

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **TEV WINDOW TO GRAND UNIFICATION:** 0 0 0 0 0 0 0 0 0 0 0 0 **HIGGS' LIGHT COLOR TRIPLET PARTNER** 0

0 0 0 0 0 0

0 0

0 0

Anja Stunnautn (MPP & LWU)															0	0	0	0 0	<mark>ہ د</mark>)
May 28, 2025														0	0	•	0	o (، د	,
													0	0	0	•	0	0 0	<u>ہ</u>)
PLANCK 2025															0	•	0	0 0	ہ د	
Based on arXiv:2411.14051 [hep-ph]												0	0	0	0	•	•	0 0) 0)
												•	0	0	•	•	0	0 0) 0	•
In collaboration with Gia Dvali and Otari Sakhela	as	h	۷i	þ								0	0		0	•	•	0 0	<u>ہ</u> د	,
	0	0	0	0	0	0	•	0	0	0	•	•	•	0	•	•	0	0 0	ہ د	•
						0	0	0	0	0	0	0	0	0	0	0	•	0 0	ہ د	,
						0	0	0	0	0	0	0	0	0	0	0	0	0 0	o c)

HIGGS' COLOR TRIPLET PARTNER

Grand Unification

- Unification of electroweak and color force
- GUT scale $M_{\rm GUT} \sim 10^{16} \, {\rm GeV}$ [Georgi, Quinn, Weinberg '74]
- Universal feature: existence of color triplet T Example SU(5) [Georgi, Glashow '74]: $5_H = \begin{pmatrix} T \\ H \end{pmatrix}$

T leads to proton decay

- Leptoquark
- Usually assumed to be heavy ("doublet-triplet splitting problem")

Alternative possibility: T can be light due to suppressed Yukawa couplings [Dvali '92, '96]

HIGGS' LIGHT COLOR TRIPLET PARTNER

T can be light due to suppressed Yukawa couplings [Dvali '92, '96]:

- splitting in Yukawa couplings, not in mass
- $m_T \sim \text{TeV}$ [Atlas '23, '21, CMS '18] \leftarrow Window to grand unification!
- ➡ Correlations of signatures in 3 different categories of experiments:
 - Direct production at high energy accelerators
 - Proton decay experiments
 - Cold neutron experiments

SU(5)

Symmetry breaking pattern: $SU(5) \xrightarrow{\langle 24_H \rangle} SU(3)_C \times SU(2)_w \times U(1)_Y \xrightarrow{\langle 5_H \rangle} SU(3)_C \times U(1)_e$

Scalars: adjoint Higgs
$$\langle 24_H \rangle \propto M_{\text{GUT}} \operatorname{diag} \left(1,1,1,-\frac{3}{2},-\frac{3}{2}\right), \quad 5_H = \left(T_r \quad T_g \quad T_b \quad H^+ \quad H^0\right)^T$$

$$\text{Fermions: } \bar{5}_F = \begin{pmatrix} d_r^c & d_g^c & d_b^c & e^- & -\nu \end{pmatrix}, \quad 10_F = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_b^c & -u_g^c & -u_r & -d_r \\ -u_b^c & 0 & u_r^c & -u_g & -d_g \\ u_g^c & -u_r^c & 0 & -u_b & -d_b \\ u_r & u_g & u_b & 0 & e^+ \\ d_r & d_g & d_b & -e^+ & 0 \end{pmatrix}, \quad \nu^c$$

3

YUKAWA COUPLINGS

In minimal model:

 $\mathscr{L}_{\text{Yuk}} = Y_d \, 5_H^* 10_F \bar{5}_F + Y_u \, 10_F 10_F 5_H$

- SM Yukawa couplings for doublet
- Triplet has quark-quark and quark-lepton couplings
- Doublet and triplet have same Yukawa coupling strength set by SM fermion masses
- Predicts wrong mass relation $m_d = m_e$, fixed with higher-dimensional operators [Ellis '79]

Proton decay amplitude: $\mathcal{M} \sim \frac{Y^2}{m_T^2}$ Comparing with experimental proton lifetime $\tau_p > 10^{34} y$ [Super-Kamiokande '20] $\Rightarrow m_T > 10^{11} \text{ GeV}$

EFFECTIVE YUKAWA COUPLINGS

In minimal model:

.

. . . .

.

.

$$\mathscr{L}_{\text{Yuk}} = Y_d \, 5_H^* 10_F \bar{5}_F + Y_u \, 10_F 10_F 5_H$$

Higher-dimensional operators split couplings of doublet and triplet

Gravity gives $\Lambda < M_P / \sqrt{N_{species}} \sim 10^{17} {\rm GeV}$ in SM [Dvali '07, Dvali, Redi '07]

Example:

0 0

0 0

0

$$\begin{split} \mathscr{L}_{5-\dim} \supset \frac{g}{\Lambda} \, 5_H^* \, 24_H \, 10_F \, \bar{5}_F \\ \text{Plug in } \langle 24_H \rangle &\propto M_{\text{GUT}} \, \text{diag} \Big(1, 1, 1, -\frac{3}{2}, -\frac{3}{2} \Big) \\ \mathscr{L}_{\text{Yuk}} \supset \left(Y_d + g \frac{M_G}{\Lambda} \right) T^* \big(u^c d^c + QL \big) \\ &+ \left(Y_d - g \frac{3M_G}{2\Lambda} \right) H^* \big(Q d^c + L e^c \big) \end{split}$$

