

Probing New Physics with Flavor Tagging at FCC-ee Based on Greljo, Tiblom, Valenti; [2411.02485]

Hector Tiblom - PLANCK2025 - May 28, 2025

FCC-ee plan

Four key stages

Working point	Z, years 1-2	Z, later	WW	HZ	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157,163	240	340-350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55
$Lumi/year (ab^{-1}, 2 IP)$	24	48	6	1.7	0.2	0.34
Physics Goal (ab^{-1})	150		10	5	0.2	1.5
Run time (year)	2	2	2	3	1	4
				10^6 HZ	10^{6} t	$\overline{\mathbf{t}}$
Number of events	$5 \times 10^{12} \mathrm{~Z}$		$10^8 { m WW}$	+	+200k HZ	
				$25k WW \rightarrow H$	$+50 \text{kWW} \rightarrow \text{H}$	

Source: <u>CERN</u>

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

Blondel, Janot; [2106.13885]

Previous analyses

Z, W-pole expected to probe new physics up to $\mathcal{O}(10 - 100)$ TeV

Observable	Value	Error	FCC-ee Tot.
$\Gamma_W \; [{ m MeV}]$	2085	42	1.24
$m_W \; [{ m MeV}]$	80350	15	0.39
$\operatorname{Br}(W \to e\nu)(\%)$	10.71	0.16	0.0032
$\operatorname{Br}(W \to \mu \nu)(\%)$	10.63	0.15	0.0032
$\operatorname{Br}(W \to \tau \nu)(\%)$	11.38	0.21	0.0046
$ au o \mu u u (\%)$	17.39	0.04	0.003
au o e u u (%)	17.82	0.04	0.003

Current and projected errors for *W*-pole and τ observables, adapted from Allwicher, Cornella, Isidori, Stefanek; [2311.00020]

Observable	Curr. Rel. Err. (10^{-3})	FCC-ee Rel. Err. (10^{-3})
$\Gamma_{ m Z}$	2.3	0.1
$\sigma_{ m had}^0$	37	5
R_b^Z	3.06	0.3
R_c^Z	17.4	1.5
$A_{ m FB}^{0,b}$	15.5	1
$A_{ m FB}^{0,c}$	47.5	3.08
A_b^Z	21.4	3
A_c^Z	40.4	8
R_e^Z	2.41	0.3
R^Z_μ	1.59	0.05
$R^Z_{ au}$	2.17	0.1
$A^{0,e}_{ m FB}$	154	5
$A_{ m FB}^{0,\mu}$	80.1	3
$A_{ m FB}^{0, au}$	104.8	5
A_e^Z	14.3	0.11
A^Z_μ	102	0.15
$A^Z_{ au}$	102	0.3
$N_{ u}$	50	0.8

Current and projected errors for *Z*-pole observables, adapted from Allwicher, Cornella, Isidori, Stefanek; [2311.00020]

This talk

- Our focus: $e^+e^- \rightarrow f\bar{f}$ observables above the Z-pole
- Interpret using dim-6 SMEFT 4F operators
- FCC-ee impact on a specific NP model

More events

$$WW$$

 $\sqrt{s} = 163 \,\mathrm{GeV}, \ \mathcal{L} = 10 \,\mathrm{ab}^{-1}$
 ZH
 $\sqrt{s} = 240 \,\mathrm{GeV}, \ \mathcal{L} = 5 \,\mathrm{ab}^{-1}$
 $t\overline{t}$
 $\sqrt{s} = 365 \,\mathrm{GeV}, \ \mathcal{L} = 1.5 \,\mathrm{ab}^{-1}$

Four fermion observables

$$R_b = \frac{\sigma(e^+e^- \to b\bar{b})}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- \to q\bar{q})} \quad \text{equ}$$

Fit params. R_z , N_{tot} , ϵ_i^i — true positive rates

$$-2\log L = \sum_{ij} \frac{(N_{ij}^{\exp} - N_{ij})^2}{N_{ij}^{\exp}} + \frac{x_{ij}^2}{(\delta_{\epsilon})^2}$$
nuls
1
syst. unce

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

viv. for S, Cprob. of tagging z as iMean number of events per bin: $N_{ij} = N_{tot} \sum_{z} \frac{2}{1 + \delta_{ij}} R_z \epsilon_z^i \epsilon_z^j$

isance param. for ϵ_i^j

ertainty

Case study: R_h

• Only two flavors b, j

- Take $\delta_{e} \simeq 0.01$, consider WW run

True positive statistical error

False positive statistical error

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

False positive systematic error

Full fit

- We extend our fit to consider R_a, R_t, R_ℓ simultaneously
- Small correlations between R_a , for *WW*:

$$\rho = \begin{pmatrix} 1 & -0.006 & -0.22 \\ -0.006 & 1 & -0.006 \\ -0.22 & -0.006 & 1 \end{pmatrix}$$

 $\mathcal{O}(10^2)$ improvement over LEP-II!

