

The bearable inhomogeneity of the baryon asymmetry

Majid Ekhterachian (EPFL)

PLANCK 2025

Padua, May 2025

Based on [arXiv: 2505.15904] with Hengameh Bagherian (Harvard) & Stefan Stelzl (EPFL)

Baryon Asymmetry of Universe

• From CMB:

 $\Omega_B h^2 = 0.02237 \pm 0.00012$

• From BBN: Abundance of light elements depends

on
$$\eta = \frac{n_B}{n_{\gamma}}$$

 $\frac{n_B}{n_{\gamma}} \approx (6.04 \pm 0.2) \times 10^{-10}$

• Most precise BBN determination from (D/H)

The idea

- The abundances of light elements at the end of BBN, at a given position x depends on the local value of $\eta(x)$
- The dependence on $\eta(x)$ is in general nonlinear
- For the average abundance, the linear variation drops out, sensitive to non-linear corrections
- O(1%) precison in D/H, in good agreement with CMB determination
- Expect bounding inhomogeneities at BBN to O(10%)

The idea

- The abundances of light elements at the end of BBN, at a given position, depends on the local value of $\eta(x)$
- The dependence on $\eta(x)$ is in general nonlinear
- For the average abundance, the linear variation drops out, sensitive to non-linear corrections
- O(1%) precison in D/H, in good agreement with CMB determination
- Expect bounding inhomogeneities at BBN to O(10%)
- Question: How early can the inhomogeneities be produced such that they can be probed by BBN?

The idea

- The abundances of light elements at the end of BBN, at a given position, depends on the local value of $\eta(x)$
- The dependence on $\eta(x)$ is in general nonlinear
- For the average abundance, the linear variation drops out, sensitive to non-linear corrections
- O(1%) precison in D/H, in good agreement with CMB determination
- Expect bounding inhomogeneities at BBN to O(10%)
- Question: How early can the inhomogeneities be produced such that they can be probed by BBN? (in radiation domination)

✓ Inhomogeneities with comoving length scale larger than the Hubble length at $T \sim 3$ TeV survive until BBN

Not erased by diffusion until BBN if at such length scales even if produced at $T \leq O(\text{TeV})$

Outline

- Quick review of BBN
- Baryon diffusion
- The bearable inhomogeneity at BBN
- What can we probe?
 - > Inhomogeneities from baryogenesis
 - > Other scenarios and correlation with gravitational waves

Quick review of BBN

• Neutrons and protons in chemical equilibrium for $T \gtrsim MeV$

$$n + \nu_e \leftrightarrow p + e$$

Until neutrino decoupling at $T_{\nu} \approx 0.8$ MeV, $X_n^{eq} \approx 1/6$

- Until deuterium starts to build up $n+p \leftrightarrow D+\gamma$
- $B_D = 2.2$ MeV, but as η is small, D abundance becomes sizeable only when $T \lesssim \frac{B_D}{\ln(\eta^{-1})} \sim 60$ keV

$$X_n \approx 1/8$$
 at $t \sim 330 \, s$

Quick review of BBN

Neutron fraction at the onset of BBN, $T_{\rm BBN} \simeq 60 \text{ keV}$:

 $X_n \approx 1/8$ at $t \sim 330 \, s$

 4 He is the most bound among the light nuclei Almost all neutrons end up in 4 He

Helium mass fraction: $\frac{4 n {}^{4}\text{He}}{n_{H}} \approx 4 \frac{\frac{1}{2}X_{n}}{1 - X_{n}} \approx \frac{1}{4}$

A sensitive probe of the expansion rate and therefore $N_{\rm eff}$ But only logarithmically sensitive to η

Majid Ekhterachian (EPFL)

9

Quick review of BBN- Deuterium freeze out

• Deuterium consumed mainly through processes:

 $D + D \rightarrow {}^{3}He + n$ $D + D \rightarrow T + p$ $D + p \rightarrow {}^{3}He + \gamma$

At the time of D freeze-out:

- If DD rates would dominate, the final D abundance would be independent of n_p $(\eta \ll 10^{-9})$
- If the Dp rate would dominate, the final D abundance would be exponentially sensitive to n_p (and therefore η) $(\eta \gg 10^{-9})$
- DD processes have larger cross sections but larger n_p makes the rates comparable at the time of D freeze out (for observed η)
- This makes deuterium sensitive to η and inhomogeneities

Diffusion

 $\partial_t n = D \nabla^2 n \qquad \qquad d \sim \sqrt{D t}$

• Diffusion dominated by late time dynamics

Smaller *T*, smaller interaction rate, larger diffusion coefficient

> Longer time $H \sim T^2/M_{\rm Pl}$

For example, consider particles strongly coupled to the plasma, so that $D \sim 1/T$

