0$
- VEVs:
- $\langle \Phi \rangle, \langle \Sigma \rangle \sim v$ $\sim 10^2 \, {\rm GeV}$ (EW VEVs), (4)
- $\langle \Delta \rangle, \langle \chi \rangle, \langle \xi \rangle \equiv V_{\Delta}, V_{\chi}, V_{\xi} \sim V$ (PS VEVs), (5)
 - $\Lambda \equiv M_{\text{Planck}} \qquad \sim 10^{19} \,\text{GeV} \quad (\text{cutoff}) \tag{6}$

• High-quality condition: small shift in QCD-generated axion potential

$$\langle \mathcal{O} \rangle \lesssim \bar{\theta} \, \chi_{\text{QCD}}^4 \equiv \bar{\theta} \, \frac{m_u m_d}{(m_u + m_d)^2} m_\pi^2 f_\pi^2 \, \simeq \, 10^{-10} \, (76 \, \text{MeV})^4.$$
 (7)

5 / 12

■ High-quality condition: small shift in QCD-generated axion potential

$$\langle \mathcal{O} \rangle \lesssim \bar{\theta} \chi_{\mathsf{QCD}}^4 \equiv \bar{\theta} \frac{m_u m_d}{(m_u + m_d)^2} m_\pi^2 f_\pi^2 \simeq 10^{-10} \, (76 \, \mathrm{MeV})^4.$$
 (7)

Dominant PQ contributions:

O	$\langle \mathcal{O} angle$
$ \Delta^4 \Delta^* \chi^{*6} \Phi^{2-k} \Sigma^k \Delta^2 \chi^{*4} \Phi^{4-k} \Sigma^k \Delta^{*2} \chi^{*4} $	$V^{11}/\Lambda^7 v^2 V^6/\Lambda^4 !$
$ \Phi^{4-k} \Sigma^k \Delta \chi^{2} $ $ \Phi^{4-k} \Sigma^k \Sigma^2 $	$rac{v^4V^5/\Lambda^5}{v^6/\Lambda^2}$

■ High-quality condition: small shift in QCD-generated axion potential

$$\langle \mathcal{O} \rangle \lesssim \bar{\theta} \, \chi_{\text{QCD}}^4 \equiv \bar{\theta} \, \frac{m_u m_d}{(m_u + m_d)^2} m_\pi^2 f_\pi^2 \, \simeq \, 10^{-10} \, (76 \, \text{MeV})^4.$$
 (7)

■ High-quality condition: small shift in QCD-generated axion potential

$$\langle \mathcal{O} \rangle \lesssim \bar{\theta} \, \chi_{\text{QCD}}^4 \equiv \bar{\theta} \, \frac{m_u m_d}{(m_u + m_d)^2} m_\pi^2 f_\pi^2 \, \simeq \, 10^{-10} \, (76 \, \text{MeV})^4.$$
 (7)

Axion properties

- Axion a: (mostly) a combination of polar modes in Δ and χ
- Couplings to photons and gluons:

$$\mathcal{L} \supset \frac{\alpha_{\rm EM}E}{4\pi} \frac{a}{f_a} F \tilde{F} + \frac{\alpha_s N}{4\pi} \frac{a}{f_a} G \tilde{G}.$$
(9)

$$E = 16, N = 6, \text{ hence } E/N = 8/3 \text{ (DES7 like [18, 10])}$$

This model: E = 16, N = 6, hence |E/N=8/3| (DFSZ-like [18, 19])

Axion properties

- Axion a: (mostly) a combination of polar modes in Δ and χ
- Couplings to photons and gluons:

$$\mathcal{L} \supset \frac{\alpha_{\rm EM} E}{4\pi} \frac{a}{f_a} F \tilde{F} + \frac{\alpha_s N}{4\pi} \frac{a}{f_a} G \tilde{G}.$$
 (9)

- This model: E = 16, N = 6, hence E/N=8/3 (DFSZ-like [18, 19])
- Mass range: high-quality PQ vs accidental PQ scenario

high-quality:

 $m_a \gtrsim 10 \,\mathrm{meV}$

Yukawa sector — up, down, charged leptons

Renormalizable operators for *UDE* sectors:

7 / 12

$$\mathcal{L}_{Y} \supset \sum_{\alpha=1}^{N_{\Phi}} \sum_{I=1}^{3} Y_{I}^{\Phi^{\alpha}} \,\overline{Q}_{L}{}^{I} Q_{R} \,\Phi^{\alpha} + \sum_{\alpha=1}^{N_{\Sigma}} \sum_{I=1}^{3} 2\sqrt{3} \, Y_{I}^{\Sigma^{\alpha}} \,\overline{Q}_{L}{}^{I} Q_{R} \,\Sigma^{\alpha}$$
(10)

