

Searching for axion dark matter with Radio Telescopes

Luca Visinelli

Dipartmento di Fisica "E.R. Caianiello", Università di Salerno & INFN

May 29, 2025

- Generalities on the QCD Axion
- Axion Miniclusters in the Milky Way

Luca Visinelli

Axion-photon conversion in NS magnetosphere

Generalities on the QCD Axion

- Axion Miniclusters in the Milky Way

Luca Visinelli

Axion-photon conversion in NS magnetosphere

Misalignment mechanism & Axion DM

PQ mechanism [Peccei & Quinn 1977; Wilczek 1978; Weinberg 1978]

QCD axion mass: $m_{\phi} = \frac{\Lambda_{\rm QCD}^{3/2}}{f_{c}} \sqrt{\frac{r_{c}}{m_{c}}}$

Large occupation number: $\mathcal{N} \sim \lambda$

We are dealing with a **classical field** [see the talk by Hong-Yi Zhang] Equation of motion in a FLRW background:

$$\ddot{\phi} - \frac{1}{a^2} \nabla^2 \phi + 3H \dot{\phi} + \frac{\partial V(\phi, T)}{\partial \phi} = 0$$

Luca Visinelli

The axion minimizes dynamically the QCD theta term to $\langle \phi/f_a \rangle = -\theta$

$$\frac{\overline{m_u m_d}}{n_u + m_d} \approx 5.7 \,\mu \text{eV} \left(\frac{10^{12} \,\text{GeV}}{f_a}\right)$$

$$\lambda_c^{-3}(\rho_{\rm DM}/m_a) \approx 10^{27} (\mu eV/m_a)^4$$

The QCD Axion: foundations [See the talk by Michael Stadlbauer on finite QCD effects] Effective Lagrangian below QCD, e.g. [Kaplan 1985, Georgi+ 1986]: Self-interacting Axion-photon potential coupling

The QCD Axion: foundations

Physics Reports 870 (2020) 1-117

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The landscape of QCD axion models

Luca Di Luzio^a, Maurizio Giannotti^b, Enrico Nardi^{c,*}, Luca Visinelli^d

^a Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany

^b Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161, USA

^c INFN, Laboratori Nazionali di Frascati, C.P. 13, I-00044 Frascati, Italy

^d Gravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

ARTICLE INFO

Article history: Received 15 March 2020 Received in revised form 3 June 2020 Accepted 3 June 2020 Available online 24 June 2020 Editor: Dr Jonathan L. Feng

ABSTRACT

We review the landscape of QCD axion models. Theoretical constructions that extend the window for the axion mass and couplings beyond conventional regions are highlighted and classified. Bounds from cosmology, astrophysics and experimental searches are reexamined and updated.

© 2020 Elsevier B.V. All rights reserved.

Di Luzio, Giannotti, Nardi, LV 2003.01100

Luca Visinelli

- Generalities on the QCD Axion
- Axion Miniclusters in the Milky Way

Luca Visinelli

Axion-photon conversion in NS magnetosphere

Typical minicluster mass: $M_{\rm mc} = \frac{4\pi}{3} L_{\rm osc}^3 \rho_{\rm DM} \sim 10^{-10} \, M_{\odot}$ [Hogan & Rees 1988; Kolb & Tkachev 1994]

Density profile from collapse: $\rho_{\rm mc}(r) \propto r^{-9/4}$

After MR, miniclusters merge hierarchically to form halos with NFW-like profiles [Vaguero+ 2019] Luca Visinelli

In post-inflation symmetry breaks, fluctuations are $\mathcal{O}(1)$ for $k \gg 2\pi/L_{ m osc}$ $L_{\rm osc} \sim 1/[a_{\rm osc} H(T_{\rm osc})] \sim 10^{-3} \,{\rm pc}$

AMC mass function

Everything can be recast for different distributions of $(M_{\rm AMC}, \rho_{\rm AMC})$ or equivalently $(M_{\rm AMC}, \delta)$

[github.com/bradkav/axion-miniclusters]

Luca Visinelli

Milky Way Setup

$$n_{\rm AMC}(r) = f_{\rm AMC} \frac{\rho_{\rm DM}(r)}{\langle M_{\rm AMC} \rangle}$$
$$f_{\rm AMC} \approx 100\%$$
$$\langle M_{\rm AMC} \rangle \approx 10^{-14} M_{\odot}$$

Caveat: we do not deal with concurrent structure formation, stellar formation & AMC distruption

Axion miniclusters abundance today

The abundance of miniclusters in galaxies is assessed via Monte Carlo simulations of tidal stripping

Kavanagh, Edwards, LV, Weniger, <u>PRD 2020</u> 2011.05377 See also [Tinyakov+ <u>1512.02884</u>; Dokuchaev+ <u>1710.09586</u>]

Luca Visinelli

Monte Carlo procedure

Remove AMC from simulation

But! Need to know the response of an AMC to stellar perturbations...