Diffusion length during one e-fold of expansion:

$$\Delta d \sim \sqrt{D t} \sim \sqrt{D/H} \propto \sqrt{M_{\rm Pl}/T^3}$$

Note: $\Delta d/l_H = \Delta d \ H \sim \sqrt{T/M_{\rm Pl}} \ll 1$

• Diffusion is slow, homogenization happens on scales well with horizon only

Baryon Diffusion

- Diffusion generically dominated by late time dynamics: early diffusion of baryon number (carried by quarks) negligible compared to later diffusion of protons and neutrons
- Until neutrino decoupling T_{ν} , neutrons and protons in chemical equilibrium: a nucleon diffuses dominantly during the time it spends as a neutron
 - > Dominant process: neutron-electron scattering via neutron magnetic moment

$$\sigma_{ne} \sim rac{lpha^2 \kappa^2}{m_n^2}$$

$$D_{ne} \sim \frac{m_n^2}{\alpha^2 n_e}$$

- After T_{ν} , effectively negligible diffusion of protons until BBN
- Can estimate proton diffusion length by that of the neutron at T_{ν} :

$$d_{\rm p} \sim \left[\sqrt{D_n/H}\right]_{T_{\rm v}} \sim \sqrt{\frac{m_n^2 M_{\rm Pl}}{\alpha^2 n_e T_{\rm v}^2}} \sim \sqrt{\frac{m_n^2 M_{\rm Pl}}{\alpha^2 T_{\rm v}^5}}$$

• Neutrons continue to diffuse until BBN:

$$\left(d_{\rm n}/d_p\right)_{\rm BBN}\gg 1$$

• Late time *n* diffusion controlled dominantly by *n p* scattering

Baryon Diffusion

• To obtain the precise diffusion lengths we solve the coupled diffusion/ Boltzmann equations Comoving d_p at the onset of BBN = comoving Hubble length at $T \approx 3$ TeV Comoving d_n at the onset of BBN = comoving Hubble length at $T \approx 7$ GeV

Baryon Diffusion: Lengths scales and regimes for BBN

> (1) $L \gg d_n$ inhomogeneities in both neutrons and protons $n_p(x) \propto n_n(x) \propto \eta(x)$

 \geq (2) $d_p \ll L \ll d_n$ neutrons homogenize by BBN but protons stay inhomogeneous:

 $(2a) \quad D_n L^{-2} \ll \langle \sigma_{np \to D\gamma} v \rangle n_p \quad \text{neutron diffusion during BBN can be ignored}$ $(2b) \quad D_n L^{-2} \gg \langle \sigma_{np \to D\gamma} v \rangle n_p \quad \text{fast neutron diffusion during BBN keeps neutrons homogeneous}$ $(3) \quad L \ll d_p \quad \text{Baryon inhomogeneities are erased by BBN}$

The tolerable inhomogeneities at BBN

Regime (1): $L > d_n$ (= comoving Hubble length at $T \approx 7$ GeV)

- Correlated inhomogeneities in $n_p(x) \propto n_n(x) \propto \eta(x)$
- Parameterize $\eta(x) = \eta_{\text{CMB}}(1 + \epsilon(x))$ with $\langle \epsilon \rangle = 0$
- At each point: $D/H \propto (1 + \epsilon)^{-1.67}$

 $\langle D\rangle / \langle H\rangle \propto \langle (1+\epsilon)^{-0.67}\rangle \approx 1+0.56 \, \langle \epsilon^2\rangle$

Overproduction of Deuterium compared to homogeneous BBN

Bound:

 $\epsilon_{RMS} = \sqrt{\langle \epsilon^2 \rangle} < 0.28$

Using CMB to determine η as input, homogeneous BBN predicts $D/H = (2.53 \pm 0.1) \times 10^{-5}$ (4% accuracy) • Uncertainty dominated by nuclear reaction rates • Observed $D/H = (2.55 \pm 0.003) \times 10^{-5}$ (1% precision) See also Inomata, Kawasaki, Kusenko & Yang 2018 Barrow & Scherrer 2018

The tolerable inhomogeneities at BBN

Regime (2a):
$$d_p < L_* < L < d_n$$

Neutrons homogenized before BBN but $n_p(x)$ stays inhomogeneous

- Parameterize initially $\eta_i(x) = \eta_{CMB}(1 + \epsilon(x))$
- At the beginning of BBN

$$n_p(x) \propto (1 + \epsilon(x)),$$

$$\eta(x) = \eta_{\text{CMB}} (1 + \delta(x)) \qquad \delta \equiv \frac{\epsilon}{1 + X_n(T_{\text{BBN}})}$$