 \rightarrow Indices: I [family], A [gauged R-flavor], α [multiplicity]

Yukawa sector — up, down, charged leptons

Renormalizable operators for *UDE* sectors:

$$\mathcal{L}_{Y} \supset \sum_{\alpha=1}^{N_{\Phi}} \sum_{I=1}^{3} Y_{I}^{\Phi^{\alpha}} \overline{Q}_{L}{}^{I} Q_{R} \Phi^{\alpha} + \sum_{\alpha=1}^{N_{\Sigma}} \sum_{I=1}^{3} 2\sqrt{3} Y_{I}^{\Sigma^{\alpha}} \overline{Q}_{L}{}^{I} Q_{R} \Sigma^{\alpha}$$
(10)

 \rightarrow Indices: I [family], A [gauged R-flavor], α [multiplicity]

 $\boxed{N_{\Phi} \geq 1, N_{\Sigma} \geq 2} \text{ is realistic (based on DOF count, not fit)} \\ [considering masses, CKM, PMNS] }$

$$(M_U)_{IA} = Y_I^{\Phi} v_A^{u\Phi} + Y_I^{\Sigma} v_A^{u\Sigma} + Y_I^{\Sigma'} v_A^{u\Sigma'},$$
(11)

INFN

$$(M_D)_{IA} = Y_I^{\Phi} v_A^{d\Phi} + Y_I^{\Sigma} v_A^{d\Sigma} + Y_I^{\Sigma'} v_A^{d\Sigma'}, \qquad (12)$$

$$(M_E)_{IA} = Y_I^{\Phi} v_A^{d\Phi} - 3 Y_I^{\Sigma} v_A^{d\Sigma} - 3 Y_I^{\Sigma'} v_A^{d\Sigma'},$$
(13)

Yukawa sector — up, down, charged leptons

■ Renormalizable operators for *UDE* sectors:

$$\mathcal{L}_{Y} \supset \sum_{\alpha=1}^{N_{\Phi}} \sum_{I=1}^{3} Y_{I}^{\Phi^{\alpha}} \overline{Q}_{L}{}^{I} Q_{R} \Phi^{\alpha} + \sum_{\alpha=1}^{N_{\Sigma}} \sum_{I=1}^{3} 2\sqrt{3} Y_{I}^{\Sigma^{\alpha}} \overline{Q}_{L}{}^{I} Q_{R} \Sigma^{\alpha}$$
(10)

 \rightarrow Indices: I [family], A [gauged R-flavor], α [multiplicity]

 $\boxed{N_{\Phi} \geq 1, N_{\Sigma} \geq 2} \text{ is realistic (based on DOF count, not fit)} \\ [considering masses, CKM, PMNS] }$

$$(M_U)_{IA} = Y_I^{\Phi} v_A^{u\Phi} + Y_I^{\Sigma} v_A^{u\Sigma} + Y_I^{\Sigma'} v_A^{u\Sigma'}, \qquad (11)$$

$$(M_D)_{IA} = Y_I^{\Phi} v_A^{d\Phi} + Y_I^{\Sigma} v_A^{d\Sigma} + Y_I^{\Sigma'} v_A^{d\Sigma'}, \qquad (12)$$

$$(M_E)_{IA} = Y_I^{\Phi} v_A^{d\Phi} - 3 Y_I^{\Sigma} v_A^{d\Sigma} - 3 Y_I^{\Sigma'} v_A^{d\Sigma'},$$
(13)

• Unusual setup: $\rightarrow Y_I$ are vectors in family space (not matrices) $\rightarrow \text{EW VEVs } v_A$ are R-flavor vectors (not numbers)

Vasja Susič (LNF, INFN) Vertical and horizontal gauge symmetry for a high-quality axion

Yukawa sector — neutrinos and anomalons

- Anomalons Ψ are EW (and SM) singlets $\Rightarrow \nu \leftrightarrow \Psi$ can mix
- Spectrum: (a) terms with $\Psi :$ only from non-renormalizable ${\cal O}$

(b) number of Ψ : $8 \times [\overline{\mathbf{3}}] = 24$ in total

Yukawa sector — neutrinos and anomalons

- Anomalons Ψ are EW (and SM) singlets $\Rightarrow \nu \leftrightarrow \Psi$ can mix
- Spectrum: (a) terms with Ψ : only from **non-renormalizable** \mathcal{O}
 - (b) number of $\Psi: 8 \times [\overline{\mathbf{3}}] = 24$ in total
 - (c) turns out: "heavy-light split" $\Psi = \Psi_{\perp} \oplus \Psi_{0}$