Observable/FCC-ee Rel. Err. (10^{-3})	WW	Zh
R_b	0.17	0.36
R_s	3.7	5.8
R_c	0.14	0.27
R_t	-	-
$R_{ au,\mu}$	0.16	0.35
R_e	0.50	0.52

Projected errors for our beyond the Z-pole observables

s-tagging has room for improvement

 R_t, R_μ, R_τ statistically limited

 R_e limited by systematics

SMEFT interpretation

Extend SM with higher-dimensional operators

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{c_{i}}{\Lambda_{i}^{2}} \mathcal{O}_{i}$$

- Set $c_i=1,$ turn on one at a time, gives lower bound on Λ_i
- Increasing s: lower precision on R_a, R_ℓ
- But error scales with energy $\Delta R_a/R_a \sim s/\Lambda^2$

 $\Lambda_{qe,3311} = \{17.8, 17.4, 16.5\} \text{ TeV } Combonstant \\ WW ZH t\bar{t} \text{ opt lo}$

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

Semileptonic

- LEP-II bounds from R_a ratios
- LHC & HL-LHC bounds from high- p_T Drell-Yan
- FCC-ee Z-pole bounds from one-loop RGE ($\propto y_t^2$ or gauge)

FCC-ee will improve by an order of magnitude!

Tree-level bounds for the semileptonic operators (95% CL)

Semileptonic

- Cs bounds from atomic parity violation
- LHC & HL-LHC bounds from high- p_T Drell-Yan
- FCC-ee Z-pole bounds from one-loop RGE ($\propto y_t^2$ or gauge)

FCC-ee will only provide comparable bounds to HL-LHC above the *Z*-pole

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

Tree-level bounds for the semileptonic operators (95% CL)

Fully leptonic

- LEP-II bounds from R_{ℓ} ratios
- FCC-ee Z-pole bounds from one-loop RGE ($\propto y_t^2$ or gauge)

FCC-ee will improve by an order of magnitude!

Extra strong bounds for $\Lambda_{\ell\ell}^{[1221]}$ because it contributes to G_F at tree-level through muon decay

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

Tree-level bounds for the fully leptonic operators (95% CL)

Production asymmetries

- Forward-backward asymmetry complements leptonic ratios $A_{\ell} = \frac{\sigma_F(e^+e^- \to \ell^+\ell^-) - \sigma_B(e^+e^- \to \ell^+)}{\sigma_F(e^+e^- \to \ell^+\ell^-) + \sigma_B(e^+e^- \to \ell^+)}$
- Assuming only stat. error $\Delta A_{\ell}/A_{\ell} =$

 Exp. study needed to determine the validity of this assumption Observable/ Λ [TeV] $| \Lambda_{\ell\ell,11xx}(\Lambda_{\ell\ell,1xx1}) \Lambda_{\ell e,11xx}(\Lambda_{\ell e,xx11}) \Lambda_{ee,11xx} \qquad x = 2,3$ R_ℓ 29.818.418.111.7 A_{ℓ}

$$\frac{+\ell^{-}}{+\ell^{-}}$$

$$= \{3.3, 8.8, 27\} \times 10^{-4} \qquad \text{LEP-II: } \Delta A_{\ell} / A_{\ell} \sim 10^{-2}$$

$$WW \ ZH \ t\bar{t}$$

28.511.2

Oblique corrections

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{\hat{W}}{4m_W^2} (D_\rho W^a_{\mu\nu})^2 - \frac{\hat{Y}}{4m_W^2} (\partial_\rho B_{\mu\nu})^2$$

- *Z*, *W*-pole observables: Higgs-fermion current operators at TL
- R_a, R_{ℓ} above the pole: flavor-conserving universal 4F operators at TL