• At each point: $D/H \propto (1 + \delta)^{-2.3}$

Bound:

$$\epsilon_{RMS} < 0.19$$

Stronger bound since n_p is more inhomogeneous after 4 He formation

The tolerable inhomogeneities at BBN

Regime (2b): $d_p < L < L_* < d_n$

- Neutrons homogenized before BBN but $n_p(x)$ stays inhomogeneous
- Higher rate of neutron consumption in the more proton-rich regions
- Neutron diffusion during BBN is efficient, keeps neutrons homogenous by transferring neutrons to the more proton-rich regions
- Parameterize initially $\eta_i(x) = \eta_{CMB}(1 + \epsilon(x))$
- We fin that after helium formation, proton profile same as in regime (1), with initial n_p(x) ∝ n_n(x) ∝ η(x) and no diffusion!

 $n_p(x) \propto (1 + \epsilon(x))$

• Same bound as regime 1 with $L > d_n$

 $\epsilon_{RMS} < 0.28$

Pointed out (but not studied) in Inomata, Kawasaki, Kusenko & Yang 2018

Prospects and limitations

- Currently observed $D/H = (2.55 \pm 0.003) \times 10^{-5}$ (1% precision)
- Using CMB to determine η as input, homogeneous BBN predicts

 $D/H = (2.53 \pm 0.1) \times 10^{-5}$ (4% accuracy)

- Uncertainty dominated by nuclear reaction rates
- Most importantly: *DD* annihilation and *Dp* coannihilation rates
- Recent improvement, in 2020, in the measurements of Dp rates by LUNA

- $\begin{array}{c} D+D \rightarrow \ T+p \\ D+D \rightarrow \ ^{3}He+n \\ D+p \rightarrow \ ^{3}He+\gamma \end{array}$
- Sizeable improvements expected in determination of η from CMB (Simons observatory and S4) and in D/H measurement (see e.g. [2409.06015])

Scenarios of baryogenesis that produce large inhomogeneities

- > Mesogenesis with SM CP Violation[Elor Houtz Ipek Ulloa 2024] $(\epsilon_{RMS} \sim 1, L \gg d_p)$ > Electroweak Baryogenesis with domain walls[Azzla Matsedonskyi Weiler2024]> Electroweak baryogenesis if slow enough ($\beta/H \leq O(10)$) $(\epsilon_{RMS} \geq O(0.1), L \sim d_p)$ Scenarios that imprint inhomogeneities on a previously generated baryon asymmetry
- Strong EW phase transition ($\beta/H \lesssim O(10)$)
- Phase transitions proposed to explain the Pulsar Timing Array signal
- Generic correlation with gravitational wave signals (from pHz to mHz frequency)
- Primordial isocurvature perturbations (from inflation)

The SM CP violation is enough(?)

[Elor Houtz Ipek Ulloa 2024]

- A recent attempt for baryogenesis using the CP violation of only the SM
- CP violation in B meson oscillations
- B violation: B mesons decay to a particle in the dark sector and a baryon (total baryon number conserved but B violation in the visible sector)
- The collider bounds limit the branching fractions (today) below what is needed to reproduce the observed baryon asymmetry
- To enhance it at early times: Considered changing the mass of the particle mediating the decay in some domains and not the others

Domain wall network persisting until $T \sim 10 \text{ MeV}$

- Considerable baryon asymmetry generated in only some domains
- O(1) inhomogeneities with comoving length scale larger than both neutron and proton diffusion lengths

Electroweak baryogenesis

Deserves a dedicated study, only estimates here

- Production of the baryon asymmetry takes a time of order β^{-1}
- Temperature changes during this time $\frac{\Delta T}{T} \simeq H/\beta$
- Baryon symmetry produced at different points depends on T, expect $\epsilon \propto \frac{\Delta T}{T} \simeq H/\beta$
- The precise amplitude of inhomogeneities generally depends on the model/parameters, e.g much more sensitive if $\langle h \rangle /T$ near 1
- Characteristic length scale: typical bubble separation $L \sim v_w \beta^{-1}$
- $L_{\text{comoving}} > d_p \text{ corresponds to } \beta/H \lesssim 30$
- Sensitivity drops quickly for larger β/H (smaller L)