Generate sample of AMCs (with correct density distribution but *log-flat* mass function)

Axion miniclusters abundance today

Kavanagh, Edwards, **LV**, Weniger, <u>PRD 2020</u> <u>2011.05377</u>

- Generalities on the QCD Axion
- Axion Miniclusters in the Milky Way

Axion-photon conversion in NS magnetosphere

Luca Visinelli

Axion-photon conversion in NS magnetospheres

[See the talk by Maxim Pospelov (NS labs) and Ben Safdi (SNe and new physics)]

Assuming a **Goldreich-Julian** model for the NS magnetosphere, emitted radio power:

Plenty of uncertainties on magnetosphere properties, conversion probabilities, anisotropy...

Transient enhancements to ρ_c from AMC encounters Look for axion-photon conversion from an individual NS Edwards+ (with **LV**) <u>2011.05378</u> [Battye et al., <u>1910.11907</u>; Leroy et al., <u>1912.08815</u>]

Luca Visinelli

 $\frac{\mathrm{d}\mathcal{P}_{a}}{\mathrm{d}\Omega} \sim \frac{\pi}{3} g_{a\gamma\gamma}^{2} B_{0}^{2} \frac{R_{\mathrm{NS}}^{\,\mathrm{b}}}{R_{a}^{\,3}} \frac{\rho_{c}}{m_{a}} \qquad \text{[Hook et al., <u>1804.03145</u>; Safdi et al., <u>1811.01020]}</u>$

Axion-photon conversion in NS magnetospheres

Luca Visinelli

$= \frac{1}{\mathrm{BW}} \frac{1}{4\pi s^2} \frac{\mathrm{d}\mathcal{P}_a}{\mathrm{d}\Omega}$

Based on velocity dispersion of AMC, expect an *incredibly narrow line*. Instead, fix bandwidth BW = 1 kHz (based on telescope resolution).

Edwards+ (with LV) PRL 2021 2011.05378

Can we pick up this signal in radio?

2 grant proposals accepted by the <u>Green Bank Telescope</u>. We have observed Andromeda

2022: X-band observation (8-12 GHz) 2023: C-band observation (4-8 GHz) (10 GHz \approx 40 μeV)

Luca Visinelli

Expected spectral flux densities (SFDs) from NS-AMC encounters

Axion mass $m_a = 40 \,\mu \text{eV}$ and AMC mass $M_{\text{AMC}} = 10^{-10} \, M_{\odot}$ Simulate 20 encounters with NS of $B_0 = 10^{14} \,\text{G}$ and $P = 1 \,\text{s}$ Signal lasting min to hour

Can we pick up this signal in radio?

Luca Visinelli

Ongoing work: we formed **ASTRA** (Axion Search via Telescope for

Radio Astronomy)

NEWS: Jefferson Trust fund for telescope <2 GHz

Walters+ (with LV) <u>2407.13060</u>

Observational Consequences: direct detection

High-frequency gravitational waves

String axions and their GW signals are gaining attention see insights by Margherita Putti and Nicgle $Bighi + h_{\mu\nu}$ $h_0 \sim |h_{\mu\nu}|$

FLASH LowT

Work with Michael Zantedeschi

- Low-reheat scenarios with QCD axion dark matter predict higher f_a
- This makes GWs from axion strings observable across diverse frequency bands.

Ramberg & LV <u>1904.05707</u>, PRD

GWs from axionic strings?

Work with Nicklas Ramberg

Ramberg & LV <u>2012.06882</u>, PRD

AMC-NS radio transients

- Lasting days to years
- Within reach of current searches
- Expect O(1) bright event on the sky at all times
- Explored in Andromeda through GBT
- More developments to come soon

Please re-cast the results and re-use the code!

<u>2011.05377, 2011.05378, 2407.13060</u>

github.com/bradkav/axion-miniclusters

Luca Visinelli

Thank you!