Yukawa sector — neutrinos and anomalons

- Anomalons Ψ are EW (and SM) singlets $\Rightarrow \nu \leftrightarrow \Psi$ can mix
- Spectrum: (a) terms with Ψ : only from **non-renormalizable** \mathcal{O}
 - (b) number of $\Psi: 8 \times [\overline{\mathbf{3}}] = 24$ in total
 - (c) turns out: "heavy-light split" $\Psi = \Psi_{\perp} \oplus \Psi_{0}$
 - (d) Flavor basis: $\bar{\nu}_L \oplus \nu_R \oplus \Psi_\perp \oplus \Psi_0 (3+3+16+8)$

Yukawa sector — neutrinos and anomalons

- Anomalons Ψ are EW (and SM) singlets $\Rightarrow \nu \leftrightarrow \Psi$ can mix
- Spectrum: (a) terms with Ψ : only from **non-renormalizable** \mathcal{O}
 - (b) number of $\Psi: 8 \times [\overline{\mathbf{3}}] = 24$ in total
 - (c) turns out: "heavy-light split" $\Psi = \Psi_{\perp} \oplus \Psi_{0}$
 - (d) Flavor basis: $\bar{\nu}_L \oplus \nu_R \oplus \Psi_\perp \oplus \Psi_0 (3+3+16+8)$
 - (e) If mixing small: mass eigenstates denoted by $L, R, \perp, 0$

Yukawa sector — neutrinos and anomalons

- Anomalons Ψ are EW (and SM) singlets $\Rightarrow \nu \leftrightarrow \Psi$ can mix
- Spectrum: (a) terms with Ψ : only from **non-renormalizable** \mathcal{O}
 - (b) number of $\Psi: 8 \times [\overline{\mathbf{3}}] = 24$ in total
 - (c) turns out: "heavy-light split" $\Psi = \Psi_{\perp} \oplus \Psi_{0}$
 - (d) Flavor basis: $\bar{\nu}_L \oplus \nu_R \oplus \Psi_\perp \oplus \Psi_0 (3+3+16+8)$

(e) If mixing small: mass eigenstates denoted by $L, R, \perp, 0$

Dominant operators in every entry (schematically):

$$\overline{Q}_{L} \qquad Q_{R} \qquad \Psi_{\perp} \qquad \Psi_{0}$$

$$\overline{Q}_{L} \qquad \left(\begin{array}{ccc} \Delta(\Phi^{2} + \Phi\Sigma + \Sigma^{2}) & \Phi + \Sigma & \chi(\Phi + \Sigma) & \Delta\chi^{*}(\Phi^{*} + \Sigma^{*}) \\ \Phi + \Sigma & \Delta^{*} & \Delta^{*}\chi & \Delta^{*2}\Delta\chi \\ \Psi_{\perp} & \chi(\Phi + \Sigma) & \Delta^{*}\chi & \Delta^{*}\chi^{2} & \Phi^{*2} + \Sigma^{*2} + \Delta\Delta^{*2}\chi^{2} \\ \Delta\chi^{*}(\Phi^{*} + \Sigma^{*}) & \Delta^{*2}\Delta\chi & \Phi^{*2} + \Sigma^{*2} + \Delta\Delta^{*2}\chi^{2} & \Phi^{*2} + \Sigma^{*2} + \Delta\Delta^{*2}\chi^{2} \end{array} \right)$$

Spectrum in the neutrino-anomalon sector

Yukawa sector — neutrinos and anomalons

- Anomalons Ψ are EW (and SM) singlets $\Rightarrow \nu \leftrightarrow \Psi$ can mix
- Spectrum: (a) terms with Ψ : only from **non-renormalizable** \mathcal{O}
 - (b) number of $\Psi: 8 \times [\overline{\mathbf{3}}] = 24$ in total
 - (c) turns out: "heavy-light split" $\Psi = \Psi_{\perp} \oplus \Psi_{0}$
 - (d) Flavor basis: $\bar{\nu}_L \oplus \nu_R \oplus \Psi_\perp \oplus \Psi_0 (3+3+16+8)$

(e) If mixing small: mass eigenstates denoted by $L, R, \perp, 0$

ν-Ψ mass matrix:

Anomalon cosmology (in high quality scenario)

- Anomalon mass $< 1 \,\mathrm{eV}$: $m_{\perp} \simeq 10 \,\mathrm{meV}$, $m_0 \simeq 1 \,\mu\mathrm{eV}$
- Anomalons act as **dark radiation**: $\Delta N_{\text{eff}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\Psi}}{\rho_{\gamma}}$