Strong first order phase transitions

Consider a supercooled PT with $\alpha \gtrsim 1$

- Phase transition starts at different times at different points, same for reheating after the PT
- Temperature variation of of size $\Delta T/T \sim H/\beta$ (Needs a dedicated study, only estimates here)
- Variations in the baryon-to-photon ratio $\Delta \eta / \eta \simeq 3 \Delta T / T$
- T fluctuations damp, but $\Delta \eta / \eta$ survive when the oscillations are underdamped
- This is the case unless PT close to the MeV scale: near neutrino decoupling, heat transfer very efficient, oscillation of sound waves are overdamped and the induced inhomogeneity in η suppressed
- Sensitive to PTs with $\beta/H \leq O(10)$, relevant to both EW PT and PTs at $T \sim 100$ MeV proposed to explain the PTA signal if the energy transferred to the visible sector (see [NANOGrav 2306.16219])
- If energy transferred to dark sector radiation only, in conflict with $N_{\rm eff}$

Summary and Conclusions

- Novel bounds on the inhomogeneities in the baryon asymmetry at BBN
- Baryon diffusion leaves inhomogeneities with length scale larger than comoving Hubble length at a few TeV
- Can probe inhomogeneities produced as early as the electroweak scale
- Complementary to gravitational wave searches
- Improvements in measurements of D/H and CMB determination of η expected
- Currently precision limited by the nuclear reaction rates, (how much) future improvement possible?

Thank you!

Extra Slides

Baryon Diffusion: transfer function

- To obtain the precise diffusion lengths and transfer functions need to solve the coupled diffusion/ Boltzmann equations
- If not coupled, transfer function is simply a Gaussian

$$\tilde{n}(k,t) = e^{-\frac{1}{2}(d_p(t)k)^2} \tilde{n}(k,0)$$

- For protons, deviates from a Gaussian, less washout of inhomogeneities at smaller distances
- The inhomogeneities are suppressed by a factor of 10 for k =comoving Hubble scale at 10 TeV

Bounds on baryon inhomogeneities (isocurvature)

Strong bounds from CMB and at large scales

Our BBN constraints dominate for smaller length scales, up to comoving horizon scale at $T \lesssim 10 \text{ TeV}$

What scenarios can we probe? Electroweak baryogenesis

- Production of the baryon asymmetry takes a time of order β^{-1}
- Temperature changes during this time $\frac{\Delta T}{T} \simeq H/\beta$
- Baryon symmetry produced at different points depends on T, expect $\epsilon \propto \frac{\Delta T}{T} \simeq H/\beta$
- In general depends on the model/parameters:
- As example consider a case where $\frac{v_c}{T_c} \leq 1$ inside the bubble so that the washout by sphalerons is not negligible, then exponentially sensitive: $\frac{\Delta\Gamma_{\rm sph}}{\Gamma_{\rm orb}} \simeq e^{-\Delta \left(\frac{E_{sph}}{T}\right)} \sim e^{\frac{2g}{\alpha_w}\Delta(v/T)}$
- 3% change in v/T near $\frac{v_c}{T_c} \approx 1$ during the PT changes $\Gamma_{\rm sph}$ by a factor of e, can lead to $\epsilon \sim O(1)$ even for $\frac{\beta}{H} \sim 30$

Electroweak baryogenesis with domain walls

- Scaling regime, few domains per Hubble at EW scale
- Inhomogeneities generated on large enough distances
- Why inhomogeneities?

Baryons generated at domain wall, slowly moving through space

• Temperature changes while wall swipes through space , therefore number densities, velocity and sphaleron rate change

[Azzla Matsedonskyi Weiler2024]

Proton diffusion during BBN

Toy model for evolution of T fluctuations Slow heat transfer

Neglect the pressure from baryons

- The fluctuations in T lead to fluctuations in volume and number densities
- The local volume/pressure oscillate around the equilibrium value (sound wave)
- Oscillation gradually damped due to viscosity (friction in the toy model) and heat transfer and the system relaxes with homogenized P and T
- At the "equilibrium" point the B density inhomogeneous

Toy model for evolution of T fluctuations efficient heat transfer

- The efficient heat transfer homogenizes T and P before considerable motion
- No final inhomogeneity induced in baryons

EW baryogenesis

Diffusion

 $\partial_t n = D\nabla^2 n \qquad \qquad d \sim \sqrt{D t}$

• Diffusion dominated by late time dynamics

Smaller *T*, smaller interaction rate, larger diffusion coefficient

 \succ Longer time $H \sim T^2/M_{\rm Pl}$

For example, consider particles strongly coupled to the plasma, so that $D \sim 1/T$

> Diffusion length during one e-fold of expansion:

Contribution to comoving diffusion lengths:

$$\Delta d \sim \sqrt{D t} \sim \sqrt{D/H} \propto \sqrt{M_{\rm Pl}/T^3}$$
$$\Delta d_{\rm comoving}^2 \propto M_{\rm Pl}/T$$

Also note: $\Delta d/l_H = \Delta d \ H \sim \sqrt{T/M_{\rm Pl}} \ll 1$

Diffusion is slow, homogenization happens on scales well with horizon only