	$\hat{W} imes 10^5$	$\hat{Y} imes 10^5$
Current (LHC)	[-19, 5]	[-31, 14]
HL-LHC	[-4.5, 6.9]	[-6.4, 8.0]
FCC-ee pole observables	$\left[-3.1,3.1 ight]$	[-1.1, 1.1]
FCC-ee above the pole	[-0.60, 0.60]	$\left[-2.2, 2.2\right]$

Z' model

- Consider a model with $Z'_{\mu} \sim (1, 1, 0)$
- $b \rightarrow s\ell\ell$ anomalies \rightarrow bound on $r_\ell r_{sb}$
- B_{s} mixing \rightarrow bound on r_{sh}
- R_h at LEP-II \longrightarrow bound on r_ℓ

Z' results

- Hadronic ratios at FCC-ee: partial probe of parameter space
- Leptonic ratios at FCC-ee: complete probe of parameter space

 $r_{\ell} \left[\text{TeV}^{-1} \right]$

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

Darker and lighter shades indicate 1σ and 2σ respectively

Conclusions

- FCC-ee can deliver $\mathcal{O}(10^2)$ improvement of LEP-II results for $R_{\alpha}, R_{\ell'}$ Hadronic ratios above the Z-pole at FCC-ee will probe non-universal 4F
- operators up to $\mathcal{O}(40)$ TeV!
- R_{α}, R_{ℓ} at TL provides complementary results to 1-loop results for Z, W-pole **EWPO**
- For the considered Z' model, FCC-ee can exclude it definitely

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

Thank you for your attention!

Backup slides

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

RG effects

- At one-loop, four-quark operators w contribute, as well as semileptonic and leptonic operators with indices other than 11xx
- We focus on the indices = 3333 which are currently the least constrained operators

	2		
V			

FCC-ee	FCC-ee
$Z,W\text{-pole}{+}\tau$	above Z -pole
15.7	1.1
14.0	5.1
16.2	1.6
1.5	1.3
15.4	1.5
1.5	1.3
16.7	1.1
1.0	1.0
2.1	1.5
3.5	2.4
13.1	2.4
8.4	7.1
9.4	1.4
3.1	0.9
12.1	1.9
0.4	2.3
2.8	1.9
	FCC-ee Z, W -pole+ τ 15.7 14.0 16.2 1.5 15.4 1.5 16.7 1.0 2.1 3.5 13.1 8.4 9.4 3.1 12.1 0.4 2.8

One-loop bounds at and above the Z-pole (95% CL)

Flavor violating

- Now consider $e^+e^- \rightarrow q_i \bar{q}_i$
- Focus only on N_{ii} bin
- Only competitive bounds for SMEFT or up-type quark
- Meson decays provide superior bound

 $|\Lambda_{1123}| > 16 \text{ TeV for } \mathcal{O}_{\ell q}^{(1)}, \mathcal{O}_{\ell q}^{(3)}, \mathcal{O}_{\ell d}, \mathcal{C}_{\ell d}, \mathcal{O}_{\ell d},$ $|\Lambda_{1113}| > 9.4 \text{ TeV for } \mathcal{O}_{\ell q}^{(1)}, \mathcal{O}_{\ell q}^{(3)}, \mathcal{O}_{\ell d}, \mathcal{O}_{ed}, \mathcal{O}_{qe}|$ $|\Lambda_{1112}| > 8.1 \text{ TeV for } \mathcal{O}_{\ell q}^{(1)}, \mathcal{O}_{\ell q}^{(3)}, \mathcal{O}_{\ell u},$

Bounds on FV 4F SMEFT operators at 95% CL

Probing New Physics with Flavor Tagging at FCC-ee | Hector Tiblom

	Energy	ij	$ R_{ij}$
	WW	bs	$\begin{vmatrix} 2.80 \cdot 10 \\ 3 10 \end{vmatrix}$
	• • • • •	$\left \begin{array}{c} cu \\ cu \end{array} \right $	$ 5.28 \cdot 10 $
operators with a RH		bs	$6.37 \cdot 10$
	Zh	bd	$6.58 \cdot 10$
ds for bs and bd			
	. .	bs	$ 1.79 \cdot 10$
$\mathcal{O}_{ed}, \mathcal{O}_{qe}$	tt	bd	$ 1.53 \cdot 10 $
\mathcal{O} , \mathcal{O}	Doundo on the		$ 2.70\cdot 10 $
	BOUNDS ON THE		AUTORIC PATIOS A

$$\mathcal{O}_{eu}, \mathcal{O}_{qe}$$

CL