Anomalon cosmology (in high quality scenario)

- Anomalon mass $< 1 \,\mathrm{eV}$: $m_{\perp} \simeq 10 \,\mathrm{meV}$, $m_0 \simeq 1 \,\mu\mathrm{eV}$
- Anomalons act as **dark radiation**: $\Delta N_{
 m eff}=rac{8}{7}\left(rac{11}{4}
 ight)^{4/3}rac{
 ho_{\Psi}}{
 ho_{\gamma}}$
- Freeze-out:
 - \rightarrow If ever in thermal equilibrium: $\Delta N_{\text{eff}}^{\text{TH}} \simeq 1.13 \frac{N_{\Psi}}{24} \left(\frac{106.75}{q_s(T_{\text{decomple}})}\right)^{4/3}$
 - \rightarrow Excluded by Planck'18: $\Delta N_{\rm eff} \leq 0.285$ (at 95% C.L.) [20]

Anomalon cosmology (in high quality scenario)

- Anomalon mass $< 1 \,\mathrm{eV}$: $m_{\perp} \simeq 10 \,\mathrm{meV}$, $m_0 \simeq 1 \,\mu\mathrm{eV}$
- Anomalons act as **dark radiation**: $\Delta N_{
 m eff} = rac{8}{7} \left(rac{11}{4}
 ight)^{4/3} rac{
 ho_{\Psi}}{
 ho_{\gamma}}$
- Freeze-out:
 - \rightarrow If ever in thermal equilibrium: $\Delta N_{\text{eff}}^{\text{TH}} \simeq 1.13 \, \frac{N_{\Psi}}{24} \, \left(\frac{106.75}{g_s(T_{\text{decouple}})} \right)^{4/3}$
 - \rightarrow Excluded by Planck'18: $\Delta N_{\rm eff} \leq 0.285$ (at 95% C.L.) [20]

Freeze-in: production of anomalons via...

- (i) Annihilation of SM fermions mediated by W_{f_R} : $\bar{f}f \xrightarrow{W_{f_R}} \overline{\Psi}\Psi$
- (ii) Conversion of ν_L via mixing $\theta_{\nu\Psi}$: $e^+e^- \rightarrow \bar{\nu}_f \nu_f \rightarrow \bar{\nu}_f \Psi_m$
- (iii) (generalized) Yukawa interaction: $\nu_L \Psi h$, $\Psi \Psi h$, $\nu_L \Psi hh$, $\Psi \Psi \phi$, etc. processes: $ff \xrightarrow{h} \Psi \Psi$, $\phi \to \Psi \Psi$, $\phi \phi \to \Psi \Psi$, etc.

Anomalon cosmology (in high quality scenario)

- Anomalon mass $< 1 \,\mathrm{eV}$: $m_{\perp} \simeq 10 \,\mathrm{meV}$, $m_0 \simeq 1 \,\mu\mathrm{eV}$
- Anomalons act as **dark radiation**: $\Delta N_{\text{eff}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\Psi}}{\rho_{\gamma}}$
- Freeze-out:
 - \rightarrow If ever in thermal equilibrium: $\Delta N_{\text{eff}}^{\text{TH}} \simeq 1.13 \, \frac{N_{\Psi}}{24} \, \left(\frac{106.75}{g_s(T_{\text{decouple}})} \right)^{4/3}$
 - \rightarrow Excluded by Planck'18: $\Delta N_{\rm eff} \leq 0.285$ (at 95% C.L.) [20]

Freeze-in: production of anomalons via...

- (i) Annihilation of SM fermions mediated by W_{f_R} : $\bar{f}f \xrightarrow{W_{f_R}} \bar{\Psi}\Psi$
- (ii) Conversion of ν_L via mixing $\theta_{\nu\Psi}$: $e^+e^- \rightarrow \bar{\nu}_f \nu_f \rightarrow \bar{\nu}_f \Psi_m$
- (iii) (generalized) Yukawa interaction: $\nu_L \Psi h$, $\Psi \Psi h$, $\nu_L \Psi hh$, $\Psi \Psi \phi$, etc. processes: $ff \xrightarrow{h} \Psi \Psi$, $\phi \to \Psi \Psi$, $\phi \phi \to \Psi \Psi$, etc.
- Challenge: large enough relic abundance for measurable $\Delta N_{\rm eff}$, but no thermalization \rightarrow only (ii) may be viable, requires dedicated analysis