EFFECTIVE YUKAWA COUPLINGS

Effective Lagrangian [Dvali, Shifman '96]:

$$\begin{aligned} \mathscr{L}_{\text{Yuk}} \supset g_{Tud} \, T^* \, u^c d^c &+ g_{TQL} \, T^* \, QL \\ &+ g_{Tue} \, T \, u^c e^c \, + g_{TQQ} \, T \, QQ \, + g_{Td\nu} \, T \, d^c \nu^c \\ &+ Y'_d \, H^* \, Qd^c \, + Y'_e \, H^* \, Le^c \, + Y'_u \, H \, Qu^c \\ &+ Y'_\nu \, H \, L\nu^c \end{aligned}$$

➡ Independent couplings of triplet and doublet

PROTON DECAY

- Proton decay channels: $p \to \pi^0 e^+$, $p \to \pi^+ \nu$, ...
- Amplitude: $\mathcal{M} \sim \frac{g_{Tqq}g_{Tql}}{m_T^2}$
- Assume phenomenologically interesting regime $m_T \sim {\rm TeV}$
- Comparing with experimental proton lifetime $\tau_p > 10^{34}y$ [Super-Kamiokande '20] $\Rightarrow g_{Tqq}g_{Tql} < 10^{-26}$

NEUTRON OSCILLATIONS INTO STERILE NEUTRINO

• If mass of sterile neutrino m_R is close to neutron mass m_n

$$m_R \simeq m_n$$

- Mixing mass term through diagrams on the right
- Directly correlated with proton decay $p \rightarrow \pi^+ \nu$

NEUTRON OSCILLATIONS INTO STERILE NEUTRINO

Experiments measuring neutron disappearance into hidden species [nEDM '21, Ban et al. '23]

- Ultra cold neutrons in magnetic field (magnetic resonance imaging)
- Oscillation time is within range of interest

Color triplet can be probe of neutrino mass!

T-PRODUCTION AT LHC

- Can be pair-produced at LHC
- Bound on new colored particles and R-hadrons around TeV [Atlas '23, '21, CMS '18]
- T is long-lived: $\tau_T \sim 10^{-11} {
 m s} \sim 1 {
 m mm}$
- Triplet hadronizes, e.g., Td^c
 - T-baryon $Tqq, T^*q^cq^c$
 - T-meson Tq^c, T^*q

- Decays via displaced vertex
- Decay is accompanied by jets $(Td^c) \rightarrow \pi^0 + \nu^c$

 $(T^*u^cd^c)\to \bar{n}+\nu^c$

 For more suppressed couplings, T-hadron can decay outside of detector

CORRELATION OF SIGNATURES

EFFECTIVE YUKAWA COUPLINGS

In minimal model:

$$\mathscr{L}_{\text{Yuk}} = Y_d \, 5_H^* 10_F \bar{5}_F + Y_u \, 10_F 10_F 5_H$$

Add higher-dimensional operators:

$$\begin{split} \mathscr{L}_{\text{5-dim}} &\supset \frac{g_1}{\Lambda} 5_H^* 10_F 24_H \bar{5}_F + \frac{g_2}{\Lambda} 5_H^* 24_H 10_F \bar{5}_F + \\ &+ \frac{g_3}{\Lambda} 10_F 10_F 24_H 5_H + \frac{g_4}{\Lambda} 24_H 10_F 10_F 5_H + \\ &+ \frac{g_5}{\Lambda} 5_H 24_H \bar{5}_F \nu^c \end{split}$$

Effective Lagrangian:

- $\mathcal{L} \supset g_{Tud} T^* u^c d^c + g_{TQL} T^* QL +$ $+ g_{Tue} T u^c e^c + g_{TQQ} T QQ + g_{Td\nu} T d^c \nu^c +$ $+ Y'_d H^* Qd^c + Y'_e H^* Le^c + Y'_u H Qu^c +$ $+ Y'_{\nu} H L \nu^c$
- ➡ Independent couplings of triplet and doublet

e

PROTON DECAY

Tu- *u* uU uud \mathbf{T} ν d

1

u

If $p \to \pi^+ \nu$ goes through ν^c , proton lifetime extra enhanced:

$$\tau_p \sim \frac{m_R}{m_\nu} \frac{m_T^4}{g_{Tqq}^2 g_{Tql}^2}$$

NEUTRON OSCILLATIONS INTO STERILE NEUTRINO

NEUTRON DISAPPEARANCE EXPERIMENTS

Ultracold neutrons in magnetic field

Magnetic field changes energy $\Delta E = \mu_n B$

Ban et al.: scan with magnetic field in steps $\Delta B = 3\mu T$ in range $50 - 1100\mu T$, corresponds to mass splitting 2 - 69 peV

Bound on neutron disappearance time $\tau > 1s$

Experiments with bound neutron:

GERDA and LEGEND, Germanium detectors

NEUTRON-ANTINEUTRON OSCILLATIONS

Oscillation time $\tau_{n\bar{n}} \sim \tau_{n\nu^c}^2 m_n \sim 10^{30} {
m s}$

Far from experimental limits $\sim 10^8 s$ [Super-Kamiokande '21]

