Coloured spin-1 resonances in composite Higgs models

Manuel Kunkel

in collaboration with Giacomo Cacciapaglia, Aldo Deandrea, and Werner Porod

supported by

PLANCK 2025

Naturalness problem:

Elementary Higgs \Rightarrow large radiative corrections to Higgs mass \Rightarrow massive cancellations necessary to obtain $m_h = 125$ GeV

Possible solution: Higgs as a pseudo Nambu-Goldstone bound state of two fermions: $h\sim \langle\Psi\Psi
angle$

CH model: hyperquarks Ψ charged under a new asymptotically free gauge group G_{HC} which induces a spontaneous $G \to H$ global symmetry breaking when it condenses

Besides the Higgs, CHMs typically contain further pNGBs and also spin-1 resonances

Ferretti models

Name	G _{HC}	ψ	χ	Coset
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	SU(5) SU(6) SO(5) SO(6)
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes { m Spin}$	$\frac{SU(5)}{SO(5)}\frac{SU(6)}{SO(6)}$
M3	SO(7)	$5 imes { m Spin}$	$6 imes \mathbf{F}$	$\frac{SU(5)}{SO(5)}\frac{SU(6)}{SO(6)}$
M4	SO(9)	$5 imes { m Spin}$	$6 imes \mathbf{F}$	$\frac{SU(5)}{SO(5)}\frac{SU(6)}{SO(6)}$
M5	Sp(4)	$5 imes oldsymbol{A}_2$	$6 imes \mathbf{F}$	$\frac{SU(5)}{SO(5)}\frac{SU(6)}{Sp(6)}$
÷	÷	÷	÷	÷
M12	SU(5)	$4\times ({\bm{F}}, {\bm{\bar{F}}})$	$3 imes (\mathbf{A}_2, \mathbf{\bar{A}}_2)$	$\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)} \frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}$

Ferretti et al, 1312.5330, 1604.06467, 1610.06591

with decays

$$\pi_8$$
 and/or $\pi_6^{4/3}$ or $\pi_6^{-2/3}$ or $\pi_3^{2/3}$

$$\pi_8 \rightarrow t\bar{t}$$
 $\pi_6^{4/3} \rightarrow tt$
 $\pi_6^{-2/3} \rightarrow bb$

. 10

a /a

0 10

and we take $m_{\pi} = 1.6$ TeV in the following to lie above current recasting bounds

 $\pi_3^{2/3}
ightarrow ar{b}ar{s}$ or $t
u, b au^+$

$$\chi \sigma^{\mu} ar{\chi} = \mathcal{V}^{\mu} + \mathcal{A}^{\mu} \quad ext{ with } \mathcal{V}^{\mu} \in \mathcal{H}, \, \mathcal{A}^{\mu} \in \mathcal{G}/\mathcal{H}$$

where $H \supset SU(3)_c \times U(1)_X$ and X is the hypercharge for these states

G

G_0 partially gauged by G_{μ}, B_{μ} fully gauged by $\mathcal{V}_{\mu}, \mathcal{A}_{\mu}$

G1

- ▶ Ubiquitous V_8, V_1, A_8
- ▶ Depending on the coset V_3, V_6, A_3, A_6

- Ubiquitous $\mathcal{V}_8, \mathcal{V}_1, \mathcal{A}_8$
- Depending on the coset $\mathcal{V}_3, \mathcal{V}_6, \mathcal{A}_3, \mathcal{A}_6$
- \triangleright \mathcal{V}_8 mixes with gluon
 - $\Rightarrow \mathsf{single} \ \mathsf{production} \ \mathsf{channel}$

Can calculate

 $\blacktriangleright \ \mathcal{V}_8 \to q\bar{q}$

Can calculate

$$\begin{array}{c} \blacktriangleright \quad \mathcal{V}_8 \to q\bar{q} \\ \blacktriangleright \quad \mathcal{V}_8 \to \pi\pi \end{array}$$

Can calculate

- $\blacktriangleright \ \mathcal{V}_8 \to q\bar{q}$
- $\blacktriangleright \mathcal{V}_8 \to \pi \pi$
- Couplings to gluons, $c_{\mathcal{V}_8gg} = 0$

Can calculate

- $\blacktriangleright \ \mathcal{V}_8 \to q\bar{q}$
- $\blacktriangleright \mathcal{V}_8 \to \pi \pi$
- Couplings to gluons, $c_{\mathcal{V}_8gg} = 0$
- Missing: couplings c_{tt} from partial compositeness

$$ar{T}\,
u_8 T
ightarrow ar{t} \,
u_8 t$$

Decays of \mathcal{V}_8

for the $SU(3)^2/SU(3)$ coset

Decays of \mathcal{V}_8

for the $SU(3)^2/SU(3)$ coset

Bounds on \mathcal{V}_8 single production

pub. in JHEP 06 (2024) 092

The same can be done for EW spin-1 states which mix with the EW gauge bosons:

- Composite Higgs models predict coloured spin-1 resonances
- Among them is always an octet \mathcal{V}_8 that mixes with the gluon
- ▶ LHC phenomenology dominated by V_8 single production
- Mass bounds up to 5 TeV
- Technical difficulty: width is very large ($\Gamma/M > 50\%$) in parts of the parameter space

For more details, see 2404.02198 for the coloured and 2412.08720 for the electroweak vectors

Backup

Coloured spin-1 resonances: broad resonance

Coloured spin-1 resonances: broad resonance