9 / 12

Conclusions

- (A) Quality from vertical and horizontal symmetry: PQ-breaking scale \leftrightarrow flavor and PS breaking scale
- (B) Technically challenging to check PQ quality
- (C) Presence of **anomalons** (fermions): they mix with neutrinos \rightarrow UV dynamics of PQ quality potentially testable (e.g. ΔN_{eff})
- (D) However, also some **drawbacks** (not discussed): domain walls, perturbativity

Conclusions

- (A) Quality from vertical and horizontal symmetry: PQ-breaking scale \leftrightarrow flavor and PS breaking scale
- (B) Technically challenging to check PQ quality
- (C) Presence of **anomalons** (fermions): they mix with neutrinos \rightarrow UV dynamics of PQ quality potentially testable (e.g. ΔN_{eff})
- (D) However, also some **drawbacks** (not discussed): domain walls, perturbativity

Thank you for your attention!

References I

- [1] R. D. Peccei and H. R. Quinn, "CP Conservation in the Presence of Instantons," Phys. Rev. Lett. 38 (1977) 1440-1443.
- R. D. Peccei and H. R. Quinn, "Constraints Imposed by CP Conservation in the Presence of Instantons," *Phys. Rev. D* 16 (1977) 1791–1797.
- [3] S. Weinberg, "A New Light Boson?," Phys. Rev. Lett. 40 (1978) 223-226.
- [4] F. Wilczek, "Problem of Strong P and T Invariance in the Presence of Instantons," Phys. Rev. Lett. 40 (1978) 279-282.
- [5] L. Di Luzio, G. Landini, F. Mescia, and V. Susič, "High-quality Peccei-Quinn symmetry from the interplay of vertical and horizontal gauge symmetries," arXiv:2503.16648 [hep-ph].
- [6] L. Di Luzio, "Accidental SO(10) axion from gauged flavour," JHEP 11 (2020) 074, arXiv:2008.09119 [hep-ph].
- [7] Z. G. Berezhiani, "The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New Approach to Quark and Lepton Masses," *Phys. Lett. B* 129 (1983) 99–102.
- [8] Z. G. Berezhiani, "Horizontal Symmetry and Quark Lepton Mass Spectrum: The SU(5) x SU(3)-h Model," *Phys. Lett.* B 150 (1985) 177–181.
- Z. G. Berezhiani and M. Y. Khlopov, "The Theory of broken gauge symmetry of families. (In Russian)," Sov. J. Nucl. Phys. 51 (1990) 739–746.
- [10] L. Vecchi, "Axion quality straight from the GUT," Eur. Phys. J. C 81 no. 10, (2021) 938, arXiv:2106.15224 [hep-ph].
- [11] K. S. Babu, B. Dutta, and R. N. Mohapatra, "Hybrid SO(10) Axion Model without Quality Problem," *Phys. Rev. Lett.* 134 no. 11, (2025) 111803, arXiv:2410.07323 [hep-ph].
- [12] L. Darmé and E. Nardi, "Exact accidental U(1) symmetries for the axion," Phys. Rev. D 104 no. 5, (2021) 055013, arXiv:2102.05055 [hep-ph].
- [13] L. Darmé, E. Nardi, and C. Smarra, "The axion flavour connection," JHEP 02 (2023) 201, arXiv:2211.05796 [hep-ph].

References II

- [14] R. M. Fonseca, "GroupMath: A Mathematica package for group theory calculations," Comput. Phys. Commun. 267 (2021) 108085, arXiv:2011.01764 [hep-th].
- [15] R. Feger and T. W. Kephart, "LieART—A Mathematica application for Lie algebras and representation theory," Comput. Phys. Commun. 192 (2015) 166–195, arXiv:1206.6379 [math-ph].
- [16] R. Feger, T. W. Kephart, and R. J. Saskowski, "LieART 2.0 A Mathematica application for Lie Algebras and Representation Theory," *Comput. Phys. Commun.* 257 (2020) 107490, arXiv:1912.10969 [hep-th].
- [17] M. van Leeuwen, A. M. Cohen, and B. Lisser, *LiE, A Package for Lie Group Computations*. Computer Algebra Nederland, Amsterdam, ISBN 90-74116-02-7, 1992.
- [18] A. R. Zhitnitsky, "On Possible Suppression of the Axion Hadron Interactions. (In Russian)," Sov. J. Nucl. Phys. 31 (1980) 260.
- [19] M. Dine, W. Fischler, and M. Srednicki, "A Simple Solution to the Strong CP Problem with a Harmless Axion," *Phys. Lett. B* 104 (1981) 199–202.
- [20] Planck Collaboration, N. Aghanim et al., "Planck 2018 results. VI. Cosmological parameters," Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.C0]. [Erratum: Astron.Astrophys. 652, C4 (2021)